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1. Introduction 

 

The shortwave radiation budget describes how the fraction of radiation absorbed by or scattered 

out from the canopy to the underlying background or back to space are related to the structural 

and optical properties of canopy and background. Operational remote sensing or climate 

applications of the model of shortwave radiation budget naturally require that such model should 

build upon a canopy representation with only a small set of basic parameters which govern the 

radiation budget with sufficient accuracy. 

 

The interaction of solar radiation with the vegetation canopy is fully described by the three-

dimensional (3D) RT equation. The scale of the elementary volume of the equation (scale of 

leaves, branches, twigs, etc.) is large compared to the wavelength of solar radiation, and, 

according to principles of physics, the photon free path between two successive interactions is 

independent of the wavelength. Namely, while the scattering and absorption processes are 

different at different wavelengths, the interaction probabilities for photons in vegetation media 

(interaction cross-section or extinction coefficient) are determined by the structure of the canopy 

rather than photon wavelength or the optics of the canopy. 
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This feature of the RT equation allowed formulation of the concept of canopy spectral 

invariants. This concept states that simple algebraic combinations of leaf and canopy spectral 

transmittance and reflectance become wavelength independent and determine a small set of 

canopy structure specific variables. The set of structural variables includes canopy interceptance, 

recollision and escape probabilities. These variables specify the spectral response of a vegetation 

canopy to the incident solar radiation and allow for a simple and accurate parameterization of the 

partitioning of the incoming radiation into canopy transmission, reflection and absorption at any 

wavelength in the solar spectrum. In addition to the spectral invariance property, these variables 

poses fundamental scaling property, allowing to scale RT parameters over full range of 

landscape scales from leaf internals, through leaf, shoots, crowns to whole canopy. Thus, the 

spectral invariant approach provides a compact alternative to the full 3D RT equation for 

operational remote sensing or climate applications. 

 

This chapter is organized as follows. We start by introducing basic physical principles of the 

spectral invariants and supporting field measurements. Next, we present rigorous mathematical 

formulation of the spectral invariants based on the method Successive Orders of Scattering 

approximations (SOSA) or Neumann series and eigenvalue/eigenvector theory of functional 

analysis. Finally, we discuss the scaling properties of spectral invariants and illustrate this 

fundamental feature with two case studies: (a) scaling from needles to shoots in the needle leaf 

canopies and (b) scaling form leaf internals to leaf. 

 

2. Physical Principles of Spectral Invariants 

 

Radiation Fluxes at Leaf and Canopy Scale: The 3D RT equation can be interpreted as the link 

between leaf and canopy scale radiation fluxes (Chapter 3 and 4). At the leaf scale the radiation 

fluxes are described in terms of spectral leaf transmittance and reflectance. The leaf 

transmittance (reflectance) is the portion of radiation flux density incident on the leaf surface 

that the leaf transmits (reflects) (Chapter 3). The leaf albedo, , is the sum of the leaf 

reflectance, , and transmittance, , 
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The fluxes at the canopy scale are described in terms of spectral canopy interceptance, 

absorptance, reflectance and transmittance. The canopy interceptance (absorptance) is the ratio 

of the mean flux density intercepted (absorbed) by canopy leaves to the downward radiation flux 

density above the canopy. Similarly, canopy transmittance (reflectance) is the ratio of the mean 

downward radiation flux density at the canopy bottom (mean upward radiation flux density at the 

canopy top) to the downward radiation flux density above the canopy. According to RT theory 

(Chapter 3), the canopy interceptance, , absorptance, , reflectance, , and 

transmittance, , are defined as follows: 

 

  (2a) 

 

  (2b) 

 

  (2c) 

 

  (2d) 

 

In the above,  is the radiation intensity at wavelength , spatial location , and in 

direction ,  is the interaction cross-section, and  is the absorption cross-

section. The interaction cross-section is treated as wavelength independent considering the size 

of the scattering elements (leaves, branches, twigs, etc.) relative to the wavelength of solar 

radiation [Ross, 1981]. The interaction cross-section, , consist of absorption,  

and scattering, , cross-sections (cf. Chapter 3): 

 

  (3a) 

where 

)(i l )(a l )(r l

)(t l

,),r,(I),r(drd)(i
4V
òò
p

WlWsWºl

,),r,(I),r(drd)(a
4

a
V
òò
p

WlWsWºl

,),0r,(I)(d)(r
2
ò
+p

W=lWµWºl

.),Hr,(I)(d)(t
2
ò
-p

W=lWµWºl

),r,(I Wl l r

W ),r( Ws ),r(a Ws

),r( Ws ),r(a Ws

),r(s Ws¢

),,r(),r(),r( sa Ws¢+Ws=Ws



4 

  (3b) 

 

  (3c) 

 

In the above  is the differential scattering cross-section. Thus, combining Eqs. (2) 

and (3) we have, 

 

  (4) 

 

 (a) (b) 

  
Figure 1. Needle (Panel a) and canopy (Panel b) spectral reflectance (vertical axis on the left side) and 

transmittance (vertical axis on the right side) for a Norway spruce (Picea abies (L.) Karst) stand at 

Flakaliden site in Sweden. Arrows show needle and canopy absorptance. The effective LAI at the site was 

4.37. The needle transmittance, , and albedo, , follow the regression line . 

 

The canopy absorptance, reflectance and transmittance are the three components of the 

shortwave energy conservation law which describes canopy spectral response to incident solar 

radiation at the canopy scale. If reflectance of the ground below the vegetation is zero (black 

soil, cf. Chapter 4), the portion of radiation absorbed, , transmitted, , or reflected, , 

by the canopy totals to unity, i.e., 
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  (5) 

 

The key reference data set for this Chapter will be field data collected in Flakaliden site in 

Sweden [Huang et al., 2007]. Other ancillary sources will be mentioned as appropriate. Canopy 

spectral transmittance and reflectance, soil and understorey reflectance spectra, needle optical 

properties, shoot structure and LAI were collected in six 50x50 m plots composed of Norway 

spruce (Picea abies (L.) Karst) located at Flakaliden research area ( N, E), operated 

by the Swedish University of Agricultural Studies. The spectral measurements of canopy and 

needles were taken by ASD Field spec Pro handheld spectroradiometer. Needle spectral 

reflectances and transmittances of an average needle were obtained by averaging 50 measured 

spectra with highest weight given to the 2-year-old needles (80%) and equal weights to the 

current (10%) and 1-year (10%) needles. Figure 1 shows needle and canopy transmittance, 

reflectance and absorptance spectra at the Flakaliden site. 

 

Mechanism of Scattering: Consider the following basic scheme of the relationship between leaf 

and canopy scales radiation fluxes. We assume that canopy is illuminated from the top by 

monodirectional unit flux. Canopy bottom is assumed to be absolutely absorbing, such that 

photons hit background will not re-enter, but exit canopy. The incident unit flux undergo 

multiple interactions with phytoelements and ultimately is partitioned into absorbed, , 

transmitted, , and reflected, , portions. To analyze multiple scattering, we separate the 

radiation flux incident on vegetation canopy into two components (Fig. 2): directly intercepted 

by leaves and available for future interaction events (zero-order interceptance, ), and directly 

transited to the canopy bottom without hitting a leaf (zero-order transmittance, ): 

 

  (6a) 

 

The intercepted photons, , will participate in the multiple scattering and ultimately will be 

either absorbed, , or scattered outside of canopy, : 
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Thus, 

  (6c) 

 

Note,  and  are zero-order scattering quantities, while  and  are total quantities, 

accumulated over multiple events of scattering. While  and  are wavelength dependent, 

 and  don’t depend on wavelength, that is, they are function of overall canopy 

structure/architecture and illumination geometry, but not leaf optical properties. 

 

 

Figure 2. Partitioning of the incoming flux between 

canopy absorptance, , transmittance, , and 

reflectance, , (left panel) as the result of the 

scattering process (right panel). The incoming flux is 

intercepted by canopy, (zero-order intrerceptance, ) or 

directly transmitted through canopy (zero-order  

transmittance, ). The intersepted flux participates in 

multiple scattering and is further subdivided between 

absorptance, , and scattering out of canopy, . 

 

 

The scheme of multiple scattering is as follows. At each individual event of interaction in the 

sequence of multiple scattering, the portion of intercepted photons is scattered and  

portion is absorbed (Fig. 3). In turn, the scattered portion, , can be further subdivided into 

two parts: with probability p (recollision probability) photon will further participate in multiple 

scattering and will hit new leaf again, while with the probability 1-p the photon will be removed 

from canopy. Thus, the three components of the radiation budget for the singe photon-

phytoelement interaction event are (Fig. 3): 
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  (7) 

 

 

 

Figure 3. Partitioning of energy between 

absorbed, scattered out of canopy and 

rescattered within canopy portions is 

preserved through the individual scattering 

events (left panel). This leads to the same 

proportions for the total radiation regime 

(right panel). 

 

Consider the sequence of scattering events generating the total observed radiation regime as 

detailed in Fig. 4. Part of the incoming intensity in the amount of  is directly transmitted to the 

canopy bottom and will not participate in the process of multiple scattering. The remaining part 

of the incoming radiation, , will be intercepted by canopy and become the source of the first 

interaction event resulting in the first-order absorptance, , scattering out of 

canopy,  and re-scattering, , all are in proportions as shown in 

Fig. 3. The re-scattered portion will serve as a source for the second-order interaction events, and 

so on. Referring to Fig. 4, the canopy total interceptance, , absorptance, , scattering, 

, and rescattering,  are calculated as the sum of contributions of individual scattering 

events: 

  (8a) 
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  (8d) 

 

 
Figure 4. Quantitative presentation of the scattering scheme shown in Fig. 2. The sequence of cicles 

represents sequence of scattering events. The energy budget for each individual scattering event 

(intercepted, absorbed, scattered out of canopy and rescattered within the canopy portions) is according to 

Fig.3. 

 

Refer to Fig. 5, which explains the meaning of the effective number of photon-phytoelement 

interactions, , appearing in Eq. (8a). According to the definition, the total intercepted by 

phytoelements radiation is the infinite sum of the amounts of intercepted radiation of decreasing 

intensity, corresponding to infinite series of photon-phytoelement interactions [Eq. (8a)] 

Alternatively, the contribution of infinite series can be represented by finite number of photon-

phytoelement interactions, , assuming each has constant interceptance of . Also note the 

following notations. Sometimes, the normalized versions of absorptance and scattering are used 

in the literature: canopy absorption (scattering) coefficient,  ( ), is the portion of 

intercepted photons that canopy absorb (escape canopy in upward and downward directions). 
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Figure 5. Derivation of the effective 

number of scattering events, . The 

total canopy interceptance is accumulated 

with the infinte number of scattering 

events, k, with declining interceptance, 

. Effectively this can be represented as 

the contribution of finite number, , of 

interactions with constant interceptance, 

. The numer  is derived from the 

condition that area of rectange  

is equal to the area under curve . 

 

Refer to Eq. (8) and Figs. 3 and 6, and note the following properties of interceptance, 

absorptance, scattering out of canopy and rescattering. First, the series for interceptance, , 

are unique in terms that the first term (zero-order interceptance) does not depends on 

wavelength. Second, the relationship between interceptance, absorptance, scattering out of 

canopy and rescattering is 

 

  (9) 

 

Thus, the total canopy interceptance, , consist of fixed component (absorptance and 

scattering out of canopy) and transit component (rescattering). The transit component is volatile, 

energy transferred from one scattering to another will ultimately be either absorbed or scattered 

out of canopy. Third, the relationship between energy fluxes at leaf and canopy are established 

with the following ratios: 
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The physical meaning of ratios in Eq. (10) is as follows [cf. Fig. 3]. In view that at each 

individual photon-phytoelement interaction the intercepted energy is distributed between 

absorptance, scattering out of canopy and rescattering in the constant proportion, independent on 

scattering order, this same proportion will be preserved at the whole canopy scale. For instance, 

the scattering out of canopy constitute  portion, while absorptance constitutes  

portion, and this holds true both at phytoelement and canopy scales. 

 

 

 

Figure 6. Functional dependance of canopy 

inteceptance, , absorptance, , scattering 

out of canopy, , and rescattering within 

canopy, , on single scattering albedo, . 

Here,  is the zero-order canopy interceptance 

and p is the recollision probability. 

 

Next, consider functional dependence of interceptance, absorptance, and two scattering 

quantities on single scattering albedo,  [cf. Fig. 6]. Note, zero-order quantities and the same 

quantities at  convey a distinct meaning and should not be used interchangeably. In the 

case of interceptance,  and  coincide, but the definition of  does not require  equal 

zero, as it is constant for all values of . In contrast, in the case of absorptance,  and  

are different, and  depends on . As  increases, total interceptance increases starting from 

 due to contribution of multiple scattering. In contrast, total absorptance is highest for black 

leaves ( ) and decreases with , because multiple scattering removes energy out of canopy. 

The two scattering quantities (scattering out of canopy and rescattering) are equal to zero at 

, but increase with increasing . The overall functional dependence and specific limits of 

all above quantities are shown in Fig. 6. Finally, note the consistency between series of scattering 

formulation [Eq. (10)] and RT equation [Eq. (4)]. 
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Canopy Spectral Invariant for Interceptance: Consider total canopy interceptance at two 

independent wavelengths,  and  for  [cf. 

Eq. (8a)]. The system of the above two equations can be solved for the recollision probability: 

 

  (11) 

 

This equation expresses the principle of spectral invariance with respect to canopy interceptance. 

Recall [cf. Eqs. (7) and (9)] the total canopy interceptance, , is partitioned between total 

canopy absorptance, , and total canopy scattering, . 

The principle of spectral invariance states that the ratio between difference in the amount of 

intercepted photons, , and those of scattered photons, , is 

spectrally invariant with respect to any wavelength  and , and is equal to the recollision 

probability. Figure 7 shows amount of photons intercepted, , and scattered, , by 

canopy as function of wavelengths derived from measurements at Flakaliden site. Also shown is 

the frequency of values of the recollision probability, p, corresponding to all combinations of  

and . The sharp peak of the distribution suggests that the recollision probability, p, is invariant 

with respect to the wavelength with sufficiently high accuracy. The minor spread of the 

distribution is due to measurements errors and ignoring surface contribution. 
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Figure 7. Retrieval of the recollision probability, p, from Flakaliden field data (Fig. 1). Panel (a) shows 

total canopy interceptance,  (solid line), and total canopy scattering,  

(dashed line). Panel (b) shows frequency of values of the recollision probability derived according to Eq. 

(11). 

 

The Equation (11) can be rearranged to a different form, which we use to derive  and  

( ) from field data, namely, 

 

 .  

 

If the reciprocal of the total canopy interceptance calculated from measured canopy absorption 

and needle albedo is plotted versus measured needle albedo, a linear relationship is obtained 

(Fig. 8). The recollision probability, , and canopy interceptance, , can be inferred from the 

slope and intercept. 

 

 

Figure 8. Reciprocal of  and (b) 

 versus leaf albedo  derived 

from Flakaliden field data (Fig. 1). The recollision 

probability, =0.91, and canopy interceptance, 

=0.92, are derived from the slope and intercept 

of the line. 

 

The key properties of the recollision probability are as follows. The recollision probability 

establishes the link between leaf and canopy scales, and thus it is a scaling parameter in RT 

theory for vegetation. This parameter accounts for the effect of the canopy structure on RT 

regime across range of scales. The parameter is wavelength independent. Monte Carlo 

simulations [Smolander and Stenberg, 2005] suggest that the recollision probability is minimally 
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sensitive to rather large changes in the direction of the incident beam. However, other numerical 

simulations [Lewis and Disney, 2007] indicate that the recollision probability depends on 

scattering order and LAI (Fig. 9). Thus, one should discriminate between the actual recollision 

probability, , which is function of scattering order, its asymptotic value, , a plateau, 

reached under condition of infinite scattering, and effective value, , evaluated over scattering 

events. 

(a) (b) 

  

Figure 9. Recollision probability, , as a function of scattering order calculated for canopies with 

LAI 1, 5, 10. Infinite scattering order recollision probability ( ) and effective recollision probability 

( ) as a function of LAI. Monte-Carlo simulations are performed for canopies composed of randomly 

located non-overlapping disks with a spherical leaf angle distribution (from Lewis and Disney, [2007]). 

Canopy Spectral Invariant for Reflectance and Transmittance: The total canopy scattering 

consist of rescattering between phytoelements, , and scattering out of canopy,  . The 

rescattering term, , is characterized by recollision probability, p. The scattering out of 

canopy term, , can be subdivided further into upward and downward components to derive 

reflectance and transmittance. The probability that scattered photon will escape the vegetation 

canopy through the upper (or lower) boundary is called escape probabilities  and , 

respectively. At each individual event of photon-phytoelement interaction, all possible outcomes 

of scattering are limited to photon escaping canopy in upward, or downward direction, or 

colliding another phytoelement, thus, 
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  (12) 

 

As in the case of recollision probability, , the escape probabilities,  and , depend, in 

general, on scattering order, but reach constant value (plateau) after several iterations. The 

number of interaction events before this plateau is reached depends on the canopy structure and 

the needle transmittance-albedo ratio. Monte Carlo simulations suggest that the recollision and 

escape probabilities saturate after two-three photon-canopy interactions for low to moderate LAI 

canopies [Lewis and Disney, 2007]. This result underlies the approximation to the canopy 

reflectance, , proposed by Disney and Lewis [2005], 

 

 , (13a) 

 

where coefficients ,  and  are determined by fitting Eq. (13a) to measured reflectance 

spectrum. Under assumption that the recollision, , and escape probability, , remains constant 

in successive interactions, 

 

 ,      . (13b) 

 

The first term evaluates the portion of photons from the intercepted flux,  that escape the 

vegetation canopy in upward directions as a result of one interaction with phytoelements. The 

second term accounts for photons that have undergone two and more interactions. Violation of 

the above condition results in a transformation of ,  and  to some effective values 

,  and  as the result of the fitting procedure. The difference between actual and effective 

values of the escape probabilities depends on its speed of convergence as the number of 

interactions increases. A detailed analysis of this effect will be presented in Section 3. A 

simplified expression, , can also be used, with a reduction in accuracy of the 

approximation [Disney and Lewis, 2005]. 
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Figure 10 shows correlation between measured and evaluated according to Eq. (13) canopy 

reflectance over Flakaliden site. Overall close agreement supports the approximation of Disney 

and Lewis. In this example the selected values for  and  give the best fit to the measured 

reflectance spectrum. These coefficients can also be evaluated from the slope and intercept of the 

regression line, derived from values of the needle albedo, , and the reciprocal of  

at wavelengths [700 - 750 nm]. At those wavelengths values of  are uniformly distributed in 

the interval [0.1, 0.9] and the canopy reflectance exhibits a strong correlation with . These 

features allow reducing the impact of ground reflectance and measurement uncertainties on the 

specification of  and  from the regression line. 

 

 

Figure 10. Correlation between measured canopy 

reflectance and canopy reflectance evaluated using 

Eq. (13) with  = 0.15, = 0.59, and 

=  = 0.09 for the spectral interval 

400 900 nm. The arrow indicates a range of 

reflectance values corresponding to  0.9. Field 

data are from Flakaliden site (Fig. 1). 

 

Analogous to Eq. (13) for canopy reflectance, a similar relationship can be established between 

canopy transmittance and phytoelements albedo, namely 

 

 , (14a) 

 

where the values of coefficients ,  and  are chosen by fitting Eq. (14a) to the measured 
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 ,   . (14b) 

 

Under the above assumption, the value of  converges to zero-order transmittance [cf. Eq. (6)]. 

Figure 11 shows correlation between measured and evaluated according to Eq. (14) canopy 

transmittance over Flakaliden site. A theoretical analysis of this approximation will be presented 

in Section 3. It should be noted that canopy transmittance is sensitive to the needle transmittance 

to albedo ratio  [Panferov et al., 2001]. This may imbue wavelength dependence to 

the escape probabilities for low order photon scattering. 

 

 

Figure 11. Correlation between measured canopy 

transmittance and canopy transmittance simulated 

using Eq. (14) with  = 0.06,  = 0.017 and 

 = 0.94. Energy conservations for  and  is 

preserved with good accuracy, i.e.,   

= 0.92+0.06=0.98. Field data are from Flakaliden 

site (Fig. 1). 

