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1. Introduction 
 
Chapter 7 introduced the basic principles of the stochastic RT approach, which describes 
stationary radiation regime in single species discontinuous vegetation canopies. While this is 1D 
approach, it captures 3D radiation effects. The model parameterization is convenient for 
operational remote sensing applications. However, the stochastic model allows further 
enhancements to suite the needs of specialized applications to characterization of 3D canopy 
structure. Two such applications are detailed in this Chapter: remote sensing of mixtures of 
vegetation species and lidar remote sensing of vertical vegetation structure. 
 
 
2. Stochastic Radiative Transfer in a Mixture of Species 
 
2.1. Remote Sensing of Mixtures 
 
The problem of remote sensing of mixture of vegetation species is known as a scaling issue, that 
is, given biophysical parameters and radiation field over pure species at sub-pixel scale one 
needs to estimate those parameters at the scale of a mixed pixel (Fig.1). Multiple approaches 
were developed to address the scaling issue, which can be grouped into two basic categories: 
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empirical/statistical and physically-based. The approaches from the first category are widely 
used for sub-pixel land cover characterization: linear mixture models [DeFries et al., 1999], 
neural networks [Carpenter et al., 1999], Gaussian mixture discriminant analysis [Ju et al., 2003], 
decision trees [McIver & Friedl, 2002] and others. The key idea of the above methods is to 
model satellite measured radiation over a mixed pixel as a weighted sum of the radiation fields 
over pure land cover classes. Linear and non-linear models were implemented to retrieve the 
unknown weights, corresponding to the proportion of pure land cover classes in the mixed pixel. 
The linear mixture approach was implemented operationally to generate global vegetation 
continuous fields product from NASA’s MODerate resolution Imaging Spectroradiometer 
(MODIS) measurements [WWW1; DeFries et al., 1999]. It was noted, however, that species in a 
mixture may exhibit significant degree of radiative interaction, which may bias retrievals 
especially in the case of linear models [Borel & Gerstl, 1994]. 
 

  
Figure 1. Natural species mixture at NOBS (Northern Old Black Spruce) boreal forest site in northern 
Manitoba, Canada (55° 52' 46.632" N, 98° 28' 50.916" W). Panel a): 4-m resolution IKONOS false-color 
image over NOBS site for July 23, 2000. Panel b) 30-m resolution Land cover map over the same area for 
year 2000. (Images credit: BigFoot team).  
 
In contrast to the empirical methods, physically-based approaches describe in details the physical 
processes of interaction of radiation with canopy at the level of elementary volume of vegetation. 
Optical properties of a mixture in such volume are represented as weighted average of optical 
properties of pure species. The RT equation is used to model the radiation field with effective 
optical properties of mixed canopy. The above modeling principles were implemented, for 
instance, in the scaling scheme of the radiation block of the Common Land Model (CLM) 
[WWW2, Tian et al., 2004] and the MODIS Leaf Area Index (LAI) algorithm [WWW3, Tian et 
al., 2002]. The major limitation of the above schemes is that they are based on the turbid medium 
mixture approximation, where canopy is represented as a mixed gas of vegetation species and 
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gaps. With the turbid medium approach, one major feature of the natural vegetation is missing- 
spatial structure of a mixture, which may substantially affect radiation regime. Additional closely 
related theoretical work based on RT equation is the linear kinetic theory of stochastic mixture in 
cloudy atmospheres, developed by Pomraning [1991]. 
 
Below we detail application of the stochastic approach to model radiation regime in a mixture of 
discontinuous vegetation canopies. The stationary Stochastic RT (SRT) equation for single 
species (Chapter 7) was extended into the Stochastic Mixture RT (SMRT) equation for multiple 
species. In general, natural heterogeneity of vegetation (3D canopy structure) has two major 
components: discontinuity of vegetation; and mixture of species. The stochastic model for single 
species (Chapter 7) deals only with the first component of heterogeneity, discontinuity of 
vegetation, while the stochastic mixture model provides complete solution to the problem. The 
possibility of extending the original stochastic model to the mixture model already can be seen in 
the fact that single species discontinuous canopy can be treated as a mixture- a mixture of 
vegetation and gaps. The presentation is organized as follows. We start with the 3D RT equation 
and required parameterization of structure and optics of mixed canopy. Next, we formulate the 
SMRT equations and the model of stochastic moments of mixed canopy structure. Next, we 
perform an analytical and numerical analysis of the 3D radiation effects simulated by the SMRT 
model. 
 
 
2.2. Model Formulation  
 
3D RT Equation: Consider a heterogeneous vegetation canopy (a mixture of N different 
vegetation species and gaps as shown in Fig. 2), eliminated form above by solar radiation (both 
direct and diffuse components). The radiation regime in this system is described by the stationary 
3D transport equation for radiation intensity, , at spatial location  and direction : 
 
  (1) 

 
where  is the extinction coefficient, and  is the differential scattering 
coefficient, detailed later in this Section. The unique solution of the Eq. (1) is specified by 
boundary conditions, 
 

  (2) 
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where the first equation specifies incoming direct, , and diffuse, , radiation at 
the top of canopy (  is the direction of solar beam), and  denotes the ratio of direct to 
total incoming solar flux. The second equation specifies boundary condition at the canopy 
bottom, soil surface, which is assumed to be a Lambertian surface with hemispherical 
reflectance, . 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 2. Schematic plot of mixture of discontinuous vegetation canopies (broadleaf and needle leaf 
species) in a coordinate system. The vertical axis, Z, is directed down. Canopy height is H. The angular 
direction, , is measured relative to the upward direction. 
 
The spatial structure of heterogeneous mixed canopy can be characterized by the indicator 
function of a canopy, , defined for each spatial location, , as follows: 
 
  (3a) 

 
where  is an indicator function of the individual species ‘j': 
 

  (3b) 

 
The equations above specify overall architecture of vegetation canopy as cumulative contribution 
of individual species in a mixture. The indicator function is assumed to be a random variable. We 
further assume that a particular spatial location is occupied only by a single species, i.e., 
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Density of canopy is defined by the Leaf Area Index (LAI) – one-sided green leaf area per unit 
ground area [m2/m2]. In the case of mixture of species, 
 
  (4) 

 
where  and are one-sided foliage area volume density [m2/m3] and LAI of species ‘j’, 
respectively, and the integration is performed over a volume of canopy, V, with a footprint, S. 
Given the indicator function, we can define spatially varying extinction coefficient, , and 
differential scattering coefficient, , as follows 
 
  (5) 

 

  (6) 

 
where  is the mean projection of leaf normals in the direction  and  is the 
area scattering phase function for species ‘j’ [Ross, 1981]. The above parameters depend on the 
probability density of species leaf normal orientation, , ( is a leaf normal direction) 
and species spectral leaf albedo,  (  is a wavelength) [Ross, 1981]. Finally, note that in 
the case of singe species, canopy indicator function is equivalent to a single species indicator 
function, and thus mixture model reduces to a model for single heterogeneous species, detailed in 
Chapter 7. 
 
Stochastic Mixture RT Equations: The mathematical formulation of the stochastic mixture RT 
equation requires two types of averages: (1) , mean intensity over the portion of the 
horizontal plane at depth z, occupied by species ‘i’; (2) , mean intensity over the total 
space of the horizontal plane at depth z, 
 

  (7) 

  (8) 

 
In the above, denotes the area of a circle of radius R; denotes the area of the horizontal 
plane at depth z, occupied by species ‘i’.  
 
Two stochastic moments characterize structure of the mixed canopy. The first stochastic moment 
is the probability, p, of finding species “i” at canopy depth z, 
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 . (9) 

 
The second moment is the pair-correlation function, q, between species ‘i’ at canopy depth z and 
species ‘j’ at depth  along the direction , 
 

 . (10) 

 
In the above, , , and  are projections of a unit direction vector, , on the x, y, and z 
axes, respectively. Argument for denotes a shift of the origin of plane  relative to plane z 
along x and y directions, required to evaluate correlation between the planes in direction  (cf. 
Fig. 2). Using the first and second moments of a vegetation structure, the conditional pair-
correlation of species, K(i,j), can be evaluated as 
 

 . (11) 

 
The procedure to derive the stochastic RT equations for multiple species from 3D RT equation is 
similar to one for single species (Chapter 7). The main difference is that integration over space 
occupied by vegetation should be split into sum of integration over individual species. We skip 
derivations here and provide only final equations (cf. Shabanov et al. [2007] for details). The 
system of equation for mean intensity over total space, , is 
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  (13) 

 
In the Eq. (12) (Eq. (13)),  and (  and ) denote mean radiation 
intensities over whole horizontal plane (individual species) at the canopy boundaries; in the 
typical case of the uniform boundary conditions they are equal to the corresponding 3D values, 

 and  (cf. Eq. (2)). According to Eq. (12), , depends on , 
i=[1,N]. Note that, in contrast to a single equation for single species (Chapter 7), the Eq. (13) for 
N species corresponds to systems of N equations. This accounts for the fact of species radiative 
coupling. 
 
