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1. Radiative Transfer Equation for Vegetation Canopies 
 
Solar radiation scattered from a vegetation canopy and measured by satellite sensors results from 
interaction of photons traversing through the foliage medium, bounded at the bottom by a 
radiatively participating surface. Therefore to estimate the canopy radiation regime, three 
important features must be carefully formulated. They are (1) the architecture of individual plant 
and the entire canopy; (2) optical properties of vegetation elements (leaves, stems) and soil; the 
former depends on physiological conditions (water status, pigment concentration); and (3) 
atmospheric conditions which determine the incident radiation field [Ross, 1981]. 
 
We idealize a vegetation canopy as a medium filled with small planar elements of negligible 
thickness. We ignore all organs other than green leaves. In addition, we neglect the finite size of 
vegetation canopy elements. Thus, the vegetation canopy is treated as a gas with non-
dimensional planar scattering centers, i.e., a turbid medium. In other words, one cuts leaves 
residing in an elementary volume at a given spatial point r into “dimensionless pieces” and 
uniformly distributes them within the elementary volume. Three variables, the leaf area density 
distribution function , the leaf normal distribution, , and the leaf scattering phase 
function,  (Chapter 3) are used in the theory of radiative transfer in vegetation 
canopies to convey “information” about the total leaf area, leaf orientations and leaf optical 
properties in the elementary volume at r before “converting the leaves into the gas.” 
 
It should be emphasized that the turbid medium assumption is a mathematical idealization of 
canopy structure, which ignores finite size of leaves. In reality, finite size scatters can cast 
shadows. This causes a very sharp peak in reflected radiation about the retro-solar direction. This 
phenomenon is referred to as the “hot spot” effect. It is clear that point scatters cannot cast 
shadows and thus the turbid medium concept in its original formulation [Ross, 1981] fails to 
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predict or duplicate experimental observation of exiting radiation about the retro-illumination 
direction. Zhang et al. [2002] showed that if the solution to the radiative transfer equation is 
treated as a Schwartz distribution, then an additional term must be added to the solution of the 
radiative transfer equation. This term describes the hot spot effect. This result justifies the use of 
the transport equation as the basis to model canopy radiation regime. Here we will follow 
classical radiative transfer theory in vegetation canopies proposed by Ross [1981]. For the 
mathematical theory of Schwartz distributions applicable to the transport equation, the reader is 
referred to Germogenova [1986], Choulli and Stefanov [1996] and Antyufeev [1996]. 
 
In addition to canopy structure and its optics a domain V in which the radiative transfer process 
is studied should be specified. In remote sensing application, a parallelepiped of horizontal 
dimensions XS, YS, and height ZS is usually taken as the domain V. The top , bottom , 
and lateral  surfaces of the parallelepiped form the canopy boundary . 
The height of a tallest plant in V can be taken as ZS. The dimension of the upper boundary  
coincides with a footprint of the imagery. The function characterizing the radiative field in V is 
the specific intensity introduced in Chapter 2. Under condition of the absence of polarization, 
frequency shifting interaction, and emission processes within the canopy, the monochromatic 
specific intensity  is given by the stationery radiative transfer equation (Chapter 2, Eq. 
(24)) with . Substituting vegetation-specific coefficients (Chapter 3, Eqs (13) and 
(15)) into the transport equation (Chapter 2, Eq. (24)), one obtains the radiative transfer equation 
for a vegetation canopy occupying the domain V, namely, 
 

  (1) 

 
The boundary condition for the radiative transfer problem is given by 
 
        (2) 
 
Here  is the intensity of radiation entering the domain V through a point  on the 
boundary  in the direction . Directions along which photons can enter the vegetation 
canopy through the point  satisfy the inequality  where  is an outward 
normal vector at . 
 
The solution of the boundary value problem, Eqs (1)-(2), i.e., the monochromatic specific 
intensity , depends on wavelength, , location r, and direction . Here, the position 
vector  denotes the triplet (x,y,z) with (0<x<XS), (0<y<YS) and (0<z<ZS) and is expressed in 
Cartesian coordinates with its origin, O=(0,0,0), at the top of the vegetation canopy and the Z 
axis directed down into the vegetation canopy. The unit vector  has an azimuthal angle 

 measured in the (XY) plane from the positive X axis in a counterclockwise fashion and a 
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polar angle q with respect to the polar axis that is opposite to the Z axis. In this Chapter we shall 
omit the sign l in notations. 
 
 
2. Vegetated Surfaces Reflectance 
 
Solution of the boundary value problem (Eqs. (1)-(2)) describes the radiative regime in a 
vegetation canopy and, as a consequence, reflectance properties of the vegetated surface. When 
describing surface reflectance, standard nomenclature [Nicodemus et al., 1977] dictates that the 
angular characteristics of the illumination are mentioned first, followed by the angular 
characteristics of the reflected radiance. In the definitions given below, the prefix hemispherical-
directional implies an illumination which is hemispherical in directional extent and a reflected 
radiance in a single direction. Directional-hemispherical implies that the illumination is single 
directional and the reflected radiance is integrated over the hemisphere [Martonchik et al., 2000]. 
The following reflectance quantities are used in remote sensing to describe surface reflective 
properties.  
 