 

Impact of Soil Reflectance: The total canopy transmittance, , reflectance, , and 

absorptance, , for the general RT problem of canopy above soil background can be 

represented by contribution of black-soil and soil sub-problems as follows (cf. Chapter 4): 
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Here,  is the hemispherical reflectance of the canopy ground. Variables   and ;  and 

;  and  denote canopy reflectance, transmittance, and absorptance calculated for a 

vegetation canopy (1) illuminated from above by the incident radiation and bounded from below 

by a non reflecting surface (subscript “BS”, for black soil); and (2) illuminated from the bottom 

by normalized isotropic sources and bounded from above by a non-reflecting boundary 

(subscript “S”). These variables are related via the energy conservation law, i.e., 

 

    i=BS or S-problem.  

 

The canopy spectral invariants are formulated for ,  and . The measured spectral 

transmittance, , and reflectance, , are taken as estimates of , . The absorptance  is 

approximated using Eq. (5). It follows from Eq. (42) that the relative errors, ,  and , and 

in , , and  due to the neglecting of surface reflection can be estimated in terms of 

measured ,  and  as: 

  (43a) 

  (43b) 

  (43c) 
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Figure 12. Upper limits of the relative errors 

, , and  in the estimates of ,  

and , arising due to the effect of non-black 

soil reflectance. Reference field data are from 

Flakaliden site in Sweden (Fig. 1). 

 

 

Thus, neglecting contribution of soil, results in overestimation of reflectance and transmittances 

and underestimation of absorptances. Figure 12 shows upper limits of the relative errors , 

,and .as a function of the wavelength for Flakaliden data. It follows from the above 

analysis that measured canopy absorptance approximates  with an accuracy of about 5%. 

Deviations of measured canopy transmittance and reflectance from  and  in the interval 

400 £  £ 700 nm do not exceed 5%, however they increase substantially in the interval 

700 £  £ 900 nm. 

 

Major Assumptions for Spectral Invariants: We summarize key assumptions of the theory of 

spectral invariants along three categories. (1) Boundary conditions assumptions: a vegetation 

canopy is illuminated from above by a wavelength independent parallel beam and bounded from 

below by a non-reflecting (black) surface. The last assumption is required to avoid re-entrance of 

photons exiting through background. (2) Phytoelements scattering properties assumptions: the 

interaction cross-section, , is treated as wavelength independent considering the size of 

the scattering elements (leaves, branches, twigs, etc.) relative to the wavelength of solar 

radiation. (3) Effective values assumptions: the recollision and escape probabilities ( , , ) 

are generally dependant on the scattering order, but tend to reach plateau and could be replaced 

with corresponding effective values. The uncertainties of retrievals of interceptance (or 

absorptance) are relatively low, as those variables depend on recollision probability only, while 
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uncertainties for transmittance and reflectance are higher as those variables depend both on 

recollision and escape probabilities. 

 

3. RT Theory of Spectral Invariants 

 

Successive Orders of Scattering Approximation: Below we formulate the rigorous 

mathematical basis underlying the principle of spectral invariance, introduced in the previous 

section. We adopt functional analysis formulation of the transport equation (Vladimirov [1963], 

Marchuk et al [1980]). Let  and  be the domain where radiative transfer occurs and its 

boundary, respectively. The domain  can be a shoot, tree crown, tree stand, etc. Let  and 

be the streaming-collision and scattering linear operators (Chapter 2), 

 

  (15a) 

 

  (15b) 

 

where  is the radiation intensity at wavelength , spatial location  and direction ;  

and  are extinction and differential scattering coefficients, respectively. In the following we 

assume that single scattering albedo, , does not depend on  and . The 3D radiative 

transfer equation (Chapter 4) can be formulated in operator notations as follows 

 

  (16a) 

 

The boundary conditions include canopy top to be illuminated from above by unit beam in 

direction  and canopy bottom to be absolutely absorbing, 
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We solve Eq. (16) with method of successive order of scattering approximations (SOSA). The 

total radiation intensity is represented as the sum of uncollided, , and collided, components 

(cf. Chapter 2), 

 

  (17) 

 

By definition,  is the radiation intensity of photons in the incident flux that will arrive at  

along direction  without suffering a collision. This is a wavelength independent parameter.  

satisfies the equation 

 

  (18) 

and the original boundary conditions, Eq. (16b-c).  is the collided (or diffuse) radiation 

intensity, that is, radiation generated by photons scattered one or more times. This is a 

wavelength dependant parameter. Combining Eqs. (16)-(18) one can verify that  

satisfies the following equation, 

 

  (19) 

 

and zero boundary conditions at the top and bottom of canopy. Finally, by combining Eq. (17) 

and (19), the Eq. (16a) can be rewritten in the form of the following integral radiative transfer 

equation, 

 

  (20) 

 

where operator . The SOSA method states that the solution of Eq. (20) is given by 
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One can verify the validity of solution given by Eq. (21) by substituting it in Eq. (20) and taking 

into account properties of operator T. The physical meaning of Eq. (21) is as follows.  is the 

radiation intensity of photons, scattered m times. The uncollided photons with intensity , 

serve as the source for the photons scattered one time with intensity , which in turn serve as a 

source of photons scattered two times, and so on (cf. Fig. 4). In Monte Carlo simulations, 

operator T corresponds to a procedure, which inputs , simulates the scattering event, 

calculates the photon free path and outputs the distribution, , of photons just before their next 

interaction with phytoelements; the procedure is repeated with the source of photons evaluated as 

output at the previous step. 

 

Spectral Invariant for Canopy Interceptance: Let  be the norm of 3D radiation field 

 in the domain , according to notations of functional analysis [Vladimirov, 1963; 

and Marchuk et al., 1980], 

 

 , (22) 

 

In terms of these notations, the total canopy interceptance, , and m-order canopy 

interceptance, , are  and , respectively [cf. Eqs. (2a) and (8a)]. The distribution of 

probability, , that a photon scattered m times will arrive at  along the direction  

without suffering a collision can be expressed as the radiation intensity of the photons, scattered 

m times, normalized by its norm 

 

     (23) 
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The normalization is required, as  is the radiation intensity, whose norm, interceptance, 

, decreases with order of scattering m (cf. Fig. 5), while  is the distribution of 

probability, whose norm is required to be unity. 

 

The recollision probability can be expressed in terms of . The recollision probability, , 

at the step m of scattering is the ratio of radiation intensity rescattered inside of canopy to the 

total intensity of scattering (i.e., rescattered inside of canopy and escaped canopy) [cf. Figs. 3-4 

and Eq. (7)]. The radiation intensity scattered m-1 times is , therefore,  will be 

intercepted and  will be available for the total scattering at the current step m of 

scattering. The total radiation available for scattering originates the radiation intensity  at 

current step m of scattering. The rescattered intensity at the current step m is equal to the 

intercepted intensity at the next step m+1, . Therefore, 

 

 . (24) 

 

For convenience of the following derivations we will use . Taking into account Eqs. 

(21), (23) and (24), the distributions  and  between successive orders of 

scattering m-1 and m are related as 

 

  (25) 

 

The above equation explicitly states the nature of operator T: it converts the probability 

distribution of photons from previous to the next order of scattering and evaluates recollision 

probability. 

 

The set ( , ), , derived from operator T according to SOSA method poses 

one fundamental property established in eigenvalues/eigenvectors theory of functional analysis 

),r(Qm W

mi ),r(em W

mQ mp

1mQ - 1mQ -

1mQ -w

mQ

mQ

||Q||
||Q||p
1m

m
m

-w
=

wºg mm p

),r(e 1m W- ),r(em W

).,r(e
Q

),r(Q
Q
Q

Q
),r(QT),r(Te mm

m

m

1m

m

1m

1m
1m Wg=

W
´=

W
=W

--

-
-

mg ),r(em W ],0[m ¥=



23 

[Vladimirov, 1963]. An eigenvalue of the radiative transfer equation is a number  such that 

there exist a function  that satisfies the equation 

 

  (26) 

 

and zero boundary conditions. Under some general conditions [Vladimirov, 1963], the set of 

eigenvalues and eigenvectors ( , ) is a discrete set. Since the eigenvalue and 

eigenvector problem is formulated for zero boundary conditions,  and  are independent 

on the incoming radiation. The radiative transfer equation has a unique positive eigenvalue, , 

that corresponds to a unique positive eigenvector,  [Vladimirov, 1963], 

 

      

 

It should be emphasized that set ( , ), derived according to eigenvalue problem [Eq. 

(26)] is different from ( , ), derived according SOSA method [Eq. (25)]. In general, 

( , ) vary with the scattering order m. However, they tend to converge to plateaus as 

the number of interactions increases according to numerical results [Lewis and Disney, 1998]. 

Further, according to general principles of functional analysis [Riesz and Sz.-Nagy, 1990; 

Vladimirov, 1963] the set ( , ) converges to the unique positive 

eigenvector/eigenvalue of operator T, as number of scattering increases, 

 

 ,   . (27) 

 

Assuming negligible variation in  and  for the scattering order m and higher and 

accounting for Eqs. (21) and (23), the radiation field, , can be approximated as follows 
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  (28) 

 

That is, radiation field, , is approximated with , for which the contribution of 

the first m scattering orders is calculated exactly and contribution of higher order scattering is 

approximated assuming that  and  are constant with respect to  for . The 

error of this approximation is  

 

Following the above approach, we examine the accuracy of the approximation of the canopy 

interceptance as a function of the scattering order m. It follows form Eq. (28) that the m-th 

approximation, , to  is 

 

 . (29) 

 

Here  is the zero-order canopy interceptance; , and 

 

 ,     (30) 

 

The error, , in the m-th approximation is given by [Huang et al., 2007] 

 

 , (31) 
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Note that . If m is large enough, i.e. , the ratio  can be 

approximated by . Substituting this relationship into Eq. (32) one obtains . 

 

 

Figure 13. Correlation between first and 

second scattering order recollision 

probabilities (  and ) for a range of LAI. 

The RT simulations were performed with the 

stochastic RT model for a canopy modeled 

with identical cylindrical “trees” uniformly 

distributed over black background. Crown 

height=1, ground cover=variable and plant 

LAI=10, SZA=300. 

 

 

Two factors determine the accuracy of the m-th approximation of canopy interceptance. The first 

is the difference between successive approximations  and ; that is, the smaller this 

difference, the more accurate the approximation is. The second factor is the contribution of 

photons scattered m+1 or more times to the canopy radiation field. Their contribution is given by 

»  which depends on the recollision probability, , and the single 

scattering albedo, ; that is, the higher  is, the higher order of approximation is 

needed to estimate the canopy interceptance. This is illustrated in Fig. 13. The variations in the 

recollision probability as function of scattering order reaches its maximum at high values of p 

(here the recollision probabilities for the first and second order of scattering were compared). 

The spectral invariant can not be derived if  since the Neumann series (24) do not 

converge in this case. 

 

Spectral Invariants for the Canopy Transmittance and Reflectance: Let the domain V be a 

layer . The surfaces S, z = 0 and z = H constitute its upper and lower boundaries, 

respectively. Let  and  be norms of 3D radiation field  in the domain , 
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 ,  

  

 , (33) 

 

where the first integral is taken over the top boundary and in upward direction, while second is 

taken over lower boundary in downward directions. In terms of notations of Eq. (33), the canopy 

reflectance, , and transmittance, , are given by  and . Recall, according to 

notations of Eq. (22) canopy interceptance, , is given by . The relationship between 

reflectance, transmittance and interceptance for some order of scattering m can be derived as 

follows. Recall, [cf. Eq. (21)], or, in terms of operators L and S [cf. Eq. (15)], 

. Integrating the last equation over the domain , we have: 

 

   

 

      

 

     (34) 

 

In the above derivations we accounted for definition of norms [Eqs. (22) and (33)], relationship 

between extinction coefficient,  and differential scattering coefficient, , [Eq. 

(3)] and Gauss theorem for converting volume integral to the surface integral for some scalar 

function. Normalizing Eq. (34) by  we finally have 
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where and  are escape probabilities for reflectance transmittance and is the recollision 

probability for the m-th order of scattering, 

 

 ,       (35b) 

 

The physical interpretation of Eqs. (34) and (35) follows those given for Eq. (24). The recollision 

probability,  (escape probability in upward, , and downward, , directions) at the step m 

of scattering is the ratio of radiation intensity rescattered inside of canopy (escaped canopy in 

upward and downward directions) to the total intensity of scattering. The total intensity available 

for scattering at the current step m of scattering is . This total intensity is distributed 

between rescattered intensity at current step m, , escaped canopy in upward directions, 

, and escaped canopy in downward direction, . This explains Eq. (34). The ratio of 

above quantities according to definition of recollision and escape probabilities explains Eq. 

(35b). The escape and recollision probabilities correspond to portions of all possible events of 

scattering (escaped upward, downward or rescattered), which explains Eq. (35a). Note also, the 

escape probabilities vary with the scattering order, but, as in the case of recollision probabilities, 

they reach plateaus (  and ) as the number of interactions increases. 

 

It follows from Eq. (28) that the m-th approximation,  and , to the canopy 

reflectance and transmittance are 

 

 , (36a) 
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Here  and  are zero-order canopy interceptance and transmittance, respectively [cf. Eq. (6)]; 

and is defined by Eq. (30). Errors in the m-th approximation of canopy reflectance and 

transmittance are given by [Huang et al., 2007] 

 

 , (37a) 

 

 . (37b) 

 

Here is defined by Eq. (32) and 

 

    , (37c) 

 

where  and  represent either canopy reflectance ( , ) or canopy transmittance 

( , ). 

 

 

Figure 14. Recollision probability, , and 

escape probabilities,  and , as a 

function of the scattering order m. Their limits 

are =0.75, =0.125 and =0.125. The 

relative difference  in the recollision 

probability is 3% for m=0 and 0.8% for m=1. 

Parameters of the RT simulations are the same 

as for Fig. 12, except ground cover=0.16. 
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In addition to two factors that determine the accuracy in the m-th approximation of the canopy 

interceptance [cf. Eq. (31)],  and  also depend on the convergence of two successive 

approximations  and  to  or . Thus, the errors in the m-th approximations to the 

canopy reflectance and transmittance result from the errors in the recollision and escape 

probabilities, and from a contribution of photon multiple scattering to the canopy radiation 

regime. The m-th approximation to the canopy reflectance and transmittance, therefore, is less 

accurate compared to that to the canopy interceptance. This is illustrated in Fig. 14. In this 

example, the relative difference  is 3% for m = 0 and becomes negligible 

for . The zero and first order approximations provide accurate spectral invariant 

relationships for the canopy interceptance. The corresponding differences in the escape 

probabilities do not exceed 4% for , indicating that two scattering orders are required to 

evaluate spectral invariants for canopy transmittance and reflectance with accuracy comparable 

to that given by zero approximation to the canopy interceptance. 

 

Spectral Invariant for Canopy BRF: The m-th approximation, , 

 to the canopy bidirectional reflectance factor (BRF), is given by Eq. (28). Its error, 

 is given by [Huang et al., 2007] 
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If m is large enough, i.e.,  and , the term  can be approximated as 

. Its values, therefore, are mainly determined by the contribution of 

photons scattered m+1 and more times to the canopy radiation regime. 

 

According to Eq. (38), the accuracy in the m-th approximation to the canopy BRF depends on 

the convergence of  and  to the eigenvalue, , and corresponding eigenvector, , of 

the operator T. Convergence of the former is illustrated in Fig. 15. This figure shows variations 

in  and  with the scattering order 

m. In this example, the difference  is negligible for , indicating that the forth 

approximation provides an accurate spectral invariant relationship for the canopy BRF. Variation 

in the probability  with the scattering order m should be accounted to evaluate the 

contribution of low order scattered photons. 

 

 

Figure 15. Convergence of  to the positive 

eigenvector, , of the operator T. The upper 

boundary of variations of the ratio , 

 (solid line) and 

corresponding lower boundary 

 (dashed line) are shown 

with respect to the scattering order m. For 

, their values fall in the interval 

between 0.98 and 1.04. Parameters of the RT 

simulations are the same as for Fig. 13. 
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case of reflectance and transmittance, if the recollision probability is replaced with its effective 

values. 

 

In the following we derive effective recollision probabilities for canopy reflectance and 

transmittance in the zero-order approximation from the first-order approximation. According to 

Eqs. (36a), (37a) and (30), the first-order approximation (m=1) to the canopy spectral reflectance 

is 

  (39a) 

Here  [cf. Eq. (37c)] and characterize the accuracy of the first approximation, 

 

 .    (39b) 

 

Note, according to zero-order approximation [cf. Eq. (14a)] the reciprocal of the canopy spectral 

reflectance normalized by the leaf albedo, , varies linearly with . Based on this observation, 

we replace the relationship between the reciprocal of  and the leaf albedo  given by 

first-order approximation [Eq. (39a)] with its zero-order form, given by a linear regression, 

. The coefficients ,  and  in the zero-order approximation (14a), can be 

specified from the slope  and intercept , namely 

 

 ,   ,   , (40a) 

 

 ,   . (40b) 

 

Similarly, the canopy transmittance is 
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 ,   ,   . (41) 

 

Here  and  are given by Eq. (40b) but for  and which are calculated with , . 

We term this approach an inverse linear approximation. Note that if the escape probabilities do 

not vary with the scattering order ( = = 0), the slope  and intercept 

, and the inverse linear approximation coincides with the zero-order approximation. 

If variations in the escape probabilities become negligible for , ( , ), the 

effective probabilities  and  are functions of , , ,  and, , , ,  

respectively. 

 

Figure 16 demonstrates the energy conservation [Eq. (35a)] for m = 1. The escape probabilities 

are calculated from Eqs. (40) and (41) as  and . It follows from Fig. 15 that the 

impact of the regression coefficients  and  on the escape probabilities is minimal; that is, 

deviation of    from unity does not exceed 5%. This is not surprising because 

values of  in Eq. (40b) for  ( ) and  ( ) are multiplied by 

the function , integral of which is zero. The effective values of the recollision 

probabilities,  and , however, depend on  and . 

 

 

Figure 16. Energy conservation relationship 

 as function of LAI. The 

escape probabilities  and  were calculated 

as the ratios of coefficients  and  in the 

inverse linear approximations to , i.e., 

 and . The deviation of 

 from unity does not exceed 5%. 

Parameters of the RT simulations are the same 

as for Fig. 13. 
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Since eigenvalues and eigenvectors of the operator T are independent from the incident radiation, 

the limits ,  and  of the recollision and escape probabilities do not vary with the 

incident beam. Smolander and Stenberg [2005] showed that the first and higher orders of 

approximations to the recollision probability are insensitive to rather large changes in the solar 

zenith angle. Although the first approximations to the escape probabilities exhibit a higher 

sensitivity (Fig. 17) to the solar zenith angle, their sum, , remains almost constant. 

This is consistent with the above theoretical results, suggesting that the canopy interaction 

coefficient requires less iterations to reach a plateau compared to the canopy reflectance and 

transmittance. The sensitivity of the effective recollision probabilities to the solar zenith angle is 

much smaller compared to the canopy interceptance. 

 

 

Figure 17. Recollision probability, , its 

effective values,  and , escape 

probabilities,  and , and the canopy 

interceptance, , as functions of SZA. 

Equation (40) was used to specify  and . 

Parameters of the RT simulations are the same 

as for Fig. 13. 

 

Figure 18 shows relative errors in the inverse linear approximation and the m-th approximations, 

m = 1, 2 and 3, to the canopy reflectance as a function of  and LAI. The error decreases with 

the scattering order. For a fixed m, it increases with  and LAI. This is consistent with the 

theoretical results stating that the convergence depends on the maximum eigenvalue ; 

that is, the higher its value is , the higher order of approximation is needed to estimate the canopy 

reflectance. In this example, the third and inverse linear approximations have the same accuracy 

level, i.e., they are accurate to within 5% if . The relative error in the canopy 

transmittance (not shown here) exhibits similar behavior. 
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Figure 18. Relative error in the canopy reflectance as a function of  and LAI. Parameters of the RT 

simulations are the same as for Fig. 13. 