Separation of Direct and Diffuse Radiation: The mean intensity over species, , can be 
decomposed into the direct, , and diffuse, , components, according to the pattern 
of incoming solar radiation, Eq. (2), namely, 
 

   

 
Substituting this decomposition into Eq. (13) and collecting terms, which contain the Dirac’s 
delta function, , we will get system of N equations for the direct component, : 
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where, 
 
 , (15b) 

   

  (15c) 

  (15d) 

 
The mean intensity over the total space of the horizontal plane, , can be decomposed into 
direct, , and diffuse, , components similarly: 
 

  (16) 
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  (17) 

 
where, ,  and  are defined by Eqs. (15b-d). 
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  (18) 

 
Taking into account Eq. (18), we evaluate absorptance of the mixture as a linear sum of 
absorptances of individual species for BS- and S- problems, 
 

 . (19) 

 
Conditional Pair-correlation Function of Mixture of Species: The critical parameters of the 
SMRT equations are two stochastic moments of a canopy structure: the probability of finding 
species, p(i) (Eq. (9)), and the conditional pair-correlation of species, K(i,j) (Eq. (11)). The 
following three classes of canopy structure can be identified: a) non-ordered/chaotic mixture of 
species and gaps or turbid medium; b) ordered mixture of species without gaps; c) ordered 
mixture of species with gaps. The canopy structure (order/chaoticity) is controlled by the 
conditional pair-correlation of species, K(i,j), while amount of gaps is controlled by the 
probability of finding species p(i). In the general case, K(i,j) satisfies the following symmetry 
condition: 
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The additional properties of K(i,j) in the special cases of canopy structure are as follows. In the 
case of turbid medium there is no correlation between phytoelements of different species, and 
therefore, K(i,j) simplifies: 
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  (23) 

 
if and only if, 
 

 .  

 

 
Figure 3. The conditional pair-correlation function, K(i,j), of the SMRT model as function of horizontal 
distance of correlation, , normalized by three diameter, 2a. The parameters are as follows: two species 
with probabilities p(1)=0.4 and p(2)=0.6; ; tree radius a=0.15; canopy height H=1. 
 
Finally, consider the case of ordered mixture of species with gaps. The conditional pair-
correlation function was derived according to the theory of stochastic geometry [Stoyan, Kendall 
and Mecke, 1995]. The derivations in the case of mixture of species [Shabanov et al., 2007] 
extend those for single species [Huang et al., 2007]. The derivations are based on the following 
assumptions about 3D stochastic canopy structure: a) tree species are modeled as identical 
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Kendall and Mecke, 1995]. Under the above assumptions, the conditional pair-correlation 
function is as follows: 
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  (24b) 

 
In the above equations, parameter “a” denotes a tree radius, p(i) is the canopy depth independent 
probability of finding species,  is the Heaviside step function, and  is the horizontal 
distance of correlation, 
 
 . (24c) 

 
The conditional pair-correlation function for two species is shown in Fig. 3 In the case of the 
same species, correlation decreases as distance increases. This corresponds to increasing 
probability of one of the points being out of the same crown as distance increases. In the case of 
different species, correlation increases as distance increases. This corresponds to increasing 
probability of two points to be located in different crowns of different species with increasing 
distance. In the case of short distances, within-species correlation is 1, while between-species 
correlation is 0. In the case of large distances, correlation between any species is vanishing and 
K(i,j) converges to p(i). Both limiting cases are intuitively expected and captured by the proposed 
model. 
 
Numerical Scheme: The scheme for the stochastic mixture RT equations is an extension of one 
for single species (Chapter 7, Section 5): single system of linear equations for singles species is 
expanded into N systems of linear equations for N species. The key steps to solve mixture 
equations are identical to those for single species. The mean intensity over whole horizontal 
plane, , is just a linear combination of integrals of mean intensities over individual 
species,  i=[1,N] (Eq. (12)). The scheme to solve for  involves two steps: 1) 
solve Eq. (14) for direct intensities, ; 2) solve Eq. (15) for diffuse intensities, 

. Evaluation of the direct components, , requires solution of the system of N 
parametric Volterra equations. Evaluation of the diffuse components, , is based on 
SOSA method (Chapter 7, Section 5), at each step of iterations one needs to solve system of N 
parametric Volterra equations. Thus, the key difference in numerical solution of the singe species 
and mixture equations is that instead of single Volterra equation one needs to solve system of N 
such equations. The approach to solve the system of parametric Volterra equations is illustrated 
below with the following equation in the general form 
 

    i=[1,N]. (25a) 

 
Note that Eq. (25a) represents system of N equations,  is a parameter of the parametric 
Volterra equation, and  is unknown intensity of species i. The discrete form of Eq. 
(25a) is as follows: 
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  (25b) 

 
For the purpose of the following derivations, let us rewrite the above equation as follows, 
 
   

  (26) 

 
Equation (26) is a system of N linear equations, which can be presented in the following matrix 
format, 
 
  (27a) 
 
where  is an N x N matrix, and  and  are N-elements vectors 
 

  (27b) 

  (27c) 

  (27d) 
 
The solution of Eq. (27) is derived sequentially starting with k=1. At each step  is a 
known matrix, vector  can be calculated from the previous step. The solution, 

, can be derived by Gauss-Jordan, LU-decomposition or similar 
techniques for solving linear system of equations [Press et al., 1986]. The complete step-by-step 
numerical scheme is given in Shabanov et al. [2007]. 
 
 
2.3. Analytical Analysis 
 
The analytical analysis of the SMRT equations is performed for the three classes of canopy 
structure (cf. Section 2.2): a) non-ordered mixture of species and gaps (turbid medium); b) 
ordered mixture of species without gaps; c) ordered mixture of species with gaps. 
 
Turbid Medium: In the case of non-ordered mixture of vegetation species and gaps (turbid 
medium) K(i,j) is reduced to p(j) (cf. Eq. (21)). In this case Eq. (13) is equivalent to Eq. (12) and 
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different species. Lack of between species variation of fluxes is a consequence of the lack of 
spatial gradient of structure in a turbid medium: the same proportion of different species 
occupies each spatial location at particular canopy depth. Thus, in the case of turbid medium, Eq. 
(12) and (13) correspond to single equation, where species-dependent optical properties are 
combined in effective optical properties of a mixture as a whole, 
 
  (28) 

 
where X corresponds to  and , and any expressions including its components or derivatives, 
such as  or , etc. As mentioned before (cf. Section 2.1), approach of effective optical 
properties was already implemented in the scaling scheme of the radiation block of the 
Command Land Model and the MODIS LAI algorithm. Such approach is valid only for non-
ordered canopy (turbid medium) and may lead to a bias in evaluation of the radiation field of a 
natural structured mixture (cf. discussion later in this Section). 
 
To conclude, consider one important implication of the general rule of Eq. (28) with respect to 
gaps. In the simplest case of the turbid medium of single species with gaps, the impact of gaps on 
RT equations is reduced to rescaling of LAI (cf. Eq. (4)-(6)): 
 
 ,   ,     
 
However, in the more complex case of the turbid medium of multiple species with gaps ( , , 
and  depend on species), the above simple rescaling rule is not applicable, and effective 
parameters should be used: 
 
 ,   ,     

 
 
Ordered Mixture without Gaps: Next, consider the special case of ordered mixture of 
vegetation species with no gaps between them. This case is not equivalent to a turbid medium, 
because spatial heterogeneity is characterized not only by ordered composition of vegetation 
clumps and gaps, but also by ordered composition of different species (K(i,j) p(j)). In this special 
case some constraints for the SMRT equations can be derived. In the following derivations we 
assume 
 . (29) 

 
For simplicity we perform derivations for the direct component of radiation over species, . 
Multiplying Eq. (14) by p(i)(z) and performing summation over index “i”, we have 
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  (30) 

 
Taking into account Eqs. (23) and (29), Eq. (30) can be reduced to 
 

 . (31) 

 
Note, that Eq. (31) does not uniquely specify the solution, rather it provides a general constrain 
for a family of solutions with different K(i,j). Comparing Eqs. (31) and (16), we have 
 
 . (32a) 

 
Applying the above derivation technique to Eqs. (15) and (17), we will derive similar equation 
for total intensity (both direct and diffuse components), namely, 
 
 . (32b) 

 
The above equation can be easily satisfied in the special case of the turbid medium model, as 
radiation over individual species is the same. However this equation is applicable to a more 
general case of ordered mixture of species with species-dependant fluxes (cf. further discussion 
in this Section and Section 2.4). 
 