 

 
Figure 1. Reflectance nomenclature summary. 
The broad arrow represents an irradiance from a 
collima-ted beam. All other arrows represent 
incident and reflected radiance fields. 

 
The hemispherical-directional reflectance factor (HDRF, dimensionless) for nonisotropic 
incident radiation is the ratio of the mean radiance leaving the top of the vegetation canopy to 
radiance reflected from an ideal Lambertian target into the same beam geometry and illuminated 
under identical atmospheric conditions [Martonchik et al., 2000]; this can be expressed in terms 
of the solution of Eq. (1)-(2) as  
 

     (3) 

 
Here  and  are the cosine of the polar angles of the upward (reflected)  and downward 
(incident)  directions, respectively; the angle brackets <  >0 denotes the mean over the upper 
surface  of the parallelepiped V. The HDRF depends on atmosphere conditions (i.e., the 
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angular and spectral distribution of the incoming radiation), the surface properties (e.g., 
vegetation canopy below the boundary ), the area of , and the direction . For the 
condition of no atmosphere, i.e., the incident solar radiation at the upper canopy boundary  is 
a parallel beam of light, the HDRF is termed a bidirectional reflectance factor (BRF, 
dimensionless). The BRF does not depend on atmosphere conditions and characterizes surface 
reflective properties. Its value varies with the directions,  and , of reflected and incident 
radiation. The bidirectional reflectance distribution function (BRDF) is another reflectance 
quantity that describes the scattering of a parallel beam of incident radiation from one direction 
into another direction but, unlike the BRF, its values are expressed relative to the incident flux, 
i.e., the BRDF is the mean radiance leaving the upper boundary to the incident flux. The BRDF 
has units of sr-1 and is a factor of  smaller than BRF, i.e., .  
 
The bihemispherical reflectance (BHR, dimensionless) for nonisotropic incident radiation is the 
ratio of the mean irradiance exitance to the incident irradiance [Martonchik et al., 1998], i.e., 
 

  (4) 

 
For the condition of no atmosphere, the BHR becomes directional hemispherical reflectance 
(DHR, dimensionless). For Lambertian surfaces, HDRF=BRF=BHR=DHR.  
 

 

Figure 2. The multiangle imaging spectroradiometer (MISR) 
onboard the Earth Observing System (EOS) Terra platform 
provides global imagery at nine discrete viewangles and four 
visible/near-ibfrared spectral bands. MISR standard products 
include HDRF, BHR, BRF, DHR, leaf area index (LAI) and 
fraction of photosynthetically active radiation absorbed by 
vegetation (FPAR). Vigorous vegetation growth in the 
Southern United States (Texas, Oklahoma) after heavy rains 
fell during April and early May, 2004, is quantified in these 
images and LAI&FPAR product from MISR. The left-hand 
images are natural-color views from MISR's nadir camera 
acquired on April 1 (top set) and May 3 (bottom set). The 
middle and right-hand panels show MISR LAI and FPAR 
standard products. Data are at 1.1 km spatial resolution, i.e., 
the dimension of the upper boundary  is 1.1 by 1.1 km.  

 
All the reflectance quantities introduced above can be derived from data acquired by satellite-
borne sensors (Fig. 2) which, in turn, are input to various techniques for retrieval of biophysical 
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parameters from space. In remote sensing, the dimension of the upper boundary  often 
coincides with a footprint of the imagery. Taking the size of  to zero results in a BRF value 
defined at a spatial point . Given the bidirectional reflectance factor, ), and intensity, 

, of radiation incident on a horizontal surface at , the intensity of reflected radiation, 
, can be calculated as  

 
 . (5) 

 
This equation is used to describe the lower boundary condition for the radiative transfer in the 
atmosphere.  
 
 
3. Boundary Conditions 
 
The boundary conditions for a three-dimensional canopy are also three-dimensional. Indeed, the 
radiation entering the canopy through the top, , through the bottom, , and through the 
lateral, , surfaces are different. Therefore we consider a very general form of boundary 
conditions (see Sect. 2.4), namely, 
 
   

     (6) 
 
Here  and  are points on the canopy boundary ;  is the outward normal at the point 

;  is the boundary scattering function; that is, the probability density that a 
photon having escaped from the canopy through the point  and in the direction  will 
come back to it through the point  and in the direction ; and  is a photon 
source at the canopy boundary . Both  and  are wavelength dependent.  
 
The radiative transfer problem can now be formulated as follows: find the intensity  which 
satisfies the transport equation (Eq. (1)) within the domain V and the condition given by Eq. (6) 
on the canopy boundary . The maximum boundary reflectance, , canopy optical path, 

, and single scattering albedo , (cf. Chapter 2, Section 11) are basic characteristics of 
boundary reflective properties, canopy structure and leaf optical properties. It follows from the 
uniqueness theorem that the conditions ,   and  guarantee the 
existence and uniqueness of the solution to the boundary value problem given by Eq. (3) and (6). 
Specification of the boundary conditions for the upper, , lower, , and lateral, , 
surfaces of the parallelepiped are discussed below.  
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Canopy upper boundary. The upper canopy boundary  is adjacent to