 

4. Scaling Properties of Spectral Invariants 

 

The scaling effect, or scale dependence of RT parameters, arises due to phenomena of spatial 

heterogeneity (discontinuity) of canopy optical properties. For instance, single scattering albedo, 

, is a function of the scale (volume, V) where it is defined. Consider sequence of nested 

scales represented by corresponding volumes: needle leaf tree stand ( ), tree crowns ( ), 

needle leaf shoots ( ), and needles ( ) (Fig. 19). Select a couple of scattering albedos, 

 and , which quantify the scattering properties at the scale of tree crown of 

volume  and constituent objects (shoots) of volume . By definition, single scattering of 

volume  is the ratio of energy scattered by that volume to the amount of the energy intercepted 
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by the same volume. According to Eq. (8b) the tree crown single scattering albedo, , can 

be expressed as 

 

 . (44a) 

 

Here  and  are the portion of photons intercepted and scattered by the volume , 

and  is the recollision probability defined as the probability that a photon scattered 

by a volume  (shoot) resided in the volume  (tree crown) will hit again another volume  

(another shoot) in . Its value is determined by the distribution of volumes  (e.g., shoots) 

within  (crowns). Thus, Eq. (44a) can be interpreted as one that provides a link between 

vegetation RT properties at different scales. 

 

 

Figure 19. Schematic plot of nesting of 

scales. Tree stand occupies volume , 

which consist of individual trees crowns of 

volume , which, in turn, consist of shoots 

of volume , which in turn consist of 

needles of volume . The tree volumes are 

nested: . 

 

Both  and  vary with the scale . However since the left-hand side of Eq. 

(44a) does not depend on , the algebraic expression on the right-hand side of this equation 

should also be independent on the scale of . Based on this property, variation in the leaf single 

scattering albedo and the recollision probability with the scale V can be specified as follows. Let 

us rewrite Eq. (44a) for needles ( ) and shoot ( ), 
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 . (44b) 

 

Substituting from Eq. (44b) into Eq. (44a) preserves the structure of Eq. (44a): 

 

 , (44c) 

where 

 

 . (45) 

One can see that the probability  that a photon scattered by a volume  (e.g., 

needles) will interact within volume  (e.g., crown) again follows the Bayes’ formula. 

Accordingly, Eq. (45) is called nesting of scales. The single scattering albedo and p-parameter 

exhibit the following scaling properties. Referring to Fig. 19 and taking into account Eqs. (44)- 

(45), provided , one can derive that, 

 

  and ,   if ;  

 

 ,   if . (46) 

 

Consider the second property shown in Eq. (46), which conveys a fundamental law. It implies 

that the recollision probability increases with increasing complexity of canopy architecture (cf. 

Fig. 20). Namely, according to its definition, p=0 for the “Big Leaf” model, as there are no 

multiple scattering. As we add more hierarchical levels of structure, if photon reached particular 

structure elements it get trapped on structural sublevels, which increases probability of 

rescattering and thus value of p-parameter. The recollision probability, therefore, is a scaling 

parameter that accounts for a cumulative effect of the landscape’s multi-level hierarchy. 
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Figure 20. Recolision probability, p, 

as function of  canopy structural 

hierarchy: (a) “Big Leaf” Canopy; 

(b) Turbid Medium; (c) 3D Canopy 

with nested scales of structure.  

 

 

Case Study - Scaling from Needles to Shoots: The scaling properties of the p-parameter were 

first demonstrated by Smolander and Stenberg [2003; 2005] in the application for coniferous 

canopies. The 3D structure of the coniferous canopies exhibits foliage clumping at multiple 

scales, including clumping of needles into shoots and clumping of shoots into tree crowns; both 

give rise to the scaling effect. In particular, small-scale clumping of needles into shoots results in 

mutual shading and multiple scattering of light between needles of a shoot (Fig. 21), which 

ultimately leads to the known RT effect of coniferous canopies to appear darker than 

broadleaved canopies. 

 

 

Figure 21. Scattering of photons on individual 

needles within shoot. The scattering is 

associated with loss of energy and thus shoot 

albedo is lower than albedo of individual needles 

(from Smolander and Stenberg, 2003]. 

 
 
 
 
 
 
 
 
 

p increases 

c) 3D Canopy 

b) Homogeneous  Canopy 

a) Big Leaf 
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The canopy clumping is described in the RT approach with spatially varying foliage volume 

density. However, the scale of variation of foliage density is limited by the size of canopy 

elementary volume. The elementary volume must be large enough to contain sufficient number 

of statistically independent foliage elements for the foliage volume density to be defined. 

Therefore, the approach is typically implemented at the large (landscape) scale, identifies 

individual tree crowns and space between them and defines the elementary volume to contain 

multiple leafs or needle shoots. The small-scale clumping of needles into shoots requires 

complex statistical description of distribution of needles. To overcome this problem, shot itself is 

typically used as the basic structural element in place of leaf for broadleaved canopies. The 

deviation of optical properties of elementary volume from those of individual needles, caused by 

shoot structure, is typically accounted for in the RT equation by adjusting extinction coefficient 

with empirically estimated clumping index (cf. Chapter 2). This ad hook approach is deficient in 

describing physical process of light scattering inside of a shoot, as it ignores wavelength 

dependence of the process and artificially couples shoot structure and needle optics. 

 

Smolander and Stenberg [2003; 2005] developed p-parameter based RT framework to describe 

the effect of the small-scale clumping of needles into shoots to explain the difference in RT 

regimes in broadleaved and coniferous canopies. This study was focused only on small-scale 

clumping and large scale clumping was ignored. To support the theory, ray tracing simulations 

were performed for the model of canopy structure satisfying minimal requirements needed to 

meet the objectives of the study: a) realistic 3D model of shoots to represent small-scale 

structure; b) simple homogeneous turbid medium model for Poisson canopy to represent 

macroscopic structure. Foliage elements (shoots or leaves) were randomly distributed and 

spherically oriented (G-function and phase-function for spherically oriented leaves, cf. Chapter 

3). Needle reflectances and transmittance were assumed to be similar to those of leaves, thus the 

difference between the two canopies reflectances caused solely by shoot structure. Geometrical 

model of Scots Pine (Pinus Sylvestris L.) shots was implemented referencing field measurements 

[Stenberg et al., 2002]. Three types of canopies were simulated: 1) flat leaves, 2) shoots, 3) 

shoot-like leaves, composed of leaves with the same G function and similar scattering properties 
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as shoots. Simulations were performed to generate reflectance of these canopies, assumed to be 

bounded below by black soil. 

 

Recall (Chapter 3), shoot scale scattering in the needle leaf canopies is parameterized in terms 

shoot silhouette to total area ratio (STAR). Spherically averaged STAR is typically utilized, 

 

  (47) 

 

where  is the shoot silhouette area in direction  and TNA denotes the total needle area 

of the shoot. The parameter is analogous to G-function for leaves (cf. Chapter 3). In the 

case of spherically oriented scattering elements, the following holds:  

 

   

 

Note, the  parameter is related to shoot structural parameter, , which can be 

shown as follows. It follows from Cauchy’s theorem for of convex, non self-shadowing objects 

that the ratio of silhouette to total area is ¼,. In contrast, needle leaf canopy shoot is a self-

shadowing object due to self-shadowing of needles, and this ratio, the  parameter, is 

smaller. Therefore,  quantifies the degree of self-shadowing, 

or the portion energy trapped inside of object due to self-shadowing. From another side, shoot 

structural parameter, , is defined as the probability that a photon scattered by needle 

of the shoot will interact again with another needle of the same shoot. Comparing the above two 

definitions, we infer that 

 . (48) 

 

Note the following features of Eq. (48). First, the reason for the lack of exact equality is that 

 is defined as the mean over points on the surface, while  is defined as 
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spatially averaged over points of interaction. Second, in contrast to ,  is not 

just a function of shoot geometry but has some dependency on needle optical properties since 

they affect the directional distribution of scattered photons. Third,  is defined based 

on the assumption that the probability of interactions stays constant with successive interactions. 

Equation (48) was verified with ray-tracing simulations for nine pine shoots and results are 

presented in Fig. 22.  

 

Figure 22. Relationship between  and 1-4  for 

nine pine shoots. Shoot structural data from Stenberg et 

al. [2001] is used (from Smolander and Stenberg, [2003]). 

 

In the shoot canopies shoot albedo varies with the direction of incoming beam (cf. results of 

simulations below). Average (over directions) shoot albedo, , is defined as fraction of 

scattered photons to photons intercepted by the shoot in an isotropic radiation field. Given 

 and , shoot silhouette area and shoot scattering coefficient in direction , and 

taking into account that the number of intercepted photons is proportional to , 

 

 . (49) 

 

The interaction of photon with the shoot occurred with probability /S, and thus the total 

fraction of intercepted photons /N was proportional to . The shoot albedo is equal to the 

fraction of photons escaped canopy to intercepted photons, / . 
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The shoot scattering phase-function and shoot albedo were generated with the 3D ray tracing. At 

each individual photon-needle interaction, a photon was scattered according to inform 

distribution with probability , and absorbed with probability 1- , respectively,. 

Needle (or leaf) transmittance, , and reflectance, , were chosen as follows: = 

= ; =0.1, and =0.9. According to simulations for the NIR 

wavelength ( = 0.9), the shoot albedo was  = 0.81, with reflectance 

= 0.47 and transmittance = 0.34. For the Red wavelength ( = 0.1), 

the shoot albedo was = 0.059, with  = 0.034 and  = 0.025. 

According to simulations, shoot albedo depends on shoot structural parameter, ,  and 

needle albedo, , but is not sensitive to the ratio of needle transmittance to reflectance, 

/ . Namely, ratio /  controls the shape of scattering phase function 

(forward vs. backward scattering), but does not change total needle albedo, and consequently has 

minor impact on canopy reflectance. 

 

 
Figure 23. Cross-sectional views of scattering phase functions for (A) leaf with = 0.45, = 0.45 

(thin dashed line), shoot (thick dashed line) with values = 0.45 and = 0.45 for its needles, and leaf 

with = 0.47 and = 0.34 (thin line), (B) leaf with = 0.05, = 0.05 (thin dashed line), shoot 

(thick dashed line) with values  = 0.05 and = 0.05 for its needles, and leaf with = 0.034 and 

= 0.025 (thin line). The radiation is assumed to come from the direction of positive x-axis and to meet 

the object in origin (from Smolander and Stenberg, [2003]). 

 

)(L lw )(L lw

)(L lt )(L lr )(L lr

)(L lt )(5.0 L lw× )d(ReLw )NIR(Lw

)NIR(Lw )NIR(shw

)NIR(shr )NIR(sht )d(ReLw

)d(Reshw )d(Reshr )d(Resht

)ShL(p ®

)(L lw

)(L lt )(L lr )(L lt )(L lr

Lr Lt

Lr Lt

Lr Lt Lr Lt

Lr Lt Lr

Lt



42 

The scattering phase function of the spherically oriented shoots can be closely approximated by 

the scattering phase function of the shoot-like leaf, for which transmittance  was 42% of 

 at both wavelengths. Thus, the shoot scattering phase functions had more weight in the 

backscattering directions than the corresponding leaf scattering phase functions. Figure 23 shows 

the scattering phase function for the three types of foliage elements (flat leaves, shoots and 

shoot-like leaves). Note also the within-shoot hot spot effect in the backscattering direction in the 

shoot scattering phase-function, which can not be described by the bi-Lambertian distribution for 

flat leaves. However hot-spot effect can not be included for the shoot-like leaves. Overall, the 

effect of needle clumping and mutual shadowing in a shoot (compared to flat Lambertian leaf) is 

to decrease the radiation interception efficiency (G-function) and the shoot albedo, and to change 

the shape of the scattering phase function to weight it more towards the backscattering 

directions. 

 

The relationship between shoot albedo, , and needle albedo, , can be established as 

follows (cf. Section 2). At each interaction of photon and needle, photon is absorbed with 

probability  and scattered with probability 1-  and can interact with shoot again. 

Assuming that the probability that scattered photon will interact with shoot again remains 

constant in successive interactions ( ), shoot absorptance is obtained with 

infinite series, 

 

   

 . 

 

Taking into account that  the relationship between  and  can be 

established, 

 

 .  (50a) 
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Figure 24. Predicted and simulated shoot albedo, , 

for different needle albedos,  (from Smolander 

and Stenberg, [2003]). 

 

Thus, if and needle albedo are known, the shoot albedo for any given wavelength can 

be calculated. Note, in case of =0, corresponding to no within-shoot shading, than 

 = . At fixed   the ratio  /  increases with , i.e., the 

decrease in the shoot scattering from mutual shading is relatively less at wavelengths with high 

needle scattering. Equation (50a) was verified with ray-tracing simulations and results are 

presented in Fig. 24. The value of calculated according to ray tracing simulations 

(directly counting photons interactions) was 0.474, while estimated by fitting Eq. 

(50a) to the data points in Fig. 24 by the least squares method yields an estimate of 0.467 (1.5% 

difference). The difference is due to approximations in estimation of , as it was 

assumed constant with respect to scattering order. In the simulations, the density of photons 

where scattering occurs varies with the scattering order, and it is not possible to analytically 

define the weight on the area over which  is averaged. 

 

Equation (50a) demonstrates effect of scaling between needles and shoot. Similar equation can 

be formulated for scaling at one level higher in the hierarchy, i.e. between shoot and canopy 

scales, 
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where  is the canopy albedo, and  is the recollision probability that photon 

scattered by shoot will interact again with another shoot with the canopy. Combining Eqs (50a) 

and (50b) we have: 

 

 ,  (51a) 

where 

 

 .  (51b) 

 

In words, the scattering between needles inside of whole canopy ( ) can be 

decomposed into scattering between individual needles inside of a shoot ( ) and 

scattering between shots inside of whole canopy ( ). The relationship between 

 and  was verified with ray-tracing simulations for a range of LAI and 

results are shown in Fig. 23. In this simulations =0.133, =0.47 

for Pinus sylvestris L. The parameter  as function of LAI was well approximated by 

the relationship, 

 

   (52) 

 

where =0.88, k=0.7, and b=0.75. In turn,  was well predicted by the 

decomposition formula (Eq. 51), evaluated using and . Note that there is a 

systematic offset between  and due to between-needles scattering inside 

shoot ( ). Simulations as function of direction (zenith angle) of incoming photons 

demonstrated low sensitivity of  to zenith angles variations in spite the fact that 

zenith angle controls the distribution of the points of the first interaction of photons within 

canopy. Namely, for zenith angles < 500, the variation in  was less than 1.2%. 
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Figure 25. Recollision probabilities and 

 as a function of LAI. Dots denote the p 

values derived from ray-tracing simulations. The dashed 

curve depicts according to fitting equation 

(Eq. (52)). The solid curve depicts   

according to the decomposition formula (Eq. (51)) (from 

Smolander and Stenberg, [2005]). 

Finally consider Fig. 26 which compares ray-tracing simulated canopy BRF at Red and NIR 

wavelengths for the three canopy types (shoot, leaf and shoot-like leaf) bounded by a black 

surface. Clumping of needles into shoots produces a wavelength dependent reduction in canopy 

reflectance of need leaf canopy compared to that of broadleaf canopy with similar LAI. The 

reason for this effect is that the mutual shading of needle in a shoot leads to reduction of G-

function and canopy interceptance for needle leaf compared to broadleaf canopies. Notice that 

the reflectance of the needle leaf canopy was well approximated by the shoot-like leaf canopy. 

Thus, integrating small-scale shoot structure in large-scale canopy RT models provides means to 

account for the observed difference between radiation regimes in coniferous and broadleaved 

canopies. Taking into account crown mutual shading will, presumably, further enhance this 

effect. 
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Figure 26. Predicted Canopy bidirectional reflectance factor (BRF) at Red and NIR wavelengths as a 

function of LAI for canopies bounded underneath by black soil. Curve (1) is for leaf canopy, curve (2) for 

shoot canopy and the dashed curve (3) for shoot-like leaf canopy. The black dots denote LAI values of 2, 

4, 6, 8 and 10. The solar zenith angle is 450 and the view zenith angle is 00 (from Smolander and 

Stenberg, [2003]). 

 

 

Case Study- Scaling from Leafs to Leaf Internals: Lewis and Disney [2007] further 

investigated the hypothesis that the scaling equations are applicable (in a consistent manner) 

across full range of scales from within leaf to canopy level scattering. The study utilized the 

PROSPECT leaf scattering model (Chapter 3). PROSPECT is a solar spectrum plate model of 

radiative transfer within a leaf. Leaf albedo, , is calculated as function of leaf cell- air 

interface refractive index (n), the number of leaf layers, N and absorption coefficient, . The 

absorption coefficient is a linear function of the concentration  [units of mass/unit LAI] of m 

biochemical constituents, 
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where  is the specific absorption coefficient of the i-th constituent, a function of 

wavelength . Figure 27 shows  as a function of wavelength for chlorophyll, water and 

dry leaf matter. 

 

 

Figure 27. Specific absorption coefficients for 

chlorophyll, dry matter and water according to 

the PROSPECT model (from Disney and Lewis, 

[2007]). 

 

The PROSPECT model identifies two components of leaf albedo, which corresponds to 

scattering (1) by leaf surface and (2) by leaf internals. Let   be albedo of scattering from 

leaf surface, where the subscript accounts for the fact that scattering form leaf surface is 

equivalent to scattering from infinite leaf internals. Albedo  is a function of a refractive 

index, which can be approximated by a quadratic =-0.0492-0.00618n+0.04836n2 

(RMSE=2.37x10-3, r2=0.998). Let  be adjusted leaf albedo, which quantifies total 

scattering on leaf internals only and excludes scattering on leaf surface, 

 

   (54) 

 

Note that denominator in Eq. (54) is introduced to ensure the standard range of variation of 

albedo, [0-1]. Lewis and Disney [2007] hypothesized that the general scaling relationship (cf. 

Eq. (44a)) should hold between adjusted leaf albedo, , and albedo of leaf internals, , 
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  (55) 

 

where albedo of leaf internals can be expressed as 

 

 , (56) 

 

where, in turn,  absorption coefficient, , is given by Eq. (53) and coefficient  is a 

function of refractive index, which can be approximated by quadratic, a=1.3168-0.02294n + 

0.01299n2 (RMSE= 5.06x10-5, r2=0.9999). Term  is the equivalent recollision 

probability for leaf internals, analogous to the effective recollision probability, , 

defined by Smolander and Stenberg [2003] for the needles scattering inside a shoot . The leaf 

internals recollision probability extends set of similar terms,  and , 

recollision probabilities for shoot and canopy introduced by Smolander and Stenberg [2003]. The 

dependence of  on the refractive index, n, can be represented with quadratic, 

=-1.2523+2.2307n-0.6094n2 (RMSE=8.95x10-4, r2=0.9999). The dependence of 

, a, and  on refractive index is summarized in Fig. 28. 
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Figure 28. Variation of  (Panel a), a (Panel b); and  (Panel c) with refractive index n as predicted 

with in PROSPECT (solid line) and quadratic approximation (symbols). Panel (d) shows scatter in each 

case against 1:1 line (from Lewis and Disney, [2007]). 

 

While  varies significantly between 0.60 and 0.73 over the refractive index range 

across the solar spectrum (Fig. 28c), it appears that the assumption =const has 

negligible impact on simulated spectra of leaf albedo. Lewis and Disney [2007] set n=1.39, 

which corresponds to mid-range of solar spectrum and simultaneously minimizes errors in 

simulations of . In this case according to quadratic approximation, =0.6708 

and =0.03566 and error in  (difference between PROSPECT and approximation) is 

0.010. Figure 29 compares  retrievals based on spectral invariants approximation (Eq. 

(55)) and PROSPECT model for a range of concentrations of absorbing constituents. Two cases 

of spectral invariant model were tested: (1) variable and (2) fixed refractive index. In the first 

case r2>0.9997, RMSE<0.0042, max error<0.013 and in the second case r2>0.995, RMSE<0.016, 
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max error<0.049. Overall, spectral invariant approximation even in the case of fixed refractive 

index delivers very accurate estimate of leaf albedo spectra. 

 

 
Figure 29. Accuracy of modeling of leaf spectra with spectral invariants approximation. Results shown 

for PROSPECT model (‘original’); spectral invariant approximations with varying refractive index 

(‘estimated’); and spectral invariant approximation with fixed refractive index (‘fixed n, estimated’)  

(from Lewis and Disney, [2007]). 