Radiation over Gaps: Next, consider the general case of ordered species with gaps. In the 
framework of the SMRT model, gaps can be treated as a special type of vegetation species with 

= =0 and =0. The equation for the mean intensity over gaps, , can be derived 
as follows. Consider system of N+1 species, i.e., N vegetation species and 1 “species” of gaps, 
such that 
 
 . (33) 

 
According to Eq. (32b), formulated for the above N+1 species, 
 
 . (34) 

 
Combining Eqs. (33) and (34), we will derive expression for  namely 
 

åååòå =xWsWxx+ dd
i

)i()j(
0

)j(

i j

z

0
0

)j,i()i(

0

)i(

i

)i( )z(p)(U)(),,z(K)z(pd
)Ωµ(

1(z)U)z(p

1)(U)Ω()ξ(pdξ
)Ωµ(

1(z)U)z(p
j

z

0

)j(
0

)j()j(

0

)j(

j

)j( =xs+ åòå dd

)z(U)z(p)z(I )j(

j

)j(
dd å=

),z(U)z(p),z(I )j(

j

)j( W=W å

s ss Ld ),z(U )gap( W

1)z(p)z(p
j

)gap()j( =+å

),z(U)z(p),z(Up),z(I )j(

j

)j()gap()gap( W+W=W å

),,z(U )gap( W



15 

  (35) 

 
Note, that in the case of the turbid medium, Eq. (35) is reduced to 
 
 . (36) 
 
The derived equations for the mean radiation over gaps have important implications for LAI 
retrievals from field measurements of radiation by a range of commercial optical instruments, 
including LAI-2000, AccuPAR, TRAC, etc. [Breda, 2003]. Measurements are performed over 
gaps and retrievals are performed according to the turbid medium model, which does not 
differentiate between fluxes over gaps and vegetation species (Eq. (36)). In reality, radiation 
fluxes over individual vegetation species and gaps may show substantial variation. To achieve 
better accuracy, retrieval technique of the standard optical instruments needs to be reformulated 
in terms of the stochastic equations. 
 
Uncollided Radiation: Next, consider the SMRT equations in the limiting case of uncollided 
radiation. This case can serve as an approximation for VIS wavelengths, where absorption is 
large and scattering is limited. In the following we will compare derivations for turbid medium 
and ordered medium, to further clarify impact of canopy structure on radiation regime. To 
simplify derivations and get analytical expression we assume that incoming radiation is purely 
direct (SZA=00) and probabilities of species do not depend on canopy depths, i.e., p(i)(z) p(i). 
First, consider the turbid medium case. Recall, that in this case K(i,j) = p(i) (cf. Eq. (21)) and 
system of Eq. (14) for direct radiation, , reduces to a single equation: 
 

 . (37) 

 
The solution of the above equation is 
 

  (38) 

 
where T(z) denotes canopy transmittance at depth z. The canopy absorptance can also be 
analytically evaluated (cf. Eq. (18) for , j=1,N) as follows, 
 

  (39) 
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Next, consider the case of ordered species composition. In the following derivation we will use 
the conditional pair-correlation, as defined by Eqs. (24a-b). According to these equations and the 
specified assumptions, K(i,j) =1, if i=j, and K(i,j) =0, if i j. In this case Eq. (14) reduces from a 
system of equations to a set of independent equations for individual species, namely 
 

 ,   i=[1,N]. (40) 

 
The solution of each equation above depends on parameters of individual species, not whole 
mixture, 
 
  (41) 
 
Equation (16) for mean intensity in this case is reduces to 
 

  (42) 

 
The canopy absorptance is calculated as follows, 
 

  (43) 

 

 

Figure 4. Sunlit areas at the canopy bottom is 
a 3D effect, arising due to radiation streaming 
through the gaps without interaction with 
canopy (Image credit: D. Ahl, University of 
Wosconsin).  

 
Compare canopy transmittance for the turbid (Eq. (38)) and ordered (Eq. (42) medium. As LAI 
(or canopy depth, H) is increasing, the canopy transmittance converges to 0 in the case of the 
turbid medium, and to a gap probability in the case of the ordered medium. The ordered medium 
case provides a realistic description of the radiation regime, as it accounts for radiation streaming 
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through gaps without interaction with vegetation, such that portion of the sunlit area at the 
ground is equal to the gap probability (Fig. 4). Next, compare absorptance for the turbid (Eq. 
(39)) and ordered (Eq. (43)) medium. As LAI increases the canopy absorptance converges to 1 in 
the case of turbid medium and to cumulative probability of all species in the case of the ordered 
medium. Again, the case of ordered medium provides a more realistic description of the radiation 
regime, as only the portion of photons, traveling through leaves can be absorbed. Finally, 
comparison of the structure of equations for absorptance and transmittance indicates that in the 
case of turbid medium species interact significantly, while in the case of structured medium they 
are radiatively decoupled. Overestimation of species radiative coupling in the turbid medium 
model take place because this model neglects spatial clumping of species. 
 
Linear Mixing Assumption: Multiple land algorithms utilized for estimation of land cover 
mixture from coarse resolution satellite data rely on the empirical model of linear mixture of 
species [DeFries et al., 1999]. Under this assumption canopy spectral reflectance of a mixed 
pixel is expressed as a linear combination of canopy spectral reflectances of pure species. The 
linear mixture model ignores species radiative coupling. This coupling in a natural canopy is 
caused by multiple scattering, that is, after interaction with phytoelements of the first species, 
photon is scattered into another species. 
 
The SMRT model can be reduced to the linear mixture model, and allows analysis of empirical 
assumptions of the latter. Indeed, according to Eq. (34), mean radiation over mixed pixel, , 
is equal to a weighted average of the radiation fields over pure species, , and gaps, 

. However,  are coupled though system of Eq. (13). In order to derive the 
linear mixture model from the SMRT model one needs to break the coupling, that is, set to 0 the 
conditional pair-correlation function for different species, K(i,j) =0, when i j. This assumption 
apparently violates the basic geometry constraints on  (i.e., Eqs. (22)-(23) in the case of no 
gaps), and intuitively one may expect that non-physical decoupling may result in the violation of 
energy conservation law. However this is not true. To demonstrate this, consider system of Eq. 
(12), where  are derived from Eq. (13), formulated for single species ‘i’ (more 
precisely, mixture of species ‘i’ and gaps). Equation (12) can be rewritten in a short form as 
 

  (44) 

 
where  corresponds to the terms under the sign of sum over species in Eq. (12),  
is the mean intensity over whole mixture at height z, and  ( ) corresponds to 
boundary value at the canopy top (bottom). The  functions are available from Eq. (12), 
formulated for single species ‘j’: 
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  (45) 

 
Combining Eqs. (44) and (45) we have 
 

  (46) 

 
Next, we integrate Eq. (46) over lower and upper hemispheres to evaluate reflectances, R, and 
transmittances, T, and substitute the results into the energy conservation law (Chapter 7), 
 
   
   

   

  (47) 

 
In the last transformation we utilized the fact that the energy conservation law is valid for the 
single-species problem, that is, 
 
   
 
Therefore, for the special case of the BS-problem (cf. Chapter 7), we have 
 
              
 
and for the S-problem (cf. Chapter 7), 
 
              
 
Finally, from the validity of the energy conservation law for BS- and S- problems it follows the 
validity of this law for the total problem (cf. Chapter 7). Therefore, while radiative decoupling of 
vegetation species is physically meaningless, it is still a mathematically valid exercise and may 
describe RT processes in some other medium. 
 
To summarize, the results of this and previous sections indicate that the linear mixture model 
ignores, while turbid medium overestimates species radiative coupling compared to a realistic 
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description of the SMRT model. The effect of radiation coupling will be further studied 
numerically in the next section. 
 
 
2.4. Numerical Analysis 
 
In the following we numerically investigate features of the SMRT model by comparison to the 
turbid medium (TM) model. Both cases were implemented with the same set of stochastic 
equations and input parameters, except the conditional pair-correlation function: Eq. (24) was 
used to implement the SMRT model, and Eq. (21) for the TM model. 
 

 

Figure 5. Comparison of vertical profiles of up and down radiation fluxes as simulated by the TM and 
SMRT models for mixture of two species and gaps. The SMRT model captures spatial variation of fluxes 
between species 1 (dashed line), species 2 (dotted line), and gaps (dash-dot line) and also evaluates 
average flux over whole mixture (solid line). The TM model estimates only average flux over whole 
mixture (hollow dots). The models parameters are as follows: p(1)= 0.40, p(2)=0.20; dL

(1)= 4, dL
(2)= 6; 

=0.12, = 0.20,  =0.90, = 0.60; = =0.10; 
direct incoming flux, SZA=150. 
 
To understand the overall merits of the SMRT model, consider radiation fluxes as function of 
canopy depth, as shown in Fig. 5. The SMRT model differentiates between radiation fluxes over 
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individual species, gaps, and whole mixture (corresponding to mean intensities ,  and 
), while the TM model provides no distinction between the above fluxes (cf. Section 2.3). 

According to the SMRT model, variation of the fluxes between individual vegetation species is 
relatively smaller compared to difference in fluxes between vegetation and gaps. Also note, that 
limitations of the TM model result in a bias (both overestimation and underestimation) in 
estimation of mean fluxes over whole mixture compared to the SMRT simulations (compare 
fluxes over whole mixture). Detailed analysis of the impact of various parameters on the SMRT 
and TM models simulations is presented with six case studies below (Figs. 6-11). 
 
First, consider impact of Solar Zenith Angle (SZA) on canopy albedo, absorptance and 
transmittance as function of LAI, as simulated with the SMRT and TM models at Red and NIR 
wavelengths (Fig. 6). The simulations were performed with SZA of 00 and 600. Two vegetation 
species with gaps were used: p(1)=0.2, p(2)=0.3, p(gap)=0.5. The complete set of parameters is 
presented in the figure caption. In the case of SZA=00, the SMRT model predicts lower albedo, 
substantially lower absorptance and substantially higher transmittance compared to the TM 
model. However, in the case of SZA=600 both models demonstrate quite similar results. The key 
physical explanation for the difference between the SMRT and TM simulations at SZA=00 is that 
the SMRT model accounts for radiation streaming through gaps without interaction with 
vegetation (Fig. 4). This explains results for absorptance and transmittance. Albedo is lower in 
the case of the SMRT compared to the TM model, because in the former case a dark soil is better 
exposed through gaps in a relatively bright vegetation (compare  and ). Next, note that the 
numerical simulations for absorptance and transmittance at Red wavelength closely follow 
analytical expressions, derived for uncollided radiation for SZA=00 (cf. Section 2.3). For 
instance, in the case of high LAI, transmittance from the SMRT model approaches 1-(p(1)+ p(2)) 
(Eq. (42)), while transmittance from the TM model converges to 0 (Eq. (38)). Next, we explain 
results for SZA=600. In this case the effect of radiation streaming is negligible: even if photon 
enters canopy through a gap, it will be intercepted by a lateral surface of a tree foliage. 
Mathematically, the reasoning is as follows: as angle is increasing, effective distance between 
vegetation elements, , is increasing (cf. Eq. (24)), which results in convergence of the 
conditional pair-correlation function for ordered species to one for non-ordered species (Fig 3). 
 
Second, consider the impact of soil reflectance on the radiation quantities (Fig. 7). Set of 
parameters for this case study was similar to the previous one, except SZA is fixed and equal to 
00, while two soil albedos (0 and 1) were used. Note the special feature of the canopy albedo for 
high LAI: in the case of the TM model, albedo converges to a single value, independently from 
soil albedo, while such convergence does not exist in the case of the SMRT model. This is 
another effect, associated with radiation streaming through gaps. Next, consider results for 
absorptance. Canopy absorptance is increasing with increasing soil albedo, and such effect is 
more pronounced for the SMRT model. The physical explanation for this is that some portion of 
the total radiation can stream through the gaps to the canopy bottom without being absorbed. If 
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soil is bright, this radiation is bounced back and receives a second chance to be absorbed by a 
canopy. However, if soil is dark, this mechanism is vanishing. Finally, consider results for 
transmittance. In the case of Red wavelength, soil albedo has virtually no effects on 
transmittance both for the TM and SMRT models. In the case of NIR wavelength, higher soil 
reflectance results in a higher transmittance and this effect is enhanced in the SMRT simulations 
due to radiation streaming through gaps. 
 
Third, consider the impact of species composition on a radiation regime (Fig. 8). Here we used 
two species with optical properties roughly corresponding to broadleaf (species 1) and needle 
leaf (species 2) forests, which have substantial contrast both at Red and NIR wavelengths. The 
probability of each species (p(1) and p(2)) was varying from 0 up to 0.6, under restriction, that 
total probability of all species is constant through the simulations, i.e., p(1)+ p(2)=0.6=fixed. Thus, 
radiation regime was evaluated for all possible combinations of two species under significant 
amount of gaps, p(gap) =0.4=fixed. Results indicate that both the TM and SMRT models simulate 
continuous, fairly large variation of canopy albedo, absorptance and transmittance with respect to 
species composition. However, the TM model introduces a significant bias in the estimation of 
the above parameters due to ignoring canopy structure. Finally, note that variations of canopy 
albedo, absorptance and transmittance with respect to species compositions are quite close to 
linear at Red wavelength, but demonstrate fairly large deviation from linearity at NIR 
wavelength. Note that linearity for absorptance with respect to species composition can be seen 
in Eqs. (39) and (43) in the case of high LAI. 
 
Fourth, consider the role of gaps in a radiation regime (Fig. 9). Simulations were performed for 
two species under constrain that the probabilities of both species are equal and its sum is varying 
between 0 (only gaps) and 1 (only vegetation). The SMRT model is not equivalent to the TM 
model even in the limiting case of no gaps (cf. Section 2.3). Results for canopy albedo are as 
follows. Albedo at Red wavelength is decreasing as gaps are replaced with vegetation, because 
albedo of leaves was selected to be comparable to soil albedo, however, when more leaves are 
introduced, they trap radiation, scattered within canopy, more efficiently. Also, canopy albedo 
for the TM and SMRT models are approximately equal at Red wavelength. However, at NIR 
wavelength albedo is increasing with decreasing amount of gaps, and the TM model predicts 
higher albedo compared to the SMRT model. The physical reason for this is that at NIR 
wavelength leaves are brighter then soil, and therefore, increasing amount of leaves will increase 
albedo. Additionally, vegetation gas of the TM model efficiently covers soil, compared to 
discontinuous canopy with gaps in the SMRT model, which results in further enhancement of 
albedo in the TM model compared to the SMRT model. Next, the simulations indicate that 
overestimation of absorptance by the TM model compared to the SMRT model is directly 
proportional to the gap fraction/clumping of species. Finally, results for canopy transmittance 
indicate that as amount of gaps is decreasing, transmittance, evaluated by the SMRT model 
converges to one for the TM model. 
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Figure 6. Impact of SZA on canopy albedo, absorptance and transmittance, as evaluated with the TM 
(dots) and SMRT (lines) models. Runs for direct incoming flux with SZA=00 and =600 are marked with 
solid style and style with holes, respectively. The other parameters are as follows: p(1)= 0.20, p(2)=0.30; 
dL

(1)= dL
(2)= [0.0-16.0]; =0.12, =0.20,  =0.90, = 0.60; 

= =0.10. 
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Figure 7. Impact of soil reflectance on canopy albedo, absorptance and transmittance, as evaluated with 
the TM (dots) and SMRT (lines) models. Runs with soil reflectance =  = 0.0 and 
=1.0 are marked with solid style and style with holes, respectively. The other parameters are as follows: 
p(1)=0.20, p(2)=0.30; dL

(1)= dL
(2)= [0.0-16.0]; =0.12, =0.20, = 0.90, 

= 0.60; direct incoming flux, SZA=00 
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Figure 8. Impact of species composition on canopy albedo, absorptance and transmittance, as evaluated 
with the TM (dots) and SMRT (lines) models for the case of mixture of two species. The models 
parameters are as follows: p(1)+p(2)=0.60; dL

(1)=4.0, dL
(2)= 6.0; = 0.12,  =0.20, 

=0.90, = 0.60; = =0.10; direct incoming flux, SZA=00. 
Shaded areas highlight absorptance of individual species in the case of the TM model simulations. 
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Figure 9. Impact of gaps on canopy albedo, absorptance and transmittance, as evaluated with the TM 
(dots) and SMRT (lines) models for the case of mixture of two species. The models parameters are as 
follows: p(1)=p(2)=[0.0-0.5]; dL

(1)=4.0, dL
(2)= 6.0; =0.12, =0.16, =0.80, 

= 0.70; = =0.10; direct incoming flux (SZA=00). Shaded areas highlight 
absorptance of individual species in the case of the TM model simulations. 
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In the fifth case study we probed deeper special case of mixture of species without gaps (Fig. 
10). Intuitively, in the case of no gaps, ordered mixture of species is quite close to non-ordered 
mixture (turbid medium). In this simulation we addressed two questions: a) When ordered 
mixture of species is important? b) Why gaps significantly perturb radiation field of ordered 
mixture of species? As mentioned earlier, key feature of vegetation structure, which 
differentiates between ordered and non-ordered cases is a presence of spatial gradient of optical 
properties of a medium (such as leaf albedo, density of LAI, etc). If the medium is ordered, the 
spatial gradient of the optical properties should be significant enough to modify the radiation 
regime of the SMRT simulations with respect to the TM simulations. Optical properties of gaps 
constitute especially large contrast to ones of any vegetation species. This explains special role 
of gaps in the SMRT simulations. The variation of the optical properties of vegetation species is 
as follows: leaf albedo may vary by factor of 2 in majority of cases, while variation in the foliage 
area volume density may be arbitrary large. Our test runs (not presented here) indicate no 
significant difference between the SMRT and TM simulations as function of variations of leaf 
albedo for typical vegetation canopies. Simulations for two species with varying foliage area 
volume density (dL(1) and dL(2)) indicate significant bias in the estimation of absorptance by the 
TM model with respect to the SMRT model when dL(2)/dL(1)=0, no difference when dL(2)/dL(1)=1, 
and increasing bias with respect to increasing contrast in the foliage area volume density of 
species (Fig. 10). Note that the TM model introduces bias not only to total absorptance but also 
to the partitioning of total canopy absorptance between species. 
 