 

The scaling approach, implemented by Smolander and Stenberg [2005] for “Canopy  Shoot 

 Leaf” scaling, was further extended by Lewis and Disney [2007] to incorporate one 

additional level down the hierarchy, Leaf Internals  Leaf. Combining Eqs. (51) and (55) and 

neglecting  (Fig. 28), one can derive scaling relationship “Canopy  Shoot  Leaf  

Leaf Internals” as follows, 

  (57a) 
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where  is the canopy single scattering albedo,  is the single scattering albedo of 

leaf internals [Eq. (56)]. The recollision probability from leaf internals to canopy scales, 

, is given by the following nesting rule: 

 

  

  

 . (57b) 

 

Specifically, note the nesting of “leaf to shoot scattering” term (term in angular brackets, cf. Eq. 

(51b)) inside of “leaf internals to canopy scattering equation”, which confirms the Bayes’ 

formula. Overall, the scaling approach [Eq. (57)] is a powerful theoretical implementation of the 

shortwave radiation block in terms of few key parameters (canopy albedo, leaf biochemistry, and 

structural information). Nevertheless, practical implementation of the approach with multi-

spectral remote sensing measurements may encounter challenges. P-parameter is an effective 

value, it can not be directly measured; rather it should be inferred from radiometric 

measurements, assuming knowledge of leaf biochemistry or leaf albedo. Leaf albedo can vary 

significantly over the canopy volume. For instance, coniferous forests exhibit vertical gradients 

of leaf biochemistry due to variations in needle and stand age, density of plants, etc. Therefore 

there is an internal difficulty in defining a (weighted) mean needle scattering spectra for use in 

the scaling applications to derive structural parameters. Further, there is a relatively strong 

coupling between leaf biochemistry and canopy structural parameters. Namely, the same spectra 

of leaf albedo can be derived from different combinations of structural information and leaf 

biochemistry [Lewis and Disney, 2007]. Consequently, the absolute concentration (per unit leaf 

area) of any biochemical constituents can not be derived from hyperspectral observations of total 

scattering. 
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Nearly two decades ago, the idea of the ‘spectral invariants theory’was put forth as a new tool tomodel the short-
wave radiation absorbed or scattered by vegetation. The theory states that the amount of radiation absorbed by a
canopy should to a great accuracy depend only on thewavelength and awavelength-independent parameter de-
scribing canopy structure. The revolutionary idea behind this theorywas that itwould be possible to approximate
vegetation canopy absorptance, transmittance and reflectance based on only the optical properties of foliage el-
ements and the spectrally invariant parameter(s). This paper explains how this so-called spectral invariant is re-
lated to photon recollision probability and to canopy structural variables. Other spectral invariants were later
introduced to quantify the directionality of canopy scattering. Moreover, the paper reviews the advances in the
theoretical development of the photon recollision probability (p) concept and demonstrates some of its applica-
tions in global and local monitoring of vegetation using remote sensing data.
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1. Introduction

Physically-based remote sensing of vegetation relies upon accurate
models of the canopy shortwave radiation budget, which quantitatively
describe how the fractions of solar radiation absorbed, transmitted and
reflected by the canopy are related to the optical and structural proper-
ties of the canopy and background. Optical properties comprise the scat-
tering and absorption spectra of the vegetation elements, which vary
with the wavelength, whereas the structural canopy descriptors are in-
dependent of wavelength, or spectrally invariant. The variable focused
on in this review — the photon recollision probability, is not one of the
input parameters to the classical three-dimensional radiative transfer
(RT) equation for vegetation (Ross, 1981), but is closely related to the
solution of this equation (Knyazikhin, Martonchik, Myneni, Diner, &
Running, 1998).

The concept of recollision probability can be pictured by thinking of
the radiative transfer as a stochastic process: When a photon interacts
with an element in the canopy, the probability that it will be absorbed
or scattered varies with the wavelength. However, once the photon
has been scattered, the probability that it will collide with the canopy
again depends only on the location of the scattering event and the direc-
tion it was scattered into. This recollision probability is a geometric
quantity which, in geometric optics approximation, does not depend
on the wavelength. One may define a canopy averaged mean photon
recollision probability, which was shown to link together the optical
properties at canopy and leaf level by a set of simple algebraic relation-
ships (Smolander & Stenberg, 2005). The existence of a spectrally in-
variant ‘p-parameter’ satisfying similar relationships was, however,
first discovered and theoretically established by Knyazikhin et al.
(1998). Only a clear interpretation of this parameter was still lacking
at the time. The fact that the somewhat heuristic ‘photon recollision
probability’-approach was found to be coherent with physically-based
radiative transfer started a new era in the application of the ‘spectral in-
variants theory’: the single parameter representing canopy structure
had now been defined and thus could also be quantified.

Knyazikhin et al. (1998) put forth the idea of the ‘spectral invariants
theory’ when developing the theoretical grounds of the MODIS algo-
rithm for retrieval of the leaf area index (LAI) and the fraction of photo-
synthetically active radiation (fPAR). They proposed a revolutionary
idea that it would be possible to approximate vegetation canopy ab-
sorptance, transmittance and reflectance using only the optical proper-
ties of foliage elements and one spectrally invariant parameter for each
approximated canopy characteristic. The theory states that, knowing
the leaf albedo (1-absorptance), canopy absorptance at anywavelength
can be estimated with high accuracy from canopy absorptance at a ref-
erencewavelength. This property laid the foundation for the synergistic
look-up-table (LUT) based algorithm developed by Knyazikhin et al.
(1998), which has been successfully implemented in the retrieval of
global leaf area index (LAI) from canopy reflectance data measured by
the MODIS instrument.

This approach was contrary to many other lines of development
wheremore complexitywas favored in canopy radiationmodels. A cou-
ple of years later, several independent research lines in Boston Univer-
sity, University of Helsinki and University College London were
investigating the spectral invariants theory and its applications. This
paper reviews the advances in the theoretical concepts behind the spec-
tral invariants and shows examples of various applications of the con-
cept in global and local monitoring of vegetation using remote sensing
data.

2. p-Theory

2.1. The concept of recollision probability

Knyazikhin et al. (1998) proposed that the unique positive eigenval-
ue of the radiative transfer equation can be expressed as the product of

the leaf albedo and awavelength independent parameter, and the name
‘p-theory’ originates from the symbol they used for this canopy structur-
al parameter. Empirical evidence for the spectral invariant behavior of
the p parameter was provided later by Panferov et al. (2001) and
Wang et al. (2003) based on the measured spectral reflectance and
transmittance data of forest canopies. However, a clear interpretation
of how p is related to the canopy structure, allowing it to be estimated
from canopy structural measurements, was still missing. A step towards
this goal was taken by Smolander and Stenberg (2005), who defined p
as a conditional probability — the recollision probability, and in their
simulation study derived tight relationships between p and LAI in
model canopies. It was shown that, in addition to LAI, p is linked to
the clumping of foliage.

Smolander and Stenberg (2005) were thus first to introduce the
term recollision probability for p, which they defined as the probability
by which a photon scattered from a phytoelement (leaf or needle) in a
vegetation canopy will interact within the canopy again. The escape
probability (1 − p) correspondingly is the probability by which a
scattered photonwill escape the canopy. These probabilities are defined
conditional to the photon having survived an interaction inside the can-
opy. The fraction of photons that enter the vegetation from above and
are intercepted by elements in the canopy is called the canopy
interceptance (i0). The zero order (or uncollided) transmittance (t0) in
turn is the fraction of photons that are transmitted directly through
gaps in the canopy: t0 = 1 − i0. In a canopy bounded underneath by a
non-reflecting (‘black’) surface (Fig. 1), the transmitted photons will
not interact within the canopy again. Under this condition, and assum-
ing further that the p remains constant in successive interactions, cano-
py absorptance (a) at a specificwavelength (λ) is obtained as the sumof
a geometric series:

a λð Þ ¼ i0 1−ωL λð Þð Þ þωL λð Þp 1−ωL λð Þð Þ þωL λð Þ2p2 1−ωL λð Þð Þ þ…
h i

¼ i0
1−ωL λð Þ
1−pωL λð Þ :

ð1Þ

Fig. 1. Photons entering a canopy bounded below by black soil are first intercepted by
leaves (i0) or directly transmitted to and absorbed by the ground (t0). The intercepted
part is eventually absorbed (αC) or scattered out from the canopy (ωC) after one or
multiple interaction and recollision events.

99P. Stenberg et al. / Remote Sensing of Environment 183 (2016) 98–108



In Eq. (1),ωL denotes the leaf scattering coefficient (single scattering
albedo) and the common ratio (pωL) of the series corresponds to the
joint probability of recollision and a new scattering event.

Canopy scattering (s) under the black soil assumption is similarly
obtained as:

s λð Þ ¼ i0
ωL λð Þ−pωL λð Þ
1−pωL λð Þ : ð2Þ

Canopy absorptance and scattering sum up to the canopy
interceptance: a(λ) + s(λ) = i0. These wavelength dependent compo-
nents normalized by i0 thus define the canopy spectral absorption and
scattering coefficients, αC and ωC:

αC λð Þ ¼ a λð Þ
i0

¼ 1−ωL λð Þ
1−pωL λð Þ

ð3Þ

and

ωC λð Þ ¼ s λð Þ
i0

¼ ωL λð Þ−pωL λð Þ
1−pωL λð Þ : ð4Þ

We note that the derivation of Eqs. (1)–(4) rely on the assumptions
of black soil and a constant p. Canopy absorption by Eq. (1) represents
the solution to the so called ‘black soil problem’ (Knyazikhin et al.
1998; Wang et al. 2003), which in the case of a dark soil (background)
and/or a dense canopy may be a good approximation. Whenever this
is not true, another component, the solution to the ‘soil problem’,
must be added. Similarly, the fact that p in reality is not constant must
be carefully considered. The degree to which these issues limit the ap-
plicability of the recollision probability concept, and how to overcome
the problems, will be addressed in subsequent sections.

2.2. Links to the radiative transfer equation

The link between the photon recollision probability p and the unique
positive eigenvalue γ0 of the radiative transfer equation is described by
Huang et al. (2007) and Knyazikhin, Schull, Liang, Myneni, and Samanta
(2011). In the successive orders of scattering approach, canopy scatter-
ing is calculated as the sum of contributions by different scattering or-
ders, i.e. photons scattered 1, 2, …, n times before exiting the canopy.
In this approach, we may define the operator T such that the radiation
field Iλ of order i + 1 equals:

Iλ iþ 1ð Þ ¼ TIλ ið Þ; i ¼ 1;2;…: ð5Þ

The largest (and the only positive) eigenvalue of operator T, γ0, is a
linear function of the leaf albedoωL(λ):γ0=pinfωL(λ). The spectrally in-
variant parameter pinf is the limiting recollision probability as the order
of scattering reaches infinity (i→∞).

Knyazikhin et al. (1998) used the largest eigenvalue of operator T to
demonstrate the existence of the spectral invariants for canopy absorp-
tance, although without introducing the concept of photon recollision
probability. They derived the spectral invariant relationship for the
norm ||Iλ||1 of the solution to the radiative transfer equation, or the
product of themonochromatic radiance Iλ and the interaction cross-sec-
tion σ integrated over the canopy volume and all directions. ||Iλ||1 is the
mean spectral irradiance on all sides of a leaf and is thus a key compo-
nent of the energy conservation law. For vegetation bounded under-
neath by a black surface and irradiated with unit irradiance, it
corresponds to the mean number of photon interactions with
phytoelements at wavelength λ in the canopy, and is called the interac-
tion coefficient, i.e. i(λ)=||Iλ||1. The interaction coefficientmultiplied by
the leaf absorptance gives canopy absorptance: a(λ)= i(λ)[1−ωL(λ)].
Knyazikhin et al. (1998) showed that, if the interaction cross-section

(σ) does not depend on wavelength, then for the first eigenvector
e0(λ) of Eq. (5), the norms ||Iλe0||1 at two arbitrary wavelengths, λ and
λ0, are linked together as:

Iλe0j jj j1 ¼ 1−γ0 λ0ð Þ
1−γ0 λð Þ Iλ0e0

!! !!!! !!
1 ¼

1−pinfωL λ0ð Þ
1−p infωL λð Þ Iλ0e0

!! !!!! !!
1: ð6Þ

Next, based on the demonstrated proximity between the spectral
dependencies of e0Iλ1 and Iλ1, Knyazikhin et al. (1998) derived the rela-
tionship for i(λ)=||Iλ||1:

i λð Þ≈1−pωL λ0ð Þ
1−pωL λð Þ i λ0ð Þ: ð7Þ

The recollision probability p is an approximation to pinf. The good-
ness of this approximation depends on two factors: the contributions
of the different scattering orders on total scattering, and how fast (in
terms of scattering orders) the recollision probability approaches the
diffuse limit pinf. The speed of convergence depends, in turn, on the
recollision probability and the leaf albedo: the higher the value of pinfωL,
the slower the convergence. A detailed analysis of the accuracy of the
approximation is given by Huang et al. (2007).

The conditions under which the spectral invariant relationships can
be derived from the three-dimensional radiative transfer (RT) equation
for vegetation are described in detail by Knyazikhin et al. (1998, 2011)
and Huang et al. (2007). Some of the central assumptions and concepts
are briefly summarized here. First of all, the interaction cross-section σ
can be consideredwavelength independent due to the large size of scat-
tering elements relative to the wavelength of solar radiation (Ross,
1981). Another assumption used in the derivation is that the single scat-
tering albedo (ω) inside the canopy volume does not depend on the lo-
cation inside the canopy and the direction (Ω), and that it coincideswith
the leaf single scattering albedo (ωL), i.e. the canopy consists of leaves
only. The ratio p=γ0/ωL(λ) is then wavelength independent.

Substituting i(λ) = a(λ) / [1 − ωL(λ)] in Eq. (7), the corresponding
equation for canopy absorptance takes the form:

a λð Þ ¼ 1−pωL λ0ð Þ
1−pωL λð Þ

1−ωL λð Þ
1−ωL λ0ð Þ

a λ0ð Þ: ð8Þ

Evaluating Eq. (8) at ωL(λ0) = 0 and a(λ0) = i0 gives

a λð Þ ¼ i0
1−ωL λð Þ
1−pωL λð Þ

ð9Þ

which is seen to be identical to Eq. (1).
Similar relationships as Eq. (7) for the canopy interaction coefficient

(i) can be formulated for canopy diffuse transmittance (t) and reflec-
tance (r) (Smolander & Stenberg, 2005). Empirical evidence for the
spectrally invariant behavior of the corresponding parameters (p, pt
and pr) was derived from forest spectral reflectance and transmittance
measurements by Panferov et al. (2001). It was found that specific com-
binations of the canopy spectral reflectance values r calculated as

ξr λ0;λ1ð Þ ¼ r λ0ð Þ−r λ1ð Þ
ωL λ0ð Þr λ0ð Þ−ωL λ1ð Þr λ1ð Þ

ð10Þ

were concentrated around a certain canopy-specific value pr, the math-
ematical expectation of ξr. Eq. (10) can be easily rearranged so that the
dependence of the canopy reflectance r on the leaf albedo ωL becomes
similar to that of the canopy scatteringωC in Eq. (4). An equation similar
to Eq. (10) can bewritten for the transmittance t and the spectral invari-
ant pt.

The empirically-derived invariants pr and pt are approximate
combinations of the spectrally invariant factors of the eigenvalues γi.
More recently, Mõttus and Stenberg (2008) proposed a different
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parameterization of canopy spectral reflectance using the reflectance
ratio rC(λ)/ωC(λ) parameterized as:

rC
ωC

¼ 1
2
þ q
2
1−pωL

1−pð ÞωL
: ð11Þ

The parameter q in Eq. (11) can be shown to be an approximation of
the ratio of the two largest eigenvalues of T, q=γ1/γ0 (Mõttus, 2010).

2.3. Scaling of p from leaf (needle) to canopy

The recollision probability can be defined at different hierarchical
levels of the canopy and links the scattering properties at any two con-
secutive levels. For example, in their first simulation studywith applica-
tion of the p-theory, Smolander and Stenberg (2003) derived Eq. (4) at
shoot level tomodel the effect of clumping of needles into shoots on the
shoot scattering coefficient (ωsh):

ωsh λð Þ ¼ ωL λð Þ−pshωL λð Þ
1−pshωL λð Þ

ð12Þ

In Eq. (12), the ‘shoot structural parameter’ psh is the recollision
probability within the shoot: it is the conditional probability that a pho-
ton which has survived an interaction within a shoot will interact again
with a needle from the same shoot.

More generally, Eq. (4) can obviously be used at any level of
the structural hierarchy to link the scattering coefficient of a unit
(ωunit) to that of its elements (ωelement). Furthermore, letting n(λ) de-
note the average number of interactionswithin the unit (shoot, canopy)
for photons of wavelength λ, the ratio of these coefficients can be
expressed as:

ωunit λð Þ
ωelement λð Þ

¼ n λð Þ 1−punitð Þ: ð13Þ

Eq. (13) states that the scattering coefficient of any unit normalized
by that of its elements equals the (wavelength dependent) number of
interactions multiplied by the spectrally invariant probability of escape
(1− p).

The total canopy recollision and escape probabilities in turn can be
decomposed as

p canopyð Þ ¼ p1 þ 1−p1ð Þp2 þ…þ 1−p1ð Þ… 1−pn−1ð Þpn ð14Þ

and

1−p canopyð Þ ¼ 1−p1ð Þ 1−p2ð Þ… 1−pnð Þ ð15Þ

where n is the number of levels and pi is the probability that a photon
leaving a “clump” at the hierarchical level i − 1 will collide with a
clump at level i (Fig. 2). The albedos at any two consecutive levels are
linked by the equation (see Eq. (4)):

ωiþ1 λð Þ ¼ ωi λð Þ−piωi λð Þ
1−piωi λð Þ

: ð16Þ

The goodness of the scaling depends on how well the p-theory ap-
proximates the radiation field inside the vegetation canopy. Theoreti-
cally, this is linked to the speed of convergence of the recollision
probability with scattering order to its limiting value. As discussed in
the following sections, in structurally complex extremely dense cano-
pies, the connection between the photon recollision probability p and

the eigenvalue γ0 is lost, although the approximating equation
(Eq. (9)) can still be used to describe total canopy absorption.

2.4. Link between p and STAR

Smolander and Stenberg (2003) calculated the mean probability of
escape (1− psh) within modelled Scots pine shoots using Monte Carlo
ray tracing (see Section 3.2.). They found that, to a very close approxi-
mation, 1 − psh = 4STAR, where STAR is the spherically averaged sil-
houette to total needle area ratio of a shoot (Oker-Blom & Smolander,
1988) and 4STAR is analogous to the shoot shading factor β (Stenberg,
1996). As shown by Smolander and Stenberg (2003), 4STAR can be
interpreted as the mean probability that a photon emitted from a ran-
dom point on the needle surface of the shoot will not hit another needle
of the shoot. Assuming Lambertian reflectance, it follows that the only
difference between the escape probability and 4STAR comes from the
spatial averaging: if the points of interactionwere uniformly distributed
over the total needle area of the shoot then the two quantities would
coincide.

Based on the same assumption at canopy level, i.e. that the points of
interaction are uniformly distributed over the total canopy leaf (needle)
surface area, Stenberg (2007) later derived a simple analytical expres-
sion for the relationship between the total escape probability 1 − p,

Fig. 2. In the forest depicted here, p1 would be the recollision probability within a shoot, p2
the recollision probability of a shoot-leaving photon within the crown, and p3 the
recollision probability of a crown-leaving photon with another, different crown.
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the leaf area index (LAI) and the canopy interceptance in diffuse (isotro-
pic) radiation (iD) (Eq. (A1) in Appendix A):

1−p ¼ iD
LAI

: ð17Þ

In deriving Eq. (17), Stenberg (2007) first defined the escape proba-
bility (Pesc) of a single photon scattered from a point r on a leaf (or nee-
dle) assumed to scatter as a Lambertian surface, i.e. reradiating photons
following a cosine distribution around the direction Ωr of the leaf nor-
mal, as:

Pesc rð Þ ¼ 1
π

Z

2π Ωrð Þ

χ r;Ωð Þ cos Ω;Ωrð ÞdΩ: ð18Þ

In Eq. (18), the function χ is defined such that it takes the value 1
if there is a free line of sight through the canopy from r to the direction
Ω, and 0 otherwise, and integration is performed over the hemisphere
2π(Ωr) facing the leaf surface at r. The mean escape probability, 1 − p
(Eq. (17)), was then defined as Pesc averaged over (all the points r on)
the total leaf (needle) surface area of the canopy, which was shown to
equal the ratio of canopy diffuse interceptance (iD) to the hemisurface
LAI. In complete analogy to the shoot level p, the canopy level p
(Eq. (17)) can be interpreted as the mean probability that a photon
emitted from a random point on a Lambertian leaf (or needle) surface
of the canopy will not hit another leaf of the canopy.

At a fixed LAI, the ratio iD/LAI is smaller (and p larger) the more
aggregated is the distribution of leaves in the canopy, or the smaller is
the canopy clumping index. The clumping index (Γ), as defined by Eqs.
(A2)–(A3) in the Appendix A, furthermore provides the link between
the true LAI and the effective leaf area index (Le) as Le = ΓLAI (Eq. (A4)
in Appendix A). Using these definitions, Eq. (17) can be written in the
form

1−p ¼ Γ
iD
Le

: ð19Þ

Rautiainen, Mõttus, and Stenberg (2009) studied the relationship
between p, LAI and Le based on empirical data (provided by measure-
ments with the LAI-2000 Plant Canopy Analyzer) from five coniferous
dominated test sites in Finland, containing in total 1032 pure or mixed
plots with Norway spruce, Scots pine, Silver birch and Downy birch.
They observed a tight relationship between iD and Le (Fig. 3), as could
be expected based on their definitions (Eqs. (A1) and (A4)). This
means that, at a fixed Le, the ratio iD/Le has a near constant value and
the escape probability (Eq. (19)) becomes proportional to the clumping
index Γ.

2.5. Empirical proof of the p-theory

The first empirical proof of the p-theory was obtained in a joint
laboratory experiment carried out by the University of Helsinki and
University of Zurich in spring 2011 (Rautiainen et al., 2012). The aim
of the experiment was to test if it was possible to upscale needle albedo
to shoot albedo using only one parameter describing the shoots, i.e. the
spherically averaged shoot silhouette to total needle area ratio (STAR).
In other words, to test empirically the validity of Eq. (16).

First, using a spectroradiometer attached to the LAGOS goniometer
located in the Remote Sensing Laboratories (University of Zurich), the
upper and lower hemispherical bidirectional reflectance distribution
functions (BRDF) for the study shoots were measured. The measured
data were further processed to shoot spectral albedos. Simultaneously,
the reflectance and transmittance values of single needles were mea-
sured. After the spectral measurements, the structure of the studied
Scots pine shoots, including needle dimensions and shoot silhouette to

total area ratios (STAR), were carefully measured in order to calculate
the STAR values for the shoots.

The empirical results confirmed the theory: STAR (which is linearly
related to p) could indeed be used to scale between needle and shoot
spectral albedos at these two hierarchical levels (Fig. 4). In an empirical
follow-up study, Mõttus and Rautiainen (2013) also showed that
common spectral vegetation indices, such as the normalized difference
vegetation indices (NDVI) or photochemical reflectance index (PRI),

Fig. 3. The relationship between effective LAI (Le) and canopy diffuse interceptance (iD)
can be easily measured with, for example, LAI-2000 Plant Canopy Analyzer or obtained
from hemispherical photographs. This figure is based on 307 forest stands measured in
Hyytiälä, Finland in 2013 (Majasalmi, Rautiainen, Stenberg and Manninen, 2015).

Fig. 4. The relationship between needle and shoot spectral albedos (400–1800 nm)
averaged for ten Scots pine shoots. The needle albedos were measured, and the shoot
albedos were both measured and predicted by STAR (which is linearly related to p) (see
Section 2.4 and Eq. (16)).
The measurements and data are described in detail by Rautiainen et al. (2012).
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can be scaled between needle and shoot levels using p. What still
remains empirically unexplored, due to technical challenges in themea-
surement set-ups, is whether the same method could be used to scale
between shoot and crown levels.

3. Simulation studies

3.1. Ray tracing to track collision and escape events

Tracking of individual photons inside a vegetation canopy, and thus
directly determining the escape and recollision probabilities, is not
possible. The closest alternative to measurement is Monte Carlo model-
ling using physically realistic representations of canopies. Such models
sample the radiation field inside and above the canopy by tracing single
photons drawn randomly from the incident radiation field. For the
models used in the studies of photon recollision probability, a detailed
3D description of the canopy had been given as model input. As the
photons are traced in the canopy, the fractions of photons which are
scattered out after each scattering provide the recollision probabilities
p(1), p(2), …, p(i), …, where i is the scattering order. The recollision
probability p is calculated as the average p(i) weighted by the contribu-
tion of each order to the total canopy scattering.

The first simulation results were reported for a fractal-based three-
dimensional barley canopy already in 1998 (Lewis & Disney, 1998).
The geometric expansion (Eq. (1)) was found to be a useful way of
representing canopy scattering as the rate of decay (i.e. photon
recollision probability in modern terms) was found to be nearly con-
stant for scattering orders of two and above. Amore detailed simulation
study in a canopy with randomly located, non-overlapping circular
leaves with a spherical leaf angle distribution confirmed themonotonic
increase of p(i) with the scattering order i. The value of i afterwhich p(i)
remained almost constant approximately equaled LAI (Lewis & Disney,
2007). Nevertheless, assuming a constant p for i N 1 gives reasonable ac-
curacy for modelling total canopy scattering. Themodelling exercises in
these relatively simple canopies confirmed the quick convergence of
p(i) to pinf mentioned above (Fig. 5).

Disney, Lewis, Quaife, and Nichol (2005) proposed an approxima-
tion of canopy reflectance where p(1) is calculated separately from

the recollision probability for i N 1, p(iN1). Total canopy scattering
now becomes

ωC λð Þ ¼ aωL λð Þ þ
bω2

L λð Þ
1−p iN1ð ÞωL λð Þ ð20Þ

where a and b are the geometric (spectrally invariant) parts of the first-
and multiple-order scattering, respectively. Disney et al. (2005) also
suggest a simpler, but less accurate approximation assuming b = a2.
Later, the second-order recollision probability has been found to be a
good substitute for the average p (Mõttus, 2007) or even the diffuse
limit pinf (Huang et al., 2007; Lewis & Disney, 2007). The first-order
recollision probability, on the other hand, is markedly smaller than
both p and pinf.

Disney et al. (2005) validated the suitability of Eq. (20) for approxi-
mating the reflectance of five Sitka spruce stands of various ages. The
stand-level reflectance, assumed proportional to ωC was measured
with a helicopter-mounted spectroradiometer in the visible andnear in-
frared spectral regions. Needle spectral albedo was sampled with a con-
tact probe. Eq. (20)was found to fit the data extremelywell (R2 N 0.997)
even assuming b = a2.

The situation was found to be more complicated for highly struc-
tured needleleaf forest canopies (Disney & Lewis, 2007). In some
dense and complex pine canopies, p(i) did not reach the diffuse limit
even at i = 100. The authors also noted a marked impact of non-green
material, i.e. tree trunks, on the distribution of exiting photons with
scattering order. While the p-theory (Eq. (4)) was still a good approxi-
mation of the relationship between needle and canopy scattering, the
fitted p-value became decoupled from its physical interpretation.

3.2. Deriving relationships between p and canopy structure

Smolander and Stenberg (2005) calculated the average p values (pLC
and pCC) for twomodel canopies of varying LAI: a ‘leaf canopy’ (LC) and
a coniferous ‘shoot canopy’ (CC), which were composed of randomly
distributed single leaves or coniferous shoots, respectively. In both can-
opies, values of p were estimated in two different ways, which turned
out to be in close to perfect agreement. First, p was obtained by fitting

Fig. 5. Variation in p with scattering order for different values of LAI.
From Mõttus (2007).
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Eq. (4) to simulated canopy scattering (ωC) at different wavelengths
(values of leaf albedo, ωL). Secondly, p was calculated using the above
described single photon ray tracing method with ωL = 1.

From simulations performed assuming a solar zenith angle (SZA) of
45°, a tight relationship of the form p= a(1− exp(−bLAI)) was found
between pLC and LAI for the leaf canopy. The dependence between
p of the coniferous shoot canopy (pcc) and LAI, in turn, was accurately
predicted from the shoot level p value (psh) and pLC of the leaf canopy
with similar effective LAI (Le) by the decomposition formula (see
Eq. (14)):

pCC ¼ psh þ 1−pshð ÞpLC Leð Þ: ð21Þ

The effect on pLC of different incidence angles of the incoming
photons was studied separately. It was found that pLC was practically
insensitive to the solar zenith angle in the range commonly used in sat-
ellite remote sensing (less than 1.2% at solar zenith angles b50°). Finally,
simulated values of the ratio of upward to total scattering (rC/ωC) at
different wavelengths showed an increase with LAI and a slight de-
creasewith increasingωL (aswould be predicted by Eq. (11)). At similar
values of LAI, the ratio rC/ωC was larger for the leaf canopy than for the
shoot canopy.

Later, Stenberg (2007) applied Eq. (17) to estimate p of the same
model canopies (‘leaf canopy’ and ‘shoot canopy’) as in Smolander and
Stenberg (2005) and found very good agreement between the analyti-
cally derived and the Monte Carlo simulated values of p. The fit was
the best at low to moderate values of LAI and, at similar LAI, was better
for the shoot canopy than for the leaf canopy. This can be explained by
that the assumption behind Eq. (17), that the points of interaction are
evenly distributed over the total leaf (needle) area, is closer to the
truth themore ‘transparent’ is the canopy, i.e. the smaller is the effective
LAI (Le).

Mõttus, Stenberg, and Rautiainen (2007) derived the relationships
between p and LAI for forest stands of more complicated structures
using simulations by the Kuusk–Nilson FRT model (Kuusk & Nilson,
2000) and assessed the effect on canopy structure on p by comparing
the results to those obtained for ‘structureless’ (homogeneous) cano-
pies of the same LAI by a two-stream model. Simulations by both
models produced tight relationships between LAI and p but, as expect-
ed, for a fixed LAI p was larger when canopy structure was accounted
for. More generally, results from the study confirmed that the concept
of recollision probability is coherent with physically based canopy
reflectance models.

The concept of spectral invariantswas tested onmultiple scales from
within leaf to a horizontally homogeneous canopy by Lewis and Disney
(2007). They demonstrated that the p-theory can very accurately ap-
proximate the leaf scattering computed with the widely-used PROS-
PECT model (Jacquemoud et al., 1996). Inside the leaf, the role of ω is
taken by the exponent of the product of pigment concentration and its
spectral absorption coefficient. The “within-leaf recollision probability”
pleaf (note that at within-leaf scale, no physical connection has been
established between the collision events and pleaf) was found to vary
with the refractive index of the leaf wax layer between 0.60 and 0.73.
For a wide range of leaf properties, the p-theory approximated PROS-
PECT with R2 N 0.9997 and RMSE b 0.0042. Using the (de)composition
formula, leaf- and canopy level p-values can be combined thus linking
canopy spectral reflectance to the pigment concentration with a single
parameter. Based on their results, Lewis and Disney (2007) concluded
that “without knowledge of either p, or the leaf biochemical constitu-
ents, independent retrieval of either from total scattering measure-
ments is not possible.”

In a simulation study, Stenberg and Manninen (2015) used the
approach proposed by Disney et al. (2005) to separate the first order
and multiple order recollision probabilities and calculated canopy

scattering by Eq. (20), where parameters a and b were derived as:
a = 1 − p(1) and b = p(1)(1 − p). For the modelled canopies, the
first order p(1) was calculated analytically and the multiple order
mean p was calculated using Eq. (17). Results confirmed that p(1) in-
deed differs more from the mean p the denser is the canopy but that
the difference decreaseswith clumping. In dense but clumped canopies,
thus, the difference between p(1) and mean p had only minor effect on
total canopy scattering (ωC). However, the reflectance ratio (rC/ωC) was
found to decrease with clumping because it reduces the relative contri-
bution of first order scattering (with higher reflectance ratio) to the
total scattering.

4. Use of p in modelling canopy reflectance and radiation regime

4.1. Canopy BRF using PARAS model

A family ofmodels, called ‘PARAS’, where canopy structure is param-
eterized purely based on the recollision probability, has been developed
to simulate different components of the canopy radiation budget, e.g.,
canopy reflectance (BRF, albedo) and absorption (fPAR). The first
version of the PARAS model was formulated for the canopy BRF by
Rautiainen and Stenberg (2005) as:

BRF ¼ cgf θ1ð ÞρGcgf θ2ð Þ þ f θ1; θ2ð Þi0 θ2ð ÞωL−pωL

1−pωL
: ð22Þ

Here, the assumption of ‘black soil’was relaxed so that the contribu-
tion from photons arriving through gaps in the illumination direction
(θ2), reflected at the ground (ρG), and escaping through gaps in the
view direction (θ1) was added to the canopy-only reflectance. Multiple
scattering between canopy and soil was not accounted for. The second
term on the right hand of Eq. (22) is simply canopy scattering for the
black soil problem (Eq. (2)) weighted by the function f, which describes
the directional distribution of escaped photons normalized so that inte-
grated over all view directions (Ω1) it yields unity:

1
π

Z

4π

f θ1; θ2ð Þ cosθ1j jdΩ1 ¼ 1: ð23Þ

Integration over the upper hemisphere, in turn, gives the total up-
wards (or backwards) scattered fraction of the radiation intercepted
by the canopy:

1
π

Z

2πþ

f θ1; θ2ð Þ cosθ1j jdΩ1 ¼ Q : ð24Þ

The incomingdirection of radiation (θ2) has an impact on the canopy
interceptance (i0), but its possible influence on p (through its effect on
where the first interactions occur) is not explicitly taken into account
in the model formulation. Originally, the value of p for input to the
model (Eq. (22)) was calculated using the relationships between p
and LAI for leaf and shoot canopies derived by Smolander and
Stenberg (2005) in their simulation study. (Recall that in that study
the dependence of p on the solar zenith angle was found to be insignif-
icant.) In later applications of the PARAS models, Eq. (17) has generally
been used to produce the input value of p. Note that using Eq. (17) for
the estimation of p requires that the LAI is measured (or estimated) in-
dependent of the canopy diffuse interceptance (iD), or alternatively,
using some known or assumed value of the clumping index (Γ). Also, al-
though the variation in f with view angle is represented in the model
formulation, it has (so far) not been a subject of study in the applica-
tions. If the canopy reflectance is assumed to be Lambertian (i.e. f is
constant), then it follows from Eq. (23) that f(θ1,θ2) = Q for all view
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directions.While the PARAS BRFmodel does not rely upon such a (false)
assumption, in thefirstmodel applications the value of f for a nadir view
(θ1 = 0) was approximated using simulated data on Q (=rC/ωC) by
Smolander and Stenberg (2005). The first analytical approach to sepa-
rate canopy scattering into reflectance and transmittance, i.e. to esti-
mate Q (Eq. (11)), was presented by Mõttus and Stenberg (2008).
They also derived values of Q by simulation for a set of (measured)
forest stands of varying LAI, and these simulation based dependencies
of Q on LAI have later been used in the PARAS BRF model. Note that
the reflectance ratio as predicted by Eq. (11) is not strictly spectrally
invariant.

The model (Eq. (22)) was applied to show improved agreement
betweenmodelled andmeasured BRF for coniferous standswhenwith-
in-shoot scattering accounted for (in calculating the p) (Rautiainen &
Stenberg, 2005), and later Rautiainen et al. (2007) successfully applied
the model to subarctic forests to demonstrate the role of understory
vegetation in forming stand reflectance. Stenberg, Rautiainen,
Manninen, Voipio, and Mõttus (2008) used the model to investigate
which spectral vegetation indices would perform well in mapping LAI
of boreal forests. More recently, the PARAS model has also been used
to estimate chlorophyll content of spruce needles from CHRIS PROBA
data (Yanez-Rausell et al., 2015).

4.2. Canopy albedo and absorption using PARAS model

Manninen and Stenberg (2009) extended the original PARAS model
to include multiple scattering between canopy and ground with the
motivation to make it applicable also in the case of a highly reflective
background such as snow. They used it to simulate the effect of snow
covered forest floor on the black- and white-sky albedos. Two compo-
nents were thus added to the right hand side of Eq. (22): 1) photons
first scattered downwards from the canopy, then reflected from the
forest floor and transmitted without interaction through the canopy
upwards, and 2) photons reflected from the forest floor and scattered
upwards through the canopy. In addition, hemispherical integration
over all view angles (for black-sky albedo) or integration over both inci-
dent and view angles (for white-sky albedo) was performed to convert
BRF to black sky and white sky albedo, respectively. Simulation results
showed that for snow covered forestfloors the addedmultiple scattered
component increased the total canopy albedo in NIR by up to 0.2 units.
In summer conditions, on the other hand, the contribution to the albedo
from the added components was negligible in the red band and not
larger than about 0.05 in NIR. Evaluation of the albedo model against
measured forest albedo data from the Arctic Research Centre of the
Finnish Meteorological Institute (FMI-ARC) in Sodankylä (northern
Finland) showed that it successfully simulated the main features of
measured albedo values.

The PARAS albedo model developed later by Stenberg, Lukeš,
Rautiainen, and Manninen (2013) is a simplified version of the
Manninen and Stenberg (2009) model, but provides separately the
three different components of the total radiation budget. The total
canopy spectral absorption (AC) and ground absorption (AG) are defined
as the fractions of the incoming photons at a specific wavelengthwhich
will finally be absorbed by the canopyor be transmitted to and absorbed
by the ground. The spectral albedo (RC), or the fraction of the incoming
photons that escapes the canopy upwards, is then obtained as:

RC λð Þ ¼ 1−AC λð Þ−AG λð Þ: ð25Þ

In the model two simplifying assumptions were made allowing AC

and AG to be derivedwith help of geometric series. First, it was assumed
that the fractions of backward scattering (Q) and forward scattering
(1 − Q) do not depend on whether the canopy is irradiated from
above or below. Secondly, the ground reflectance (ρG) was assumed to
be purely Lambertian. (The first assumption was used also in the simu-
lations by Manninen and Stenberg (2009), but the snow albedo was

modelled as combination of completely forward/backward and
Lambertian scattering.) The equations for canopy (Ac) and ground spec-
tral absorption (AG) are:

AC λð Þ ¼ i0αC λð Þ þ t0 þ i0 1−Qð ÞωC λð Þ½ &ρG λð ÞiDαC λð Þ
1−QωC λð ÞiDρG λð Þ

ð26Þ

and

AG λð Þ ¼ t0 þ i0 1−Qð ÞωC λð Þ½ & 1−ρG λð Þð Þ

þ t0 þ i0 1−Qð ÞωC λð Þ½ &ρG λð ÞiDQωC λð Þ 1−ρG λð Þð Þ
1−QωC λð ÞiDρG λð Þ : ð27Þ

Derivation of themodel actually followed the same principle as pre-
sented in Knyazikhin et al. (1998) and further outlined in Wang et al.
(2003) so that, in Eqs. (26) and (27), the first term represents the solu-
tion to the ‘black soil problem’, and the second term is the additional
contribution due to interactions between the canopy and underlying
surface. Note that Eqs. (26) and (27) above are formulated for radiation
incident from a specific angle (e.g. the sun zenith angle), at which t0 and
i0 correspond to the uncollided transmittance and the interceptance,
respectively, but they can easily be applied also to diffuse radiation by
integrating over the respective distribution of sky radiation.

The model by Stenberg et al. (2013) was used to produce the black-
sky albedos of 644 boreal forest stands in Finland composed of Scots
pine, Norway spruce and Silver birch. Results were compared to those
simulated using the detailed reflectance and transmittance model
(FRT) by Kuusk and Nilson (2000) with input from an extensive forest
inventory database and locally measured spectral data on leaf and
needle albedos, and ground (understory) reflectance. Results showed
that the albedos of the stands simulated by PARAS and FRT had approx-
imately the same range and strong positive correlation. Inclusion of
branch area index (BAI) in calculating the p value (by adding the BAI
to LAI in Eq. (17)) further improved the agreement, so that the overall
root mean square error (RMSE) between the PARAS and FRT simulated
albedos was 0.011, and the ranges of albedo values were almost identi-
cal. It was concluded that although complex 3D models using detailed
input on the structure of standsmay be required to realistically describe
the angular variation in reflectance (BRDF) for a forest, the spectrally
invariant parameters are an efficient means to couple forest canopy
structure and albedo.