 

Figure 10. Impact of species LAI density on partitioning of total absorptance between individual species, 
as evaluated with the TM (dots) and SMRT (lines) models for the case of mixture of two species. The 
models parameters are as follows: p(1)=0.4, p(2)= 0.6; dL

(1)=4.0, dL
(2)= [0.0-16.0];  =0.12, 

 =0.20, =0.90, = 0.60; = =0.10; direct incoming 
flux, SZA=00. Shaded areas highlight absorptance of individual species in the case of the TM model 
simulations 
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Figure 11. Impact of species interaction on canopy absorptance, as evaluated with the TM (dots) and 
SMRT (lines) models. Runs for direct (SZA=00), and diffuse incoming fluxes are marked with solid style 
and style with holes, respectively. The other parameters are as follows: p(1)=0.4, p(2)= 0.5 or variable; 
dL

(1)=6.0, dL
(2)=9.0 or variable; = 0.12, =0.16,  =0.60, = 0.80; 

= =0.10. 
 
Next, consider the sixth case study, demonstrating the effect of species radiative interaction (Fig. 
11). Here we evaluated the impact of LAI changes of species 2 on the absorptance of species 1. 
The LAI of species 2 was constructed according to two scenarios: a) keep p(2) constant and vary 
dL(2) (top two panels for Red and NIR wavelengths); b) keep dL(2) constant and vary p(2) (lower 
panels). We also used two illumination conditions: purely direct incoming flux, SZA=00; and 
purely diffuse incoming flux. The results indicate, that absorptance of species 1 decreases by 
factor of two both at Red and NIR wavelengths as LAI of species 2 is changing from 0 to 4 in the 
case of the TM model under direct illumination. In contrast, the SMRT model predicts no 
significant variations in the absorptance of species 1 at Red wavelength, and increase by about 
15% in the case of NIR wavelength under direct illumination. In the case of diffuse illumination 
the SMRT and TM models predict similar interaction of species- decrease of the absorptance of 
the first species as LAI of the second is increasing. This last result of this case study match the 
results of the first case study: under diffuse illumination or low SZA, the simulations by both 
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models converge. Overall, this last case study demonstrates that natural mixture of discontinuous 
species exhibit less radiative coupling compared to the turbid medium approximation. 
 
The final comment is on the overall performance of the SMRT model. The SMRT code is 
computationally compact- CPU requirements are similar to those for the solution of 1D RT code 
[Shabanov et al., 2000]. Computational errors increase with increasing LAI, SZA, which is 
typical for majority of the RT models. Additional errors, specific to the SMRT, can be 
accumulated under the condition of large number of species with highly varying optical 
properties. Presently the performance of the model was not evaluated with respect to field 
measurements, this should be done in the future utilizing the required set of structured 
parameters and radiation measurements of sufficiently high accuracy. Nevertheless, confidence 
in the SMRT model performance should be drawn from the fact, that the mixture model extends 
the one for single species, which was extensively evaluated with field measurements and was 
utilized in multiple applications in the past [Huang et al., 2007; Kotchenova et al., 2003; 
Shabanov et al., 2000, 2005]. 
 
 
2.5. Summary 
 
The application of the stochastic approach for remote sensing of vegetation mixtures was 
introduced. The Stochastic Mixture RT (SMRT) model describes radiation regime in a 
heterogeneous vegetation canopy with spatially varying optical properties. The SMRT model 
provides a general solution of the mixture problem, which includes, as special cases, the major 
approximate solutions, including the linear mixture and turbid medium mixture RT models. The 
SMRT model solves for the radiation quantities, direct input to remote sensing/climate 
applications: mean fluxes over mixture and over individual species. The canopy structure is 
parameterized in the SMRT model in terms of two stochastic moments: the probability of finding 
species and the conditional pair-correlation of species. The second moment is responsible for the 
3D radiation effects, namely, radiation streaming through gaps without interaction with 
vegetation and variation of the radiation fluxes between different species. If the within- and 
between- species correlation is vanishing, the SMRT model reduces to the turbid medium RT 
model. Namely, this situation is realized in the SMRT simulations under direct illumination with 
low SZA or diffuse illumination. If the between- (but not within-) species correlation is set to 
zero, the SMRT model reduces to the linear mixture model. The analysis of the SMRT 
simulations indicates that the variation of radiation fluxes between different species is 
proportional to the variation of optical properties of species (leaf albedo, density of foliage, etc.) 
Gaps introduce significant disturbance to the radiation regime in the mixed canopy as their 
optical properties constitute a major contrast to those of any vegetation species. Set of accurate 
field measurements on canopy structure and radiation is required to further assess performance 
of the SMRT model and to improve modeling of the pair-correlation function. 
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3. Time-dependent Stochastic Radiative Transfer 
 
 
3.1. Lidar Remote Sensing 
 
Active remote sensing complements and enhances passive remote sensing measurements of the 
3D canopy structure. In general, signals recorded by passive sensors, operating at visible and 
mid-infrared wavelength, undergo influence of a range of physical factors, including atmospheric 
contamination, background scattering and effect of view-illumination geometry. Thus passive 
remote sensing measurements have to be corrected before attempting retrievals of the canopy 
structure. Some of the above problems can be eliminated (however new challenges arises) with 
the use of major types of active remote sensing instruments, including active Synthetic Aperture 
Radar (SAR) systems, and small and large footprint laser altimeters. Like passive optical 
systems, SAR polarimetry systems map well the horizontal organization of vegetation, however 
fail to provide direct information on its vertical distribution. In the case of the small footprint 
lidars, the small-diameter beams frequently miss the top of vegetation in sparse canopies, while 
in dense canopies, it is difficult to determine whether a particular shot has penetrated through the 
canopy and reached the ground. A new class of instruments, large footprint waveformrecording 
laser altimeters (lidars), has demonstrated a potential to significantly improve remote estimates 
of vertical forest structure [Drake et al., 2002a-b; Lefsky et al., 1999a-b, 2002]. The group of 
existing large footprints lidars includes two air-borne instruments, the formerly utilized Scanning 
Lidar Imager of Canopies by Echo Recovery (SLICER) and current instrument, Laser Vegetation 
Imaging Spectrometer (LVIS), and the space-borne Geoscience Laser Altimeter System (GLAS), 
onboard the ICESat satellite. Another space-borne instrument, Vegetation Canopy Lidar (VCL), 
is under development presently. 
 
SLICER transmits short-duration pulses (4 ns pulse width at the half of the amplitude) with a 
beam divergence of approximately 2 mrad at frequency of 80 Hz. It operates in NIR wavelengths 
(1064 nm). The energy transmitted per pulse is about 0.7 mJ. The SLICER footprint distribution 
pattern on the ground is a swath consisting of five contiguous footprint lines along the direction 
of flight. Each footprint is approximately 9 m in diameter. The diameter of the area covered by 
the telescope field-of-view (FOV) is five times as much as the laser footprint diameter. The 
telescope FOV is aligned to seize five contiguous cross-track footprints [Harding et al., 2000; 
Lefsky et al., 1999a]. 
 
LVIS is an advanced version of SLICER. It emits Gaussian-shaped pulses with 10 ns pulse-
width at repetition rates of up to 500 Hz in the NIR wavelengths (1064 nm). The energy 
transmitted per pulse is about 5 mJ. The LVIS telescope FOV significantly exceeds that for 
SLICER, 70 versus 20, which allows it to operate in a number of different modes. Footprint sizes 
from 1 to 80 m are possible, determined by the altitude of the airplane and the focal length of a 
diverging lens in the output path. The distance between adjacent footprints can be changed both 
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along and across track. A standard sampling pattern consists of parallel 1-km wide swaths 
generated using 30-40 25-m wide footprints separated by 10-20 m along and across track [Blair 
& Hofton, 1999]. 
 
GLAS instrument onboard the ICESat platform provides continuous global measurements along 
the 183-day repeat tracks with a maximum cross-track separation of 15 km at the equator. Pulses 
are emitted at rate of 40 Hz with pulse width of 5 ns in NIR (1064 nm). Large, non-contiguous 
GLAS footprints with the diameter of ~ 70 m are not optimized for retrieval of vegetation 
structural parameters. The primary goal of the ICESat mission is to measure ice, ocean and land 
elevation and cloud structure. Nevertheless, as the GLAS waveforms have high vertical 
resolution (of 15 cm) and good signal-to-noise ratio, some vegetation structural parameters are 
possible to retrieve where the ground and canopy echoes can be decomposed [Zwally et al., 
2002]. 

 

Figure 12. Schematic plot 
of lidar waveform measu-
rements  with the SLICER 
instrument. (Graphycs 
credit: Dr. Harding, NASA 
GSFC). 
 

 
Lidar instruments operate according to the following general scheme. A short-duration laser 
pulse is sent from the zenith to nadir, and then the amplitude of reflected energy is recorded as a 
function of time. The obtained distribution of intercepted surfaces with height is referred to as 
lidar waveform (Fig. 12). The first significant return above a noise threshold is used to estimate 
the top of the canopy, the midpoint of the last return represents the reflection from the ground, 
and canopy height is calculated as the distance between these two returns [Harding et al., 2001]. 
The amplitude of the recorded waveform measures the strength of the return. For surfaces with 
similar reflective properties and geometry within a footprint, the larger amplitude indicates more 
canopy material. 
 
Current applications of the large-footprint lidars fall into three main categories: remote sensing 
of the ground topography, measurement of the three-dimensional canopy structure, and 
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estimation of forest structural attributes [Lefsky et al., 2002; Dubayah et al., 2000]. Canopy 
height and ground elevation are the only parameters that are measured by the lidars directly. 
Other structural attributes biomass and canopy height profiles (CHPs), or the distribution of 
canopy material with height requires apriory knowledge and modeling. 
 
The current algorithm for retrieval of CHPs from lidar-recorded signals [Lefsky et al., 1999a; 
Harding et al., 2001] suffers from two significant drawbacks. The algorithm was developed 
following the main principles of MacArthur & Horn [1969] for estimation of foliage height 
profiles (FHPs) in broadleaf forests. It is based on the simplifying assumptions that (1) the 
horizontal distribution of leaves is uniform and (2) only single scattered photons contribute to the 
return signal. The assumption of uniform horizontal distribution ignores foliage clumping. 
However, due to foliage clumping more radiation is allowed to penetrate deeper into the canopy 
without being intercepted by foliage [Ni-Meister et al., 2001]. Additionally, a lidar pulse at NIR 
wavelengths is weakly absorbed and the returned waveform is affected by multiple scattering, 
especially in the case of dense forests [Govaerts, 1996]. One of the effects of multiple scattering 
in dense canopies is related to a significant enhancement of the lower part of the signal. The 
main reason for this effect is that the path of multiply scattered photons is longer than the straight 
line path between the instrument and the target and, thus, those photons appear delayed, 
compared to single-scattered photons. The significance of the effect of multiple scattering in 
lidar measurements is currently under debate presently [Blair & Hofton, 1999; Sun & Ranson, 
2000]. 
 
Below we detail application of the stochastic approach for modeling of propagation of lidar 
signal in heterogeneous vegetation canopies. The stationary Stochastic RT equation for single 
species (Chapter 7) was extended to the Time-dependent Stochastic RT (TSRT) equation. The 
stochastic description of the process arises naturally due to the fact that large footprint lidars 
measure mean pulse intensity over the extended area of their footprints. Additionally, the 
stochastic equations allows to account for multiple scattering, realistic representation of forest 
structure including clumping and gaps, and simulation of off-nadir and multi-angular 
observations. The presentation is organized as follows. Starting form 3D Time-dependant RT 
equation we formulate the time-dependant stochastic equations. Next, the sensitivity study of the 
simulated non-stationary radiation regime is performed. Next, simulated waveforms are 
evaluated with respect to SLICER measurements over coniferous and mixed-deciduous stands 
and the impact of multiple scattering is assessed. 
 
 
3.2. Model Formulation 
 
3D RT Equation: Consider a single species heterogeneous vegetation canopy. A lidar beam 
illuminates a vertical vegetation stand of the diameter of the laser footprint. Due to the small 
divergence angle, photons can be assumed incident parallel on the top of the stand. The radiation 
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regime inside the canopy is strongly time-dependent due to the short duration of a lidar pulse. 
The propagation of photons through vegetation is described by the time-dependent 3D transport 
equation for radiation intensity, , at time t, spatial location  and direction : 
 

  (48) 

 
where;  is the extinction coefficient, and  is the differential scattering 
coefficient [Ross, 1981]. Both coefficients are formulated in the same way as for stationary RT 
for singe heterogeneous species: =  and =  where 

 and  are coefficients for vegetated portion space, and  is a canopy 
indicator function (cf. Chapter 7). The unique solution of Eq. (48) is specified by boundary and 
initial conditions: 
 

  (49) 

 
where  is the direction of incoming radiation;  is a function characterizing pulse intensity; 

is a footprint area; and  is the hemispherical reflectance of ground which is assumed to 
be a Lambertian surface. 
 
Stochastic RT Equations: A procedure to derive Time-dependant Stochastic RT (TSRT) 
equations from time-dependant 3D equation is similar to one for stationary 3D equation for 
single species (Chapter 7). Following this procedure we derive equations for the mean intensities 
over total space, , and over vegetated areas, . The system of equation for 

 is, 
 

  (50) 

 
The system of equations for  is, 
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  (51) 

 
The averaging procedure leads to a parameterization of the TSRT equations in terms of the 
probability of finding vegetation elements at height z, p(z), and the conditional pair-correlation 
function of vegetation elements at two layers z and in direction in direction ,  (cf. 
Chapter 7). Note that the boundary source terms in Eq. (51) are the same as in Eq. (50). The 
equality, , follows from the assumption of a uniform horizontal distribution of 
incident laser energy. The equality  follows from the assumption of 
homogeneity of the ground surface. 
 
Two important issues related to Eqs. (50)-(51) need to be discussed. First, the integration is 
performed over the area approximately equal to the laser footprint area with 8.4 – 9.0 m in 
diameter for the coniferous sites and 10.4 – 11.0 m for the deciduous sites. As this area is 
relatively large, radiation fluxes through the lateral boundaries can be neglected and the concept 
of mean intensity is appropriate. Second, the spatial distribution of laser energy across the 
footprint has a circular, Gaussian distribution [Harding et al., 2000]. We approximate the 
Gaussian distribution with a uniform distribution in order to satisfy the requirements of a 
stochastic approach. The total amount of energy within the footprint area remains the same. It 
should be noted, in general, the use of the Gaussian and uniform distributions of incident energy 
would lead to different forms of the return. Within the chosen approach, however, a layer within 
vegetation is treated as a horizontal surface with averaged parameters characterizing its reflection 
and transmission properties. Thus, the model is sensitive only to the total amount of radiation 
incident at each layer and the Gaussian distribution can be replaced with the uniform 
distribution. 
 
Separation of Direct and Diffuse Radiation: The procedure to derive equations for direct and 
diffuse components of mean radiation intensity over total space, , and over vegetation, 

, in the case of time-dependant equations is identical to that for stationary equations (cf. 
Chapter 7). We express the solution of Eq. (51) for as the sum of direct and diffuse 
components, that is, 
 
 . (52) 
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Substituting Eq. (52) into Eq. (51) and separating the terms with  results in an 
equation for the direct component, 
 

  (53a) 

 
where  characterizes the intensity of incoming radiation (cf. Eq. (49)). The diffuse 
component, , satisfies the following equations: 
 

  (53b) 

 
where 
 
  (53c) 

 
The mean intensity over the total space of the horizontal plane, , can be decomposed 
into direct, , and diffuse, , components similarly: 
 

 . (54a) 

 
and, 
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  (54b) 

 
where,  is defined by Eq. (53c). 
 
Numerical Scheme: The numerical scheme of solutions of the time-dependant stochastic RT is 
an extension of the corresponding scheme for the stationary stochastic RT equation for single 
species (Chapter 7). The key steps are the same. The mean intensity over whole horizontal plane, 

, is derived based on mean intensity over vegetation,  (Eq. (50)). The scheme 
to solve for  involves two steps: 1) solve Eq. (53a) for direct intensity, ; 2) 
solve Eq. (53b) for diffuse intensity, . To solve for direct intensity, Eq. (53a) is 
integrated over time step, , and the obtained integrals are approximated with a 
trapezoidal quadrature scheme. Next, terms that depend on  are grouped, (to be referenced 
below as ), and an integral equation for  is formulate with the remaining terms at 
time , 
 

 , (55a) 

where 
  (55b) 

  (55c) 

  (55d) 
 
Here  is the weight that depends on the numerical scheme used to approximate the 
integrals over the interval . Note that at each time step , the solution of Eq. (55a), , 
depends on  at the previous time step, . Intensity  at t=0 is given by initial conditions 
(Eq. (49)). At each following time step, Eq. (55a) is solved numerically according to scheme of 
solution of Volterra integral equation, detailed in Chapter 7 (Eq. (42)). 
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Next, diffuse intensity, , is evaluated. Implementing the above described time-
integration procedure with respect to Eq. (54), we get 
 

  (56) 

 
Here  includes, similar to , all the terms of integration of Eq. (53b) 
which depends on . The solution  at time  depends on  at previous time step, . At 
each time step the right hand side of Eq. (55a) is evaluated from know  at this time step 
and  at previous time step. Equation (55a) is solved at each time step, , with method of 
successive orders of scattering approximations (SOSA, Chapter 7, Eq. (40)).  
 