The model was also adapted for calculating the fraction of absorbed
photosynthetically active radiation (fPAR) (canopy spectral absorp-
tance by Eq. (26) integrated over PAR wavelengths) of a forest by
Majasalmi et al. (2014) and Majasalmi, Rautiainen and Stenberg
(2015). First, the simulated fPAR values were validated against mea-
surements in differently structured boreal coniferous and broadleaved
stands, which was followed by simulations of diurnal and seasonal
fPAR dynamics. Overall, the model performed well in fPAR calculations:
the RMSE between the simulated and measured fPAR values ranged
from 0.03 to 0.06, depending on the time of the day and sky conditions.
As ground reference measurements of fPAR are tedious and slow, a
physically-based model could be used to produce the in situ estimates
of fPAR for validating satellite-based products for a larger area. For bore-
al forests, Majasalmi, Rautiainen, Stenberg and Manninen (2015) ex-
plored the potential of using this fPAR model to produce the ground
reference values for the validation of MODIS (MOD15A2) and GEOV1
fPAR (g2_BIOPAR_FAPAR) products. Application of the model also
allowed separating the contributions of understory and tree layer
fPAR, and analysing their role in the performance of the satellite-based
products. Thus, Majasalmi, Rautiainen, Stenberg and Manninen (2015)
were able to report, for example, that the MODIS fPAR represented the
fPAR of the tree canopy layer whereas the GEOV1 fPAR product was
more similar to the total fPAR of both the understory and tree layers.
Similarly for agricultural areas, Fan, Liu, and Xiru (2014) also applied a
photon recollision based model to generate fPAR values comparable to
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satellite products (MOD15A2). These studies on forest albedo, fPAR and
satellite product validation are examples of how the p-theory can be
used as a tool to estimate canopy radiation budget in different types of
vegetation canopies. A strength of the p-theory based model approach
is its simple parameterization, as described in the following section.

4.3. Measurements of PARAS model input parameters

A key property of any canopy radiation model is that the input
parameters have a physical interpretation and can be measured in the
field or in a laboratory. The PARAS family of models is based on a
small, measurable set of input parameters describing the structure and
optical properties of forest elements. Canopy structure ismainly param-
eterized through the recollision probability p which, knowing the
clumping index (Γ), can be calculated by Eq. (17) or (19) using the
effective LAI (Le) and canopy diffuse interceptance (iD) obtained from
measurements with, for example, the LAI-2000 Plant Canopy Instru-
ment (Li-Cor Inc.) or a camera with a hemispherical lens (Fig. 6A). The
clumping index is not a directly measurable parameter, but the shoot

level clumping can be estimated by STAR (Fig. 6B). In addition to p,
the structural input data required by themodel are canopy gap fractions
to estimate bidirectional gap probabilities of the forest floor (or under-
story layer). These canopy gap fractions can also be obtained from LAI-
2000 data or hemispherical photographs of the canopies. Besides the
abovementioned canopy structural variables, the model requires spec-
tral data on the foliage elements and forest floor. The spectral albedos
of leaves or needles can be measured in laboratory (or field conditions)
(e.g. Lukeš, Stenberg, Rautiainen, Mõttus, & Vanhatalo, 2013), and the
BRF or BRDF of forest floor vegetation in the field (e.g. Peltoniemi et
al., 2005; Rautiainen et al., 2011). The PARASmodels do not require ex-
pert guesses for input parameters as they can be measured (Fig. 6).

5. Applications in monitoring vegetation

Operational monitoring of vegetation, such as producing LAI maps
for extensive areas, requires an algorithm which is based on a simple
set of input parameters. Therefore, the concept of spectral invariants
(or photon recollision probability) has originally been applied in LAI/

Fig. 6.Measurements of input variables needed for the PARASmodels. A. Data on canopy gap fractions and diffuse interceptance, and leaf area index which are needed to calculate p (see
Eq. (17)) and the contribution of understory (see Eq. (22)) can directly be obtained from LAI-2000 Plant Canopy Analyzer output files or hemispherical photographs. B. STAR values of
coniferous shoots can be measured using photographic methods. STAR is linearly related to p (see Section 2.4). C. Data on the spectral properties of tree leaves and needles, and
understory vegetation are also needed as input and can be measured with spectroradiometers. These examples are based on data measured in Hyytiälä, Finland.
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fPAR retrieval algorithms utilizing MODIS (Knyazikhin et al., 1998;
Shabanov et al., 2003) and Landsat or SPOT (Ganguly et al., 2008a,b,
2012; Heiskanen, Rautiainen, Korhonen, Mõttus, & Stenberg, 2011)
data. In addition to LAI and fPAR, spectral invariants have been linked
to other variables describing canopy structure. For example, Schull et
al. (2007) showed that the spectral invariants theory can be applied to
retrieve height of canopies from airborne multiangular remote sensing
data. Furthermore, Schull et al. (2011) showed that, if leaf single scatter-
ing albedo is known, p (and related information on canopy structure)
can be retrieved from hyperspectral remote sensing data using a simple
linear regression method. Lukeš, Rautiainen, Stenberg, and Malenovský
(2011) evaluated independently Schull's methods for retrieving the
recollision probability and escape factor from multiangular CHRIS
PROBA data for a spruce site. They were able to reproduce Schull et
al.'s (2007) findings using completely different data sets from another
biome, and concluded e.g. that in coniferous canopies the spectral in-
variants theory performs well in the near infrared spectral range.

The most recent development in the spectral invariants theory has
been the introduction of the directional area scattering factor (DASF,
Knyazikhin et al., 2012), formulated as an extension to the work by
Schull et al. (2007, 2011). DASF is an estimate of the fraction of leaf
area in a canopy that is visible from outside the canopy in a given direc-
tion. Formally, it is defined as the canopy BRF if the foliage does not
absorb radiation (ωL = 1). For a canopy bounded underneath by black
soil, DASF is identical to the product of i0 and f (Eq. (22)), and the
ratio of BRF to DASF equals the canopy scattering coefficient (ωC). For
dense canopies (i0 ~ 1), furthermore, DASF approximately coincides
with the function fwhich describes the proportion of photons scattered
from a canopy into a particular direction (the view direction). In other
words, DASF varies with view direction and is a function of geometric
properties of the tree canopy (e.g. foliage grouping, crown shape, spatial
distribution of trees). For closed canopies (i.e. canopies where the influ-
ence of forest floor is negligible), DASF can be directly estimated from
air or satellite borne BRF data in the spectral range between 710 nm
and 790 nm (Knyazikhin et al., 2012).

By now, the concept of DASF has been shown useful in mapping
vegetation structure in both forest and agricultural vegetation. In a
study based on reflectance data from CHRIS PROBA, Latorre-Carmona
et al. (2014) reported that the DASF is directly related to crop type.
Vanhatalo, Rautiainen, and Stenberg (2014), on the other hand, report-
ed that DASF shows good potential in monitoring the broadleaf fraction
of boreal forests when using hyperspectral satellite data (e.g. EO-1
Hyperion images). Furthermore, Stenberg and Manninen (2015) sug-
gested that this might be linked to different degrees of clumping in
broadleaved vs coniferous stands based on their result that, for a nadir
view, DASF increases with the clumping index. The validity of the appli-
cations described above is, however, confined to dense canopies due to
the underlying assumption of a vegetation bounded underneath by a
non-reflecting black surface as shown in an empirical study by
Vanhatalo et al. (2014). Alternatively, methods for removing the impact
of background (e.g. forest floor) on total forest (or other vegetation
canopy) reflectance need to be applied in sparse canopies.

Currently, the team led by Prof. Yuri Knyazikhin (Boston University)
applies DASF in the development of new algorithms for retrieving global
data records of fraction of photosynthetically active radiation absorbed
by green leaves, leaf area and its sunlit fraction fromDeep Space Climate
Observatory (DSCOVR, launched in 2015) data. Future applications can
also be expected to arise from the applications of spectral invariants in
describing the radiation budget of vegetation in global radiation balance
or climate models.
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Appendix A

Canopy diffuse interceptance, or the interceptance of isotropic radia-
tion, is obtained as:

iD ¼ 2
Z π

2

0
1−t0 θð Þ½ & cosθ sinθdθ: ðA1Þ

The uncollided transmittance (or gap probability), t0, can be
expressed by the Beer's law equation as a function LAI, themean projec-
tion of unit foliage area (G) and a clumping index (Γ) as (Nilson, 1971):

t0 θð Þ ¼ exp −Γ θð ÞG θð ÞLAI= cosθ½ &: ðA2Þ

Eq. (A2) with Γ(θ) = 1 (for all θ) applies to a Poisson canopy com-
posed of randomly distributed leaves and the clumping index conse-
quently is defined as the parameter needed to correct for deviations in
the relationship between t0 and LAI caused by a non-random leaf
dispersion.

As Γ(θ) varies with the direction, the total hemispherical clumping
index Γ is defined as:

Γ ¼ 2
Z π=2

0
Γ θð ÞG θð Þ sinθdθ: ðA3Þ

With the clumping index defined by Eq. (A3), the effective leaf area
index (Le) now becomes equal to the product of and the true leaf area
index:

Le ¼ −2
Z π

2

0
ln t0 θð Þ½ & cosθ sinθdθ ¼ 2

Z π
2

0
Γ θð ÞG θð ÞL sinθdθ ¼ ΓL: ðA4Þ
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Abstract: Earth observations collected by remote sensors provide unique information to our
ever-growing knowledge of the terrestrial biosphere. Yet, retrieving information from remote sensing
data requires sophisticated processing and demands a better understanding of the underlying
physics. This paper reviews research efforts that lead to the developments of the stochastic radiative
transfer equation (RTE) and the spectral invariants theory. The former simplifies the characteristics
of canopy structures with a pair-correlation function so that the 3D information can be succinctly
packed into a 1D equation. The latter indicates that the interactions between photons and canopy
elements converge to certain invariant patterns quantifiable by a few wavelength independent
parameters, which satisfy the law of energy conservation. By revealing the connections between
plant structural characteristics and photon recollision probability, these developments significantly
advance our understanding of the transportation of radiation within vegetation canopies. They enable
a novel physically-based algorithm to simulate the “hot-spot” phenomenon of canopy bidirectional
reflectance while conserving energy, a challenge known to the classic radiative transfer models.
Therefore, these theoretical developments have a far-reaching influence in optical remote sensing of
the biosphere.

Keywords: vegetation remote sensing; stochastic radiative transfer equation; spectral invariants theory

1. Introduction

The past a few decades have seen rapid development in scientific research and applications that
monitor and/or simulate terrestrial ecosystems with the help of remote sensing data [1]. Thanks to
advances in technology, we have sensors that operate across a broad spectral range, at high spatial,
temporal, and spectral resolutions, and with passive or active modes. For instance, on sun-synchronous
orbits the classic MODIS (Moderate Resolution Imaging Spectroradiometer) and SUOMI NPP (National
Polar-Orbiting Partnership) VIIRS (Visible Infrared Imaging Radiometer Suite) are now joined by
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Landsat 8/OLI (Operational Land Imager) [2,3], Copernicus Sentinel-2 [4], and JPSS (Joint Polar
Satellite System) VIIRS [5]. On geostationary orbits we now have advanced multi-band imagers
on Himawari-8/9 [6], GOES-16/17 [7,8], FengYun-4 [9] and the forthcoming sensors from Korea
Meteorological Administration and European Organization for the Exploitation of Meteorological
Satellites (EUMETSAT). On the International Space Station there is ECOSTRESS (Ecosystem Spaceborne
Thermal Radiometer Experiment on Space Station), which will be soon joined by GEDI (Global
Ecosystem Dynamics Investigation) [10]. A plethora of remote sensing products have been derived
that reflect various characteristics of the terrestrial biosphere, including vegetation spectral indices,
land cover types, canopy structural parameters, and many others. As remote sensing data uniquely
provide consistent coverage over large spatial scales, it is rare nowadays that a global change study
does not use such information.

Remote sensing data are not uncertainty-free but come with caveats. In optical remote sensing,
for example, photons that reach the sensor have gone through complicated interactions with the
atmosphere-vegetation-soil medium [11]. A series of processing must be conducted to calibrate and
correct the top-of-atmosphere signals before information about the surface can be extracted from them.
As remote sensors cannot directly measure the surface biophysical characteristics of interest, models are
used to transform the measurements into estimates of the desirable vegetation canopy variables (e.g.,
Leaf Area Index), a process methodologically called “inversion.” The inverse problems encountered in
remote sensing are often under-determined and “ill-posed” [12], thus a priori information, additional
constraints on potential solution space, and regularization techniques are often applied to make
the problem solvable [13–17]. Given these challenges, a better understanding of the methodological
backgrounds of remote sensing products can be beneficial for users of these datasets.

Interactions between photons and the atmosphere-vegetation-soil medium are succinctly
quantified by the radiative transfer equation (RTE) and the associated boundary conditions [18].
The theory of radiative transfer was originally developed to study the scattering and absorption of
sunlight in the atmosphere and later to simulate the transport of neutrons in nuclear reactors [19].
The theory was applied to model the radiation regime in vegetation canopy in the second half of
the last century [20–22]. A range of models have been developed to describe the radiation regime
in vegetation canopies as well as their interactions with the atmosphere and the soil. Some of the
representative models, for instance, include Raytran [23], DART (Discrete Anisotropic Radiative
Transfer) [24,25], SAIL (Scattering by Arbitrary Inclined Leaves) [26–28], PROSPECT [29], GORT
(Geometric Optical-Radiative Transfer) [30,31], and PARAS [32]. A recent review of the canopy radiative
transfer models can be found in Reference [18].

Compared with turbid media or nuclear reactors, vegetation canopy has its own structural
and optical characteristics. On one hand, leaves have finite sizes and therefore cast shadows [33],
which violates the assumptions of Beer’s law [34,35]. For instance, the mutual shadowing effects
of the canopy elements are mainly responsive for a sharp peak of the canopy reflectance in the
retro-illumination direction. This phenomenon is often called the “hot-spot” effect, which is difficult
to simulate with the classic RTE [33,36]. On the other side, the sizes of leaves (and twigs, branches,
etc.) are often much larger than the spectral wavelengths considered in optical remote sensing.
The total extinction coefficient (or cross-section) of photons in vegetation canopies is thus determined
by the structural distribution of the leaves (and other phytoelements) rather than the wavelengths of
photons [37]. Such characteristics of the vegetation medium present both challenges and opportunities
to research efforts on the radiative transfer theory in vegetation canopies.

This paper intends to contribute a review of the theoretical advancements in modeling radiative
transfer processes in 3D vegetation canopies. It particularly focuses on the developments of the
stochastic radiative equation and the spectral invariant theory, which have been widely applied in
retrieving vegetation structural information from remote sensors like MODIS and MISR (Multi-Angle
Imaging Spectroradiometer) to the recent EPIC (Earth Polychromatic Imaging Camera) on the DSCOVR
(Deep Space Climate Observatory) platform and the latest geostationary sensors like AHI (Advanced
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Himawari Imager; on Himawari-8/9) and ABI (Advanced Baseline Imager; on GOES-16/17). However,
a detailed account of such theoretical progresses is somewhat scarce in recent review papers [38–45]
or textbooks [46] on remote sensing sciences and applications, which becomes a main motivation for
this paper.

A question may rise: Why should we care so much about the theoretical properties of the radiative
transfer processes in a time of big data, artificial intelligence and machine learning? It is true that
in general the RTE has to be solved numerically [47]. In many applications we rely on statistical or
empirical methods to solve the problem at hand [43]. Artificial intelligence and machine learning tools
have also been introduced into remote sensing applications since their early stages and are gaining
increasing popularity with rapid developments in the technology [48]. However, as mentioned earlier,
the task of remote sensing is essentially ill-posed. The solution to the inverse problem often is not
unique [43] and may not even be physical [35]. For instance, though the spectroscopy of a single leaf
may be accurately measured in a laboratory, those measured for a forest stand by remote sensors
convolute signals from the phytoelements (e.g., leaves, twigs, branches, trunks), the land surface,
the atmosphere in between, as well as the interactions among them [22]. It is far from straightforward
to establish a robust quantitative link between satellite measurements and leaf-level biogeochemical or
biogeophysical traits. Without a clear understanding of the underlying processes, we may misinterpret
empirically identified correlations from the data [49]. Furthermore, physically-based radiative transfer
models (RTM) usually assume many parameters, which make them difficult to invert in practice [43].
The success of an RTM in remote sensing applications thus requires a balance between the simplicity
of the model formulation and the fidelity of physics it preserves. Such a task can only be achieved with
a deep understanding of the radiative transfer processes. As we will discuss later, the stochastic RTE
and the spectral invariant theory represent elegant advancements with this modeling aspect regarded.

The rest of the paper is organized as follows. We begin by introducing the radiative transfer
equation formulated for 3D vegetation canopies. We then focus on four particular topics in the main
text, including the decomposition of RTE into the black-soil (“BS”) and the soil (“S”) problems,
the development of the stochastic RTE that efficiently packs 3D canopy features into a 1D form,
the spectral invariants theory that links the solutions of the RTE at different wavelengths by a few key
canopy structural parameters, and the latest effort to address the “hot-spot” problem in vegetation
remote sensing. We conclude the paper with a brief summary of the key ideas reviewed in these topics.

We would like to emphasize that, although the concepts of the spectral invariants and stochastic
canopy geometrical properties may appear abstract, they have concrete physical interpretations and
are measurable from ground and remote observations. Additionally, the basic ideas behind these
theoretical developments are actually simple. Their derivations repeatedly make use of the ideas of
decomposition and superposition, convergence and invariants, and the law of energy conservation.
Therefore, we invite the readers to pay more attention to these ideas rather than the mathematical
details of the theory, if the latter appears to be a bit complicated at the first look.

2. Radiative Transfer Equation for Vegetation Canopy

The classic RTE theory assumes that the radiative transfer properties of a vegetation canopy
are largely determined by how the leaves are distributed in space, how they are oriented, and the
fashions in which photons interact with the leaves [11,22,37,50]. These three aspects are mathematically
described by the leaf area density distribution function uL(x), the leaf normal distribution function
gL(x, ΩL)/2π, and the leaf element scattering phase function γL(λ, x, Ω→ Ω′, ΩL), respectively
(Figure 1). Here, ΩL represents the direction of the leaf normal, Ω is the incident direction, and Ω′ is
the direction in which photons are scattered into. Note that the scattering phase function γL explicitly
depends on both Ω and Ω′ but not only the scattering angle cos−1

(
Ω·Ω−1

)
, which is a key difference

between vegetation canopies and gaseous media [37].
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Figure 1. Schematic diagram of the Radiative Transfer Equation (RTE) and the Spectral Invariants
theory. The left side of the flowchart (outside the dashed box) describes the successive-order scattering
approximation (SOSA) scheme to solve the RTE. The right side of the diagram (inside the dashed box)
indicates the logic flow of the spectral invariants theory. The symmetric arrangement of the diagram is
to emphasizes that the canopy spectral invariants provide an equivalent set of parameters (other than
the traditional ones) to succinctly characterize the canopy structural properties.

From these functions we can derive a few key parameters to be used in RTE, including the
single scattering albedo ω0(λ), the total extinction cross-section σ(Ω), and the differential scattering
cross-section σS(Ω→ Ω′). Here we have assumed that ω0 is a variable of only spectral wavelength and
that σ(Ω) and σS(Ω→ Ω′) do not depend on locations (x) or spectral wavelengths (x). The detailed
definitions of these variables and their relationships are given in the Appendix A. Note that although
the single scattering albedo is generally understood as the averaged leaf albedo, its definition actually
depends on the spatial scales of the elementary scatters considered in the equation [51]. As will be
discussed later, this parameter is related to the canopy scattering coefficients by the associated scaling
rules [45].