The descretization of the equations for the mean intensity over a whole horizontal plane (Eq. 
(54), direct and diffuse components) are similar to those for mean intensity over vegetation (cf. 
Eq. (55)). Namely, the discreate equation for the direct component is 
 

  (57) 

 
The discreate equation for diffuse component is 
 

  (58) 
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Functions  and  are derived similarly to  and . 
As Eq. (57) and (58) are structurally similar to Eqs. (55) and (56), the scheme of solution are also 
similar. Note, that in order to solve for  and , one needs to know  and . 
 
 
3.3. Model Evaluation with Field Measurements 
 
Field Measurements: A SLICER instrument measurements over four coniferous forests and 
mixed-deciduous sites in North America were selected to evaluate performance of the TSRT 
model. Ground measurements of vegetation parameters are available from multiple field 
campaigns performed at those sites. The characteristics of forests stands at each site are 
summarized in Table 1 and brief description of measurements is given below. 
 
Table 1. Characteristics of the four sites used for model parameterization. SOJP and SOBS are southern 
old jack pine and black spruce stands measured during the BOREAS field campaign in 1996. The SERC 
sites are mixed deciduous forest stands at the Smithsonian Environmental Research Center (SERC), with 
the overstory predominantly comprised of tulip poplar. 
 

Site Age, 
years 

Density, 
stems/ha 

Tree height 
H, m 

Crown 
length L, m 

Leaf 
refl. 

Leaf 
transm. LAI Ground 

refl. 
Clump. 
Index 

SOJP 
 60-75 1600-4000 16.5-18.5 11.0-12.3 0.53 0.32 2.61 0.330 0.5 

SOBS 
 0-155 3700-5800 10.0-11.0 6.7-7.3 0.41 0.32 4.00 0.303 0.5 

SERC 
(interm) 41 840 31.5-33.0 21.0-22.0 0.45 0.45 5.16 0.225 0.7 

SERC 
(mature) 99 1187 32.0-36.5 21.3-24.3 0.45 0.45 5.26 0.225 0.7 

 
The first two sites, southern old jack pine (Pinus banksiana), (SOJP, 53055' N, 104042' W), and 
southern old black spruce (Picea mariana), (SOBS, 53059' N, 105007' W), are located in the 
BOREAS southern study area in Saskatchewan, Canada. These sites were the subjects of 
intensive field campaigns carried out in 1994 as part of BOREAS field activities. A field data on 
forest age, stem density, tree structural parameters (height, LAI, crown length, foliage area 
volume density), and optical properties of leaves and ground, were collected [Chen et al., 1997; 
Middleton et al., 1997; Ni-Meister, 2001]. SLICER measurements over the BOREAS southern 
area, including SOJP and SOBS, sites were taken on July 29, 1996. We neglect change in the 
stands biophysical parameters during the two-year period between the field and SLICER 
measurements. 
 
The other two sites are closed-canopy stands located in a mixed deciduous forest at the 
Smithsonian Environmental Research Center (SERC, 38053' N, 76033' W), about 10 km south-
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southeast of Annapolis, MD, on the western shore of Chesapeake Bay [Harding et al., 2001]. The 
stands belong to the tulip poplar association, a mixed-deciduous forest with the overstory 
predominantly comprised of tulip poplar (Liriodendron tulipifera). The other species include 
sweet gum, oak, hickory, and American beech. The stands represent distinct stages in canopy 
development. The intermediate stand is a broad unimodal canopy consisting of 14 different 
species. The mature stand has a bimodal vertical leaf area structure and consists of 19 species. 
The gap fraction is relatively small: 0.05 for the intermediate stand and 0.02 for the mature stand. 
SLICER data for these sites were collected on September 7, 1995. Ground measurements were 
taken within two weeks after that [Harding et al., 2001]. The trees were fully leaved at this time. 
Canopy structural parameters (forest age, stem density, tree heights and LAI) are listed in 
[Harding et al., 2001]; crown lengths are assumed to be two third of tree heights [Oliver & 
Larson, 1990]; leaf optical properties are taken from [Parker et al., 2001]. The ground surface is 
dominantly comprised of leaf-litter with some bare soil and rare live foliage. The reflectance of 
the ground is assumed to be half that of the canopy. 
 
Selection of Model Parameters: The stochastic model parameters were selected based on values 
given in Table 1 for each site. Below two additional modeling issues are discussed: 1) 
representation of lidar signal; 2) representation of stochastic canopy structure. SLICER lidar 
pulses are characterized by a curved “Raleigh” shape and a width of 4 ns [Harding et al., 2000]. 
The vertical resolution of recorded waveforms is 0.112 m. We smoothed SLICER signals to 
obtain the resolution of 0.336 m. The amount of transmitted energy per pulse is 0.7 mJ. The 
canopy is divided into n layers of thickness, . The observation time is divided into 
m intervals, ,  (c is the speed of light). The simulated Raleigh pulse 
is divided into k narrow pulses of duration, . At each moment, , i=[0;m], the intensity of 
incoming radiation is equal to the pulse amplitude at that moment. 
 
The canopy structure was modeled as follows. The first moment of canopy structure, probability 
to find vegetation elements at height z, , was implemented based on the assumption of 
hemi-ellipsoid crown shapes and field-measured values of LAI: 
 

  (59) 

 
where , was derived according to definition (Chapter 7, Eq. (2)). Small 
variation of p-values (within 10%) was applied to each layer to provide a more realistic 
representation of canopy structure. The second moment of canopy structure, the conditional pair-
correlation function, , was implemented according to turbid medium approximations, 
adjusted for canopy clumping, namely,  
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  (60) 

 
Here  is the clumping index [Chen et al., 1997]: =1 for uniformly distributed foliage (turbid 
medium); >1 if leaves are regularly distributed (i.e leaves are all laid side by side); <1 if 
leaves are clumped. Canopy clumping is ad-hook parameter, commonly used to adjust extinction 
coefficient [Chen et al., 1997]. In fact, Eq. (60) is equivalent to Chen et al. [1997] as  
is coupled with extinction coefficient in the stochastic equations (cf. Eq. (51)). Physical meaning 
of the Eq. (60) is as follows: clumping reduces the probability of finding vegetated elements in 
two layers simultaneously moving along a given direction. 
 
Sensitivity Study: The following problems were analyzed: 1) the behavior of the model as 
function of the laser pulse duration; 2) the sensitivity of the model to the number of iterations. 
The model parameters used in this study correspond to BOREAS SOBS site (cf. Table 1). With 
respect to the first problem, note that, if a constant photon flux is incident on the top of 
vegetation over an extended period of time, the solution of the time-dependent stochastic RT 
equation converges to the solution of the stationary equation (Chapter 7). Figure 13 illustrates the 
convergence of the upward diffuse radiation flux at the top of canopy evaluated with the time-
dependent model to that of stationary model. It requires about 60 ns to reach the stationary limit 
in this particular case. During this time, photons travel a distance of 20 m, which is 
approximately equal to 2H. Figure 13 also demonstrates that the use of a steady-state radiative 
transfer in optical remote sensing is valid. Namely, the time for radiation to propagate through 
the system (tens of ns) is short compared to variations in illumination conditions (typically, tens 
of minutes) or canopy geometry (seconds). The ability of the model to describe non-stationary 
and stationary radiation regimes makes it valuable for interpretation of both active and passive 
remote sensing data. 
 

 

Figure 13. Upward diffuse radiation at the top of 
canopy as a function of time. The solid line 
represents the simulations by the stationarry model. 
The dotted line corresponds to simulations by the 
time-dependent model with increasing pulse width 
(pw ® inf). 
 

 
Second, the contribution of photons scattered n times to the radiation regime at a given moment 
of time is evaluated. The integral 
 

.)(p)z(p
)(p)z(p),,z(K xb=xb=Wx

b b
b b

),,z(K Wx



40 

  (61) 

 
is taken as a measure of the number of photons, scattered n times within the vegetation canopy at 
moment t. Here  is the intensity of photons scattered n times. Figure 14 shows the 
ratios  
 

  and   

 
as functions of the scattering order, n, for different instants of time, t. The former shows the 
proportion of multiply-scattered to single-scattered photons, while the latter is the rate at which 
multiply scattered photons contribute to the radiation field. One can see that the contribution of 
high-order scattering decreases rapidly for . For a sufficiently large n, all curves can be 
asymptotically replaced by the following curves: 
 

 , (62) 

 
where  is the slope ratio, and  is a function, characterizing the shift of the 
plotted curves with time. Note that for the cases with large values of time, the ratio 

 first decreases for small n. It describes the situation when . In the 
stationary case, the maximum number of photons scattered n times would not change with time 
due to stationary input of radiation into the canopy. In the time-dependant case, photon flux 
enters the canopy during a small period of time equal to the laser pulse duration. With time, 
some fraction of photons scattered only once leaves the canopy and number of multiple-scattered 
photons exceeds the number of single-scattered photons inside the canopy. 
 