Denoting Iλ(x, Ω) as the monochromatic radiation intensity (radiance), we use the operator
notations [52] to describe the radiative transfer processes in vegetation canopies (for readers who
are not familiar with linear differential/integral operators, you may think them as matrices with
infinite dimensions). In particular, the streaming-collision operator (L) describes the spatial/directional
change of the radiation intensity and the extinction of radiance due to collisions between photons and
phytoelements (Reference [52]; the same for Equations (2)–(5)),

LIλ ≡ Ω·∇Iλ(x, Ω) + σ(x, Ω)Iλ(x, Ω) (1)
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The scattering operator (Sλ) describes the addition of radiance by photons scattered in from
other directions,

Sλ Iλ ≡
∫

4π

ω0(λ)σS(x, Ω′ → Ω)Iλ(x, Ω′)dΩ′ (2)

The steady state RTE is thus
LIλ = Sλ Iλ, (3)

with the boundary conditions specified by

Iλ(xT , Ω) = δ(Ω−Ω0), nT ·Ω < 0 (4)

and

Iλ(xB, Ω) =
1
π

∫
nB ·Ω′>0

ρλ(xB, Ω′ → Ω)Iλ(xB, Ω′)|nB·Ω′|dΩ′, nB·Ω < 0 (5)

where xT and xB ∈ ∂V, nT and nB and the outward normal of the boundary, ρλ is the bidirectional
reflectance factor (BRF) of the lower boundary (i.e., soil surface). In remote sensing applications the
influence of lateral boundaries is considered small and thus neglected [35,37]. For simplicity we also
only consider the direct solar illumination but neglect the diffuse radiation. This corresponds to the
case where the influences of path radiances are removed through atmospheric corrections.

The RTE of Equation (3) describes photon-canopy interactions in three spatial dimensions (i.e.,
x) and two directional dimensions (Ω and Ω′). As the phase function γL is not rotational invariant,
we cannot decompose the solution in spherical harmonics to simplify the calculation [37]. Direct
numerical schemes to solve the equation thus have to perform 5-dimensional integration at every
iteration, which is complicated and prone to numerical errors. Therefore, we seek to simplify the
problem based on its mathematical/physical properties, which is discussed in the following sections.

3. Black-Soil and Soil Problems

A key property of the RTE is its linearity with regard to Iλ, which allows the problem to be
decomposed into a set of sub-problems that are easier to solve. The classic MODIS algorithm [35]
decomposes the RTE problem according to its boundary conditions. The easiest boundary condition is
represented by the black-soil (“BS”) problem, which is formulated for a vegetation canopy illuminated
from above by a mono-directional sun beam and otherwise bounded by purely absorbing (i.e.,
“black”) surface from below. In contrast, the soil (“S”) problem is formulated for the same canopy
but illuminated from below by anisotropic sources and bounded by absorbing surfaces everywhere
else. Such a decomposition scheme separates the influence of illumination conditions from those of
soils. The two sub-problems are solved independently but their solutions can be flexibly superposed
to render the full solution of the original problem (Figure 1).

To solve the black-soil problem, we further decompose the radiation field into the un-collided
component, Q0,

Q0(xT , Ω) = δ(Ω−Ω0), nT ·Ω < 0 (6)

and the collided (or diffuse) components, Idi f , which satisfies the so-called standard problem with zero
boundary conditions where no photon entering the canopy from above or below [53],

L0 Idi f = Sλ Idi f + SλQ0. (7)

As L is an ordinary differential operator, the solution of Q0 can be relatively easily obtained.
By introducing the integral operator T = L−1

0 Sλ, we write the diffuse component, Idi f , symbolically as

Idi f = TIdi f + TQ0. (8)
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We should explain the physical meaning of the T operator later in Section 5. For now, note that
we can solve for Idi f as

Idi f =
TQ0

E− T
, (9)

where “E” is the identity operator (i.e., EIdi f = Idi f ). Adding Q0 to both sides, we obtain the solution
of the black-soil problem as

Ibs = Idi f + Q0 = Q0
E−T

=
(

E + T + T2 + · · ·+ Tk + · · ·
)

Q0.
(10)

The last line of Equation (10) is the expansion of the operator (E− T)−1 in Neumann series,
which is analogous to geometrical series of numbers. Physically it indicates that IBS is the superposition
of photons that are un-collided, once-collided, twice-collided, and so on. The condition that the
series converge is provided by the law of energy conservation because the system is dissipative.
This superposition scheme, generally referred to as “successive-order scattering approximation”
(SOSA; Reference [54]), also bridges the black-soil problem solution to a few key concepts in the
radiative transfer theory in vegetation canopies.

The soil (“S”) problem is formulated as follows:

LIs = Sλ Is,
Is(xB, Ω) = dB(xB, Ω), nB·Ω < 0,

(11)

where dB(xB, Ω) is an anisotropic source normalized to have its hemispherical integral (i.e., irradiance)
to be unit. Note that the soil problem also assumes purely absorbing boundaries and the only
difference is that the canopy is illuminated from below by a diffuse source. It can be solved with the
same approach as the black-soil problem.

We now explain how to use the solutions of the black-soil and the soil problems to model
interactions between the canopy and the underlying soil surface. First, the anisotropic source in the
S-problem is initialized by radiation that passes through the canopy and reflected by the soil surface.
If the spatial distribution pattern of the downward radiation (as which is regulated by the structure of
the canopy) does not change significantly, we may assume that the anisotropy is determined by the
soil surface but independent on the incoming radiation field [35].

Let the spatial mean effective ground bi-hemispherical reflectance (BHR) of the soil surface to be
ρe f f and the mean radiation flux (irradiance) from the downward radiance generated by the black-soil

problem to be Fbs. As the system is linear, the radiation field that generated by the first interaction of
the canopy and the soil surface is (approximately) ρe f f Fbs Is. A part of the photons will be scattered
back by the canopy to interact with the soil surface again. Denote the mean BHR of the canopy
illuminated by the anisotropic source dB(xB, Ω) to be Rs, and the radiation field generated by the

second interaction between the canopy and the soil surface is thus
(

ρe f f

)2
RsFbs Is. As this process

iterates, we arrive at the total radiation generated by the interactions between the canopy and the
soil surface

Irest(x, Ω) =
ρe f f Fbs

1− ρe f f Rs
Is(x, Ω) (12)

and the solution to the full RTE problem is therefore

Iλ(x, Ω) = Ibs(x, Ω) +
ρe f f Fbs

1− ρe f f Rs
Is(x, Ω). (13)
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The above derivation of Equation (13) is slightly different from Reference [35] but shares the same
the idea. Ultimately, these decomposition schemes can be derived from the concept of Green’s function
of the RTE [53]. The assumption about the constancy of canopy BHR (Rs) and the anisotropy dB(xB, Ω)

is reasonable. This is because the diffused radiation field within the canopy tend to converge toward
certain spatial distributions that are independent on external illumination conditions (see below).

4. Stochastic Radiative Transfer Equation

In remote sensing applications we are generally more interested in the statistical mean of the
radiation fields than individual solutions [35]. An apparent way to achieve this goal is to generate an
ensemble of representative canopy realizations, solve the RTE for them separately, and then calculate
the mean in the end. However, this approach costs time and computation resources. Alternatively,
we can also calculate the statistical mean canopy first before solving for the RTE. The second approach
is the main idea behind the development of the Stochastic RTE, which turns out to be more efficient in
addressing the question [55]. As the ensemble mean is usually equivalent to the average of the 3D
radiation field over the horizontal space (i.e., the ergodicity assumption), the central task of Stochastic
RTE is the same as to efficiently pack a 3D radiative regime into a 1D form.

To illustrate, recall that Ω·∇I(x, Ω) is a directional derivative, i.e.,

Ω·∇I(x, Ω) =
dI(xB + ξΩ, Ω)

dξ
=

dI(xB + (z− zB)/µΩ, Ω)

1/µdz
. (14)

Integrating the RTE over the vertical dimension from the top (z = 0) or the bottom (z = 1) of the
canopy leads to

I(x, Ω) + 1
µ

∫
Z uL(x′)σ(Ω)I(x′, Ω)dz′

= 1
µ

∫
Z ω0uL(x′)dz′

∫
4π

σs(Ω′ → Ω)I(x′, Ω′)dΩ′+ I(xB, Ω) (15)

where x′ = x + (z′ − z)/µΩ and Z represents appropriate integration intervals. The subscript “B”
denotes general boundaries, which may be “top” or “bottom” according to the direction of the
integration [55]. Let 〈·〉 denote the horizontal average. Apply the operator to both sides of the equation
and we obtain,

I(x, Ω) + 1
µ

∫
Z σ(Ω)〈uL(x′)I(x′, Ω)〉dz′

= 1
µ

∫
Z ω0dz′

∫
4π

σs(Ω′ → Ω)〈uL(x′)I(x′, Ω′)〉dΩ′+ I(xB, Ω)
(16)

where I(x, Ω) = 〈I(x, Ω)〉. Therefore, the original RTE becomes a 1D equation with regard to the
vertical (“z”) dimension.

Note that in Equation (16) I(x, Ω) is the mean radiation intensity (at the vertical level z) averaged
over the whole horizontal domain while the “second-moment” variable 〈uL(x)I(x, Ω)〉 is the mean
intensity averaged only at locations where a leaf element presents. These two variables are generally
different from each other except for special cases. In order to evaluate 〈uL(x)I(x, Ω〉), we multiply
both sides of the RTE by uL(x) and integrate over the horizontal scale to get

〈uL(x)I(x, Ω)〉+ 1
µσ(Ω)

∫
Z〈uL(x)uL(x′)I(x′, Ω)〉dz′

= 1
µ

∫
Z ω0dz′

∫
4π

σs(Ω′ → Ω)〈uL(x)uL(x′)I(x′, Ω′)〉dΩ′+ 〈uL(xB)I(x, Ω)〉 (17)

Now another new (the “third-moment”) variable, 〈uL(x)uL(r′)I(r′, Ω′)〉, appears in the equation!
The procedure can go on and on, but every time we try to solve for a lower-moment variable, we end
up introducing a new higher-order unknown into the equation. The process is conceptually analogous
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to the “Reynolds Averaging” technique in fluid dynamics. A parameterization scheme thus must be
introduced to “close” the Stochastic RTE [56].

The scheme adopted in the current literature is derived based on the binary-medium assumption,
under which the leaf density function uL(x) is represented by an indicator function χ(x) that specifies
the presence (χ = 1) or absence (χ = 0) of a unit leaf element (dL), i.e., uL(x) = dLχ(x). Note that for a
random variable like χ(x) its spatial averaging (〈·〉) is essentially the same as its spatial expectation.
As χ(x) = χ(x)2, by the standard formula of statistical covariance of two variables, we see that

〈χ(x)χ(x′)I(x′, Ω′)〉 = 〈χ(x)χ(x′)2 I(x′, Ω′)〉
= 〈χ(x)χ(x′)〉〈χ(x′)I(x′, Ω′)〉+ cov(χ(x)χ(x′), χ(x′)I(x′, Ω′)).

(18)

The first term in Equation (18) represents the “global mean” of χ(x)χ(x′) and χ(x′)I(x′, Ω′),
respectively, whose meaning will be explained below. The second (the covariance) term represents
their “local chaotisity”, which is assumed negligible [57]. We thus arrive at

〈χ(x)χ
(

x′
)

I
(

x′, Ω′
)
〉 ≈ 〈χ(x)χ

(
x′
)
〉〈χ
(
x′
)

I
(
x′, Ω′

)
〉. (19)

By the common notation of the literature [55,58], we define

pc(z) = 〈χ(x)〉,
qc(z, z′, Ω) = 〈χ(x)χ(x′)〉,

K(z, z′, Ω) = qc(z, z, Ω)/pc(z),
U(z, Ω) = 〈χ(x)I(x, Ω)〉/pc(z),

(20)

where pc(z) is the probability of finding leaf elements at locations z. qc(z, z′, Ω) and K(z, z′, Ω) are the
joint and the conditional probability (or pair correlation functions) of finding leaf elements at locations
z and z′ along the direction Ω simultaneously. U(z, Ω) is the mean radiation intensity averaged over
vegetation occupied horizontal space (i.e., with gaps excluded). The stochastic RTE is then fully
specified as [55,58]

I(z, Ω) + 1
µ

∫
Z σ(Ω)pc(z′)U(z′, Ω)dz′

= 1
µ

∫
Z ω0dz′

∫
4π

pc(z′)U(z′, Ω′)σs(Ω′ → Ω)dΩ′+ I(zB, Ω)
(21)

and
U(z, Ω) + 1

µσ(Ω)
∫

Z K(z, z′, Ω)U(z′, Ω)dz′

= 1
µ

∫
Z ω0dz′

∫
4π

σs(Ω′ → Ω)K(z, z′, Ω′)U(z′, Ω′)dΩ′+ U(xB, Ω) (22)

with corresponding boundary conditions adapted for I(xB, Ω) and U(xB, Ω), respectively. In general,
we must evaluate U(z, Ω) first by Equation (22) before solving Equation (21) for I(z, Ω). Note that
because K(z, z′, Ω′) is a function of both z′ and z, Equation (22) is a Volterra integral equation.

The stochastic RTE was initially developed to solve the mean radiation intensity in the medium of
broken clouds [57,59,60]. It was first applied to the vegetation canopy by Reference [61]. The current
form of the Stochastic RTE in vegetation canopy was introduced in Reference [55], who also detailed a
SOSA procedure to solve the Volterra integral equation.

The most important feature of the Stochastic RTE is the incorporation of the pair correlation
function K(z, z′, Ω′). The function succinctly characterizes the structural and the spatial distribution
properties such as heterogeneity and anisotropy of the 3D canopies. It encompasses information
presented by traditional metrics like forest gap fractions and clumping indices. Indeed, the introduction
of K(z, z′, Ω′) allows the 1D RTE to resolve the differences between U(xB, Ω) and I(xB, Ω), which can
be used to retrieve canopy gap fractions [62]. The first set of realistic pair-correlation functions was
derived by Reference [58] using stochastic geometry models [63]. The approach is to idealize individual
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tree crowns as regular geometrical objects (e.g., spheres, cylinders, cones, etc.) and assume their
locations follow certain spatial patterns (e.g., Poisson’s distribution). The pair-correlation functions
then can be computed analytically or statistically. Reference [58] presents detailed examples of the pair
correlation functions for different crown shapes and canopy distribution patterns. As a special case,
when the leaf elements are spatially not correlated, K(z, z′, Ω′) reduces to pc(z), Equation (22) reduces
to a classic 1D RTE, and U(z, Ω) becomes the same as I(z, Ω). Reference [58] also systematically
compared the simulation results of the stochastic RTE with those of the classic 1D RTE as well as field
measurements, showing that the Stochastic RTE is able to capture the 3D radiation effects previously
reported in the literature and therefore the pair-correlation function provides a “most natural and
physically meaningful” [58] measure to 3D canopy structural properties over a range of scales.

There are a couple of more facts about the Stochastic RTE that need attention. First, the pair
correlation function is not a merely theoretical concept but can be evaluated from observations
for real-world applications. With the development of terrestrial lidar scanning (TLS) instruments,
now we can measure the 3D structure of forest stands with relative ease and the pair correlation
function of the canopy can be accurately computed with such measurements. The function can also be
estimated from high-resolution satellite imageries and air-/space-born lidar data over larger spatial
scales. Second, as the pair correlation function encapsulates purely the structural or geometrical
characteristics of the canopy, it has a close connection with the school of geometrical optical (GO)
models in remote sensing [30,31,64,65]. Indeed, the stochastic geometry models used in deriving
the theoretical pair correlation functions in Reference [58] are essentially the same as those used
in References [64,65]. However, the two schools are different in the specific approaches to use the
canopy geometric information. In GO models, the information is used to derive “kernels” of the
bidirectional reflectance distribution function (BRDF), which allow the model to fit with observations in
a semi-empirical fashion. In contrast, the Stochastic RTE tries to preserve the law of energy conservation
and rigorously follows the radiative transfer formulation. As a cost, the Stochastic RTE inherits the
limitations of the 3D RTE and cannot resolve, at least to certain spatial scales, the “hot-spot” effects of
the canopy radiation regime [33]. We shall return to this topic in Section 6.

5. Canopy Spectral Invariants

The preceding sections have described the traditional algorithms to solve the RTE at a specific
wavelength (λ). In remote sensing applications we often need to obtain solutions at many wavelengths
to sample the (multiple or hyperspectral) bandwidth of the sensors. Do we have to iterate the process
for Iλ(x, Ω) at every wavelength? This question is the main concern of the spectral invariant theory
(Figure 1).

The idea underlying the spectral invariant theory is simple: The single albedo ω0(λ) is the only
parameter in the RTE of Equation (1) that depends on wavelengths, while all the other parameters
are determined by the structures of the canopy [52]. Therefore, we seek a formula to separate the
influence of ω0(λ) on the solutions of Iλ(x, Ω) at different wavelengths. There are multiple ways in
the literature [35,52,66] to derive the spectral invariants theory. Below we follow the SOSA approach
described in Reference [66], which represents the most general case and is the easiest to understand.
We will use the black-soil problem as the example, though the same methods can be applied to the “S”
problem as well [67].

Recall that the black-soil problem can be decomposed to successively collided problems, each of
which satisfies the Law of Energy Conservation. For instance, integrating the first-collision problem
over the spatial domain and the solid angles eventually leads to (Appendix A)

∫
δV

dxB

∫
Ω·n(xB)>0

Q1|Ω·n(xB)|dΩ +
∫

4π×V

σQ1dΩdx = ω0

∫
4π×V

σQ0dΩdx (23)
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or, by the norm notation [66],
‖ Q1 ‖ ρ+ ‖ Q1 ‖= ω0 ‖ Q0 ‖, (24)

where “‖ · ‖” and “‖ · ‖ρ” indicate the intercepted and the escaped (either being reflected or
transmitted) radiation energy, respectively. Equation (24) simply indicates that the portion (i.e., ω0) of
photons scattered from the first collision will either escape through the boundary or collide with the
canopy again.

Note that the stream-collision operator (L or L0) depends only on canopy structural parameters,
and the un-collided radiation field Q0 and the initial interceptance ‖ Q0 ‖ are therefore wavelength
independent. The first-collided radiation field Q1 (and thus ‖ Q1 ‖) is regulated by ω0(λ), but the ratios

p1 = ‖Q1‖
ω0‖Q0‖

q1 = ‖Q1‖r
ω0‖Q0‖

(25)

are also wavelength independent. Physically p1 represents the recollision probability that the scattered
photons will re-collide with the canopy again and q1 denotes the probability that the photos will escape
the canopy. Clearly p1 + q1 = 1, satisfying the conservation of energy.

Following the same idea, we normalize the radiation fields as

ek(x, Ω) =
Qk(x, Ω)

‖ Qk ‖
, k = 1, 2, . . . (26)

It is easy to see that ‖ ek(x, Ω) ‖ = 1 and they satisfy the standard RTE

pkω0ek = Tek−1. (27)

Equations (26) and (27) have clear physical interpretations: ek(x, Ω) represents the probability
density function that a photon scattered k times will arrive at x along the direction Ω. Therefore,
the operator T transforms the probability distribution of photons between successive orders of
scattering and evaluates their recollision probability [66]. Note that the factor ω0 is separated from
ek(x, Ω) so that the normalized radiation fields are indeed wavelength-independent.

Based on the above definitions we can re-write the solution of the black-soil problem as:

Iλ(x, Ω) =‖ Q0 ‖
(

∞

∑
k=0

Tk

)
Q0

‖ Q0 ‖
= i0

∞

∑
k=0

θk
kωk

0ek(x, Ω) (28)

where i0 =‖ Q0 ‖, θk =
√

p0 p1 p2 · · · pkk, and p0 = 1. Note that i0, θk, and ek(x, Ω) are all
wavelength independent.