  

Figure 14. Contribution of photons scattered n times at different time moments (t = 10, 17, 25, 33, 40 ns). 
The laser pulse is assumed to be incident at the top of canopy at time t = 0. Function  is a measure of n 
umber of photons scattered I times. 
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It follows from Eq. (62) that, for a sufficiently large n,  can be approximated by 
 
 . (63) 
 
Here  can be interpreted as the probability for a photon to be scattered n times and  as 
a function characterizing the dependence on time. The rate of convergence of the SOSA method 
is defined as 
 

 . (64) 

 
Thus the contribution of multiply scattered photons to the radiation field at a given instant of 
time is proportional to . The higher the probability of scattering events, the 
higher the contribution of multiply scattered photons to the radiation field. In this example, about 

 iterations are required to obtain a relative accuracy of 10-3. 
 
Simulations of Lidar Waveforms: For each of the sites, six SLICER waveforms were 
extracted. The selection was made among data from the three interior footprints; waveforms 
corresponding to the two outer footprint positions were discarded as anomalous due to 
misalignment between the scan pattern and the outer edges of the instruments receiver field-of-
view [Lefsky et al., 1999a]. 
 
The selected signals were normalized by the maximum return signal in each waveform. It is the 
ground return for SOBS and SOJP and the maximum canopy return for the SERC sites. The 
digitizer bin units were converted into distance, with one digitizer bin corresponding to 0.1112 
m. A smoothing procedure was applied to the signals: three adjacent bins were summed and the 
averaged value was taken. The ground return was identified as the last discrete return above the 
mean background noise level. The maximum value of the ground return was assigned a height of 
zero. Tree height is the distance between the maximum ground return and the first canopy return. 
As the plotted SLICER signals reveal different heights for the same forest stand, the tree heights 
and crown sizes used in model simulations were defined for each signal individually. 
 
Figures 15 and 16 summarize the results for SOBS/SOJP and SERC sites respectively. For 
convenience, each waveform is accompanied by the site name and a number. The gap fraction is 
high in the coniferous stands (SOJP and SOBS) and the return from the ground is pronounced 
most. The unimodal shapes of the SLICER waveforms over those sites imply the absence of 
secondary forest understory. The third SOBS plot reveals some understory, seen as a small wide 
spike near the maximum return. For the first SOBS plot, the amplitude of the SLICER signal is 
greater than that in the simulations. Differences in foliage density affect the strength of the 
SLICER signals, while the model simulations assume a constant value. The agreement between 
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the SLICER signals and model simulations is better for the signals with a slow decay of the 
waveform. The SOBS SLICER signals shown in Fig. 15 were collected over the region where 
ground measurements described in Chen et al. [1997] were made. For the SOJP site, none of the 
SLICER tracks coincides with the location of Chen et al.’s measurements. Two SLICER tracks 
cross the area of another field campaign described in [Sun & Ranson, 2000]. The data from these 
tracks are used here. For the SERC forest stands, the SLICER data sets include regions where 
ground measurements were taken. Several subpeaks of canopy return, and small or even 
undistinguishable ground returns are typical for the waveforms collected over both mature and 
intermediate stands. The signals with identifiable ground returns were chosen to calculate tree 
heights. Only relatively unimodal waveform profiles are represented in Fig. 16, for the model 
does not include multi-layer vegetation structure. Some small understory, in the second and third 
mature and intermediate plots, is acceptable. The majority of radiation is intercepted in the upper 
layer of the canopy in view of high foliage density in these stands. 
 

 

Figure 15. Comparison of model simulations (dotted curves) and corresponding SLICER measurements 
(solid curves) for BOREAS SOBS and SOJP sites. The noise level is shown as a vertical dashed line. 
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Figure 16. Comparison of model simulations (dotted curves) and corresponding SLICER measurements 
(solid curves) for SERC mature and intermediate forest stands. The noise level is shown as a vertical 
dashed line. 
 
 
3.4. Effect of Multiple Scattering 
 
The simulated returns generated from single and multiple scattering are next compared to 
evaluate the contribution of multiply scattered photons. From the plots shown in Fig. 15 and 16, 
those that agreed best with SLICER data were chosen for this investigation; one plot for each 
forest stand. These are SOBS (2), SOJP (1), Mature (3), and Intermediate (1). The model-
simulated signals in the single scattering approximation were added to each plot. The results are 
shown in Fig. 17. 
 
The inclusion of multiple scattering magnifies the signal and enhances significantly the lower 
part of the waveform. In general, multiply scattered photons carry information on canopy 
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structural parameters, namely, foliage density and gap fraction. When a photon path in the 
canopy is limited to a single interaction, the total travel time is the round trip time between the 
sensor and the interaction point: . If a photon has interacted several times before 
leaving the canopy in the direction of the sensor, the total travel time is increased to 

, where  is the extra time due to multiple scattering. This extra time depends 
on two variables: the number of interactions and the mean distance of photon travel between two 
interactions (photon mean free path). The photon mean free path is inversely proportional to the 
extinction coefficient , which is directly related to canopy structure. A vegetation canopy 
with high density will generate more multiple scattering but with relatively short free paths. 
Conversely, in sparse canopies, the contribution of multiple scattering will be relatively lower 
but with longer paths. 
 

 

Figure 17. SLICER waveforms 
and model simulations with and 
without multiple scattering for 
four different sites. The solid 
curves represent the SLICER 
signals. The single scattering 
simulations are shown with 
dashed curves, while the dotted 
curves represent multiple 
scattering simulations. Noise is 
subtracted. 
 

 
In case of sparse canopies, single-scattering approximation models are expected to provide good 
approximation of lidar recorded signals. A hybrid geometric optical and radiative transfer model 
(GORT) was tested with data from four BOREAS sites: SOBS, SOJP, NOBS (northern old black 
spruce), and NOJP (northern old jack pine) [Ni-Meister et al., 2001]. Selected SLICER 
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waveforms were normalized by the maximum signal (ground return). The model provided good 
agreement between the measured and simulated waveforms, but the relative amplitude of 
vegetation return was low: less than 0.15 for the SOBS site and less than 0.1 for the others. This 
indicates that the density of measured vegetation was relatively low and the effects of multiple 
scattering were probably insignificant. For the study presented here, the lower boundary of 
relative amplitude was 0.3 for SOJP and 0.4 for SOBS. 
 
The waveform shapes change dramatically in a set of measurements for the same site. It depends 
on the density of vegetation and the number of trees within the footprint. As a result, some 
waveforms may show effects of multiple scattering, while the others may not. The effect of 
multiple scattering also depends on the amplitude and duration of a laser pulse. The model shows 
that this effect is more significant in the simulations with longer pulse widths. An increase of the 
amplitude makes it more detectable. 
 
 
3.5. Summary 
 
The application of the stochastic approach for the large footprint lidar remote sensing of 
heterogeneous vegetation was introduced. The Time-dependant Stochastic RT (TSRT) model 
describes non-stationary radiation regime of lidar measurements (the stream of photons, emitted 
by lidar, enters vegetation canopy, propagate through vegetation bounded by soil via mechanism 
of single and multiple scattering and exit canopy back to lidar receiver). Sensitivity study 
indicates that as the duration of lidar pulse exceed the time required for photon to travel the 
distance twice of canopy height, the solution of the TSRT model converges to one of the 
stationary stochastic equation. Also, contribution of the multiple-scattered photon with respect to 
single-scattered photons was quantified (how it changes with time and how it depends on the 
order of scattering). The simulated lidar waveforms were evaluated with respect to SLICER lidar 
measurements and ancillary ground measurements of vegetation biophysical parameters over 
four coniferous and mixed-deciduous stands. The inclusion in the TSRT simulations of multiple 
scattering magnifies the signal and enhances significantly the lower part of the waveform. In 
general, multiply- scattered photons carry information on canopy structural parameters, namely, 
foliage density and gap fraction. A vegetation canopy with high density will generate more 
multiple scattering but with relatively short free paths. Conversely, in sparse canopies, the 
contribution of multiple scattering will be relatively lower but with longer paths. In case of 
sparse canopies, single-scattering approximation models are expected to provide good 
approximation of lidar recorded signals. The effect of multiple scattering also depends on the 
amplitude and duration of a laser pulse. This effect is more significant in the simulations with 
longer pulse widths. Further modeling efforts are required to improve representation of the 
conditional pair-correlation function (inclusion of stem density, canopy roughness, canopy 
layering, leaf distribution) in order to better capture relationship between canopy structure and 
lidar waveforms. 
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