In Equation (28) if the θk’s and the ek’s change little (i.e., invariant) over the order of scattering,
the equation can be significantly simplified. Fortunately, this is exactly what the spectral invariants
theory suggests: Based on a fundamental property established for the eigenvalues/eigenvectors of the
linear RTE operator T [68], the theory indicates that the RTE has a unique dominant eigenvalue γ∗

(or p∗ω0) that corresponds to a positive (and physically feasible) eigenvector e∗(x, Ω), such that

p∗ω0e∗(x, Ω) = Te∗(x, Ω). (29)

Therefore, if e0 = e∗(x, Ω), we will subsequently have ek = e∗(x, Ω) and θk = p∗, so that

Iλ =
i0e∗(x, Ω)

1− γ∗
=

i0e∗(x, Ω)

1− p∗ω0(λ)
. (30)

Although the set (pkω0, ek) derived by the SOSA method are generally different from the ideal
eigenvalue-eigenvector pair (p∗ω0, e∗), analyses show that they converge rapidly so that we only
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need a couple of (pk, ek) pairs to accurately represent the full solution of Equation (28). For instance,
Reference [66] uses a zero-order approximation to satisfactorily estimate the recollision probability p∗

and the initial interceptance i0 from field measured i(λ) and ω0(λ). A detailed analysis of the SOSA
approximation can be found in Reference [66] and earlier studies [69–72]. Consistent results are also
supported by simulations from Monte Carlo Ray Tracing (MCRT) models [73–75]. The key message is
that once we have estimated a few parameters and functions (pk, ek, and i0), the solution Iλ(x, Ω) can
be easily obtained with the knowledge of ω0 at any other wavelength (Figure 1).

The interpretation of the parameter p∗ as the recollision probability of photons by Reference [76]
represents an important contribution to the spectral invariants theory. It helps us develop a physical
intuition to the mathematical concept of the leading eigenvalue of the RTE and associate it with
measurable structural properties of vegetation canopies. Once established, the interpretation sees
immediate applications in scaling relevant canopy properties across different canopy hierarchies [32,74,76].
For instance, suppose p∗sh and p∗cr are the recollision probabilities of shoots and crowns, the overall p∗

parameter for the two-level canopy, resulting from a finite-state Markov process [67], naturally follows

p∗ = p∗sh + (1− p∗sh)p∗cr. (31)

Similarly, the apparent single scattering albedos of two levels of canopy structures (e.g., shoots
and crowns) are related by

ωcr =
ωsh
(
1− p∗sh

)
1− p∗shωsh

. (32)

It can be easily verified that the canopy scattering albedo W can be represented by either ωcr or
ωsh [76]:

W =
ωcr(1− p∗cr)

1− p∗crωcr
=

ωsh(1− p∗)
1− p∗ωsh

. (33)

Therefore, the single albedo of a higher level structure (e.g., ωcr) totally encapsulates the scattering
properties of the lower level structures (e.g., ωsh). The overall scattering coefficients of the crown
(or the canopy) will not change if we replace the shoots (needles) with broadleaves of the same
(apparent) single albedo. This property suggests that we can use the same set of simulation results
(i.e., Look-Up Tables) to retrieve effective structural parameters for both clumped and non-clumped
canopies. Additionally, the scaling rules of the recollision coefficients and the scattering coefficients are
often associated with changes in spatial scales. They can be used to generate consistent products from
satellite sensors operating at different spatial resolutions [77,78]. A detailed review of the physical
interpretation of the p∗ parameter, its links with measurements, and the scaling rules can be found in a
recent review by Reference [45].

In practice, the recollision probability (p∗) of a vegetation canopy can be estimated from field
measurements of canopy reflectance, absorptance, transmittance, and single-scattering albedo [66,72].
In remote sensing applications, the common measurements of the surface after atmospheric corrections
are the bidirectional reflectance factor (BRF). Therefore, it is desirable to derive a relationship between
BRFs and the spectral invariant parameters. Note that under the assumption that the irradiance of
the incoming solar radiation is unity, the BRF is just the averaged top-of-canopy radiance (Equation
(28) or Equation (30) for the ideal case) multiplied by a constant factor (π). The desired relationship is
thus [52]

BRFλ(Ω; Ω0) =
πpA〈e(xB, Ω)〉xB

i0
1− pA

·ω0(λ)(1− pA)

1−ω0(λ)pA
, (34)

where 〈·〉xB
denotes spatial average over the canopy boundary xB, and pA denotes the effective

recollision probability. In Equation (34) we have neglected the un-collided component of the radiance,
as it does not contribute to the reflectance.
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In Equation (34) the first term on the right side combines the recollision probability (pA),
the interceptance (i0), and canopy escape probability (qA = πpA〈e(xB, Ω)〉xB

), all being spectral
invariant. We define this term the Directional Area Scattering Factor (DASF) [52,79],

DASF(Ω; Ω0) =
qA(Ω; Ω0)i0(Ω0)

1− pA
, (35)

which can be understood as the BRF for a purely reflective canopy (e.g., ω0 = 1). The second term on
the right side of Equation (34) is just the canopy scattering coefficient W in Equation (33). Therefore,
BRF is succinctly represented by the product of DASF and the canopy single scattering albedo W.

An important feature of DASF is that it is measurable from both field observations and satellite
remote sensing data. When ω0(λ) is known, DASF can be easily estimated from ground measurements
of spectral BRF using the inverse linear regression method [66]. In remote sensing applications where
ω0(λ) is difficult to obtain, Reference [49] developed an algorithm to retrieve DASF from BRF between
710 nm and 790 mm with an intrinsic leaf scattering spectrum v0(λ), where v0(λ) is computed with
theoretical models. A key component of the algorithm is to use the scaling rule of Equation (33) to
estimate ω0(λ) from v0(λ) with a within-leaf recollision probability pL, an intermediate variable that
is later cancelled from the calculation. The algorithm is recently used in Reference [80] to derive a
global DASF map from the GOME-2 (Global Ozone Monitoring Experiment-2) data.

Of the above spectral invariant parameters, only p∗ is an intrinsic property of the canopy while
the others (i0, pA, qA and DASF) are influenced by the external illumination conditions. The values of
these parameters generally change with the direction of the incident beam (Ω0). Indeed, the directional
illumination has an important effect on the angular signature of canopy BRF (and DASF), which we
review in the next section.

6. The “Hot-Spot” Problem

In optical remote sensing, the term “hot spot” refers to the phenomenon that the canopy reflectance
has a sharp peak in the retro-illumination direction. The main physical mechanism of the phenomenon
is the mutual shadowing of the canopy elements. This is because shadows are invisible from the
backscattering direction but become increasingly visible when the view and the illumination angles
deviate away from each other [33,36].

It is known that the classic RTE has difficulties simulating the hot-spot effects. This is because the
stream-collision operator, which follows the Beer’s law, is essentially formulated for gaseous media
where the spatial distribution of the scatters is statistically independent at all spatial scales [34]. On the
contrary, leaves have finite sizes and their spatial distributions are intrinsically correlated at a certain
level. To illustrate the difference between the two cases, we consider a conceptual experiment that a
purely absorptive (ω0 = 0) canopy bounded below by a perfect mirror (ρλ = 1) that is positioned to
reflect the nadir incident photons back along the same paths they come from (i.e., the retro-illumination
direction). Let the optical depth of the canopy be σ and the intensity of the radiation beam be 1.
Under the gaseous media assumption, the intensity of the reflected radiation beam at the top of
the canopy will be exp(−2σ), attenuated by the same fashion on the incident and the return paths.
For finite-sized leaves, the intensity of the reflected radiation will be exp(−σ), for all the photons that
reach the lower surface (i.e., mirror) are guaranteed a free path to travel through the canopy on the
way back.

The above example suggests that, due to the effects of mutual shadowing, the canopy
extinction cross section in the backscattering direction σ(x,−Ω0) appears to be smaller than those
of other directions. Therefore, previous efforts to model the hot-spot phenomenon focused on
developing a function H(x, Ω, Ω0) to regulate the cross section σ(x, Ω), especially for the first collision
component [33,81–83]. However, the incorporation of H(x, Ω, Ω0) in the RTE is equivalent to the
introduction of an additional source term in the equation. As a result, the solution no longer satisfies
the law of energy conservation [35].
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Recently, Reference [79] developed a new algorithm that uses the spectral invariant theory to
model the spectral BRF of vegetation canopies in the hot-spot region. A key idea of the algorithm is to
decompose the canopy into sun-lit and sun-shaded leaf area, where the former is referred to as the
“stochastic reflecting boundary” and the latter as the “interior” of the canopy. Photons escaping from
the sun-shaded leaf area must have gone through multiple scattering. Thus, their escape probability
approximately converges to a certain value, qiso(Ω). Photons reflected from the sun-lit leaf area that
is visible from the direction Ω can escape with a unit probability. Thus, their conditional escape
probability, qlit(Ω; Ω0), is expected to be higher than qiso(Ω). Therefore, we need to evaluate their
contribution to the canopy directional escape probability qA(Ω; Ω0) separately. Let h(Ω0, Ω) represent
the correlation between the sun-lit and the visible leaf areas. The probability qA(Ω; Ω0) is therefore
composed of two components that is weighted by h(Ω0, Ω) as

qA(Ω; Ω0) = [1− h(Ω0; Ω)]qiso(Ω) + h(Ω0; Ω)qlit(Ω0; Ω). (36)

Similarly, we can decompose DASF and BRF by contributions from the interior leaves and the stochastic
boundary separately [79].

In the above equation qlit(Ω0; Ω) can be evaluated from canopy structural properties and qiso
can be estimated with the classic RTE [79]. Therefore, if the correlation function h is known, we can
estimate qA. Conversely, if qA is known, we can estimate the correlation function h as [79]

h(Ω; Ω0) =
qA(Ω; Ω0)− qiso(Ω)

qlit(Ω; Ω0)− qiso(Ω)
. (37)

The current algorithm of Reference [79] uses the latter approach to evaluate correlation coefficient
h(Ω0; Ω) with a stochastic RTE (Section 3) that is modified to incorporate an additional hot-spot
parameter cHS [36]. The stochastic RTE needs to run twice, with an actual cHS and with a zero value,
respectively, in order to evaluate qA(Ω; Ω0) and qiso(Ω) [79].

The algorithm of Reference [79] has two main benefits. First, some of the intermediate results are
easy to verify with field measurements. For instance, the visible fraction of leaf area (VFLA) can be
estimated with below canopy measurements of transmittance t0(Ω) as [79]

VFLA(Ω) =
1− t0(Ω)

|ln(t0(Ω))| =
i0(Ω)

|ln(t0(Ω))| , (38)

and the canopy DASF under isotropic illumination conditions (an approximation for the interior
canopy component) can be estimated as [79]

qiso(Ω)i0(Ω0)

1− piso
≈ i0(Ω)i0(Ω0)

2·idi f
, (39)

where idi f is the canopy interceptance under the isotropic sky radiation [84]. These relationships
provide a set of convenient tools to validate the solutions.

Second and more importantly, the spectral invariants relationships do not necessarily depend on
the formulation of the classic RTE but are supported by both observations and the simulation results
of MCRT models, whose formulation does not require Beer’s law at all [85]. Therefore, the spectral
invariants relationships may conserve energy and capture the hot-spot phenomenon at the same
time. Reference [79] illustrates this potential with a simple stochastic Monte Carlo model. Though the
algorithm is still subjected to further examinations and refinements in the future, it introduces a new
and promising perspective to address the old challenge.
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7. Summary

This paper reviews developments of the radiative transfer theory in optical remote sensing of
terrestrial vegetation, including the decomposition of the black-soil (BS) and the soil (S) problems,
the development of the stochastic RTE, the theory of spectral invariants, and the latest effort to address
the “hot-spot” challenge. The first three topics are centered around the idea as how to simplify the
solutions of the RTE under different boundary conditions (e.g., soil reflective properties), over full
3-dimensional spatial domains, and with regard to radiation at different wavelengths. The last topic is
intended to highlight the advantage of the spectral invariants theory in remote sensing applications.

As the RTE is linear as regard to Iλ, a fundamental strategy to solve the equation is decomposition
and superposition. The separation of the black-soil and the soil problems, the expansion of Neumann’s
series, and the method of successive orders of scattering approximation discussed in Section 3 are all
demonstrations of this strategy. The concept of invariants, the convergence of the radiation field to a
certain distribution that does not change (except for the magnitude) over subsequent scattering, is also
a natural result that follows the line of thinking. The existence of such a unique intrinsic solution is
backed by the mathematical theories of eigenvalues/eigenvectors of the RTE and the physical law of
energy conservation.

Another important thread of developments in the Stochastic RTE and the spectral invariants
theory is to efficiently represent the canopy structural or geometrical information in the equation.
The stochastic RTE introduces a pair-correlation function K(z, z′, Ω), which describes the probability
of simultaneously finding leaves at two locations (z, z′) along the direction Ω. It characterizes the
heterogeneity and anisotropy characteristics of the canopies and regulate the corresponding cross
sections (σ and σs). Therefore, the function provides a natural and physically meaningful measure of
3D canopy structural properties over a range of scales.

The spectral invariants theory further simplifies the representation of canopy structural
characteristics to a single wavelength-independent parameter p∗, which defines the recollision
probability that a scattered photon will interact with the canopy again. Once p∗ (and the corresponding
escape probability function) is estimated, we can accurately approximate the solution (radiance
or BRF) of the RTE at any other wavelength with the knowledge of ω0(λ), which imbues the
wavelength-dependent influence on the radiation field. As p∗ represents recollision probability,
it can be used to scale canopy properties (e.g., scattering coefficients) across various canopy hierarchies
or spatial scales.

Although the pair-correlation function K(z, z′, Ω), the photon recollision probability p∗, and the
other spectral invariants functions/parameters such as DASF appear to be “abstract,” they all can be
estimated from field measurements or remote sensing data. For instance, the pair-correlation function
can be derived from high-resolution satellite images and lidar data. The recollision probability of a
vegetation canopy can be determined from field measurements of canopy reflectance, absorptance,
transmittance, and single-scattering albedo with simple linear correlations. DASF can also be retrieved
directly from ground measurements or hyperspectral remote sensing data between 710 nm and 790 mm
for dense vegetation in a similar fashion. These concepts, backed by rigorous mathematical analysis
and physical principles, thus represent our current best understanding of the empirical relationships
identified from observations.

The spectral invariants theory also provides a promising approach to solve the “hot-spot” problem
known to the classic RTE models. This challenge has its roots in the formulation of the equation based
on the turbid medium assumption and Beer’s law. On the contrary, leaves are finite sized and their
spatial correlations cannot be neglected. Previous efforts to address this problem usually introduce a
semi-empirical factor to regulate the extinction cross section in the equation, which however violate the
law of energy conservation. A new algorithm was recently developed to address the challenge based
on the spectral invariants theory. The algorithm decomposes the canopy into a reflective boundary
and interior points and models the escape probability (and DASF) for the two components separately.
The directional escape probability from the reflective boundary is assumed to be unity, a feature that
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cannot be simulated by the classic RTE. As such, the new approach does not depend on the Beer’s law
formulation in the RTE but satisfies the law of energy conservation. This example further demonstrates
the spectral invariants theory as a powerful tool in optical remote sensing applications.
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Nomenclature

γL(λ, x, Ω→ Ω′, ΩL) Leaf element scattering phase function
θk Geometric mean of photon recollision probabilities, i.e.,

√
p0 p1 · · · pkk

λ Wavelength
µ Cosine of zenith angle of direction Ω
σ(x, Ω) Total extinction coefficient (or cross section)
σS(λ, x, Ω→ Ω′) Differential scattering coefficient (or cross section)
ω0(λ) Single scattering albedo
ΩL Leaf normal direction vector
Ω, Ω′ Incident and scattered radiation direction vectors, respectively
gL(x, ΩL) Leaf normal distribution function
i0(Ω0) Canopy interceptance
p∗, pA Theoretical and effective photon recollision probability, respectively
q(Ω; Ω0) Photon escape probability density function
uL(x) Leaf area density distribution function
BRF Bidirectional reflectance factor
DASF Directional area scattering factor
E Identity operator
Iλ(x, Ω) Monochromatic radiation intensity (radiance)

K(z, z′, Ω)
Conditional pair correlation functions of finding leaf elements at locations z and z′

along Ω simultaniously
L Streaming-collision operator
Qk The k-th collided component of radiation field
Sλ Scattering operator
T Integral operator defined as L−1

0 Sλ

U(z, Ω) Horizontal mean radiation intensity averaged over vegetated area
〈·〉 Horizontal average operator

‖ · ‖, ‖ · ‖ρ
Integral norm operator that indicates the intercepted and the escaped radiation
energy, respectively.

Appendix

Appendix A.1 Definitions of the Canopy Structural Parameters

The leaf albedo is mathematically defined as

ωL(λ, x, Ω, ΩL) =
∫

4π

γL(λ, x, Ω→ Ω′, ΩL)dΩ (A1)

the total extinction coefficient (or cross-section) is

σ(x, Ω) =
uL(x)

2π

∫
2π+

gL(x, ΩL)|Ω·ΩL|dΩL (A2)
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and the differential scattering cross-section is

σS(λ, x, Ω→ Ω′) = uL(x)
2π

∫
2π+

gL(x, ΩL)|Ω·ΩL|γL(λ, x, Ω→ Ω′, ΩL)dΩL (A3)

As photons scattered from one direction provide sources for radiation in other directions, the two
cross-section terms are closely related by

∫
4π

σS(λ, x, Ω→ Ω′)dΩ′ = ω0(λ, x, Ω)σ(x, Ω) (A4)

where ω0(λ, x, Ω) is the single scattering albedo, which is usually defined as an average to the leaf albedo

ω0(λ, x, Ω) =

∫
2π+ gL(x, ΩL)|Ω·ΩL|ωL(λ, x, Ω, ΩL)dΩL∫

2π+ gL(x, ΩL)|Ω·ΩL|dΩL
(A5)

For simplicity, in the paper we further made the following assumptions

ω0(λ, x, Ω) = ω0(λ),
σ(x, Ω) = uL(x)σ(Ω),

σS(λ, x, Ω→ Ω′) = ω0(λ)uL(x)σS(Ω→ Ω′).
(A6)

Note that ω0 is only a variable of spectral wavelength while σ(Ω) and σS(Ω→ Ω′) are spatially and
spectrally independent.

Appendix A.2 Derivation of Equation (23)

Integrating the first-collision problem over the spatial domain and the solid angles leads to

∫
4π×V

L0Q1dΩdx =
∫

4π×V

SQ0dΩdx (A7)

By Stokes’ Theorem, ∫
4π×V

Ω·∇Q1dΩdx =
∫

δV

dxB

∫
4π

Q1|Ω·n(xB)|dΩ (A8)

where δV represents the boundary of the domain. As the incoming radiation (i.e., Ω·n(xB) < 0) in the standard
problem is zero, Equation (A7) thus becomes

∫
δV

dxB

∫
Ω·n(xB)>0

Q1|Ω·n(xB)|dΩ +
∫

4π×V

σQ1dΩdx =
∫

4π×V

SQ0dΩdx (A9)

By the definition of the scattering operator (Equation (2)), we have

∫
4π×V

SQ0dΩdx =
∫

4π×V

∫
4π

ω0(λ)σS(x, Ω′ → Ω)Q0(x, Ω′)dΩ′ dΩdx

=
∫

4π×V

∫
4π

ω0(λ)σS(x, Ω′ → Ω)Q0(x, Ω′)dΩ dΩ′ dx

= ω0(λ)
∫

4π×V
σQ0 dΩ′ dx

(A10)

In the last step of Equation (A10) we used the relationship from Equation (A4). As the integration is
performed over all solid angles (i.e., 4π), we can safely exchange Ω′ with Ω and thus obtain Equation (23) in the
main text.



Remote Sens. 2018, 10, 1805 17 of 21

Appendix A.3 Energy Conservation between pA and qA

Integrating the effective directional escape probability density function over all the out-scattering directions
Ω, we have

1
π

∫
4π

qA(Ω; Ω0)|µ|dΩ = (1− pA)
∞

∑
k=1

(
1
π

∫
4π

qk(Ω; Ω0)|µ|dΩ
)

θk−1
k−1 (A11)

By Equations (25) and (35),
1
π

∫
4π

qk(Ω; Ω0)|µ|dΩ = qk = 1− pk (A12)

where qk on the right-hand-side of the equation is the k-th escape probability. Substituting it into Equation (A11),
we have

1
π

∫
4π qA(Ω; Ω0)|µ|dΩ = (1− pA)∑∞

k=1(1− pk)θ
k−1
k−1

= (1− pA)∑∞
k=1

(
θk−1

k−1 − θk
k

)
= 1− pA

(A13)

In the last step of Equation (A13) we used the fact that θ0 = p0 = 1 (Equation (28)).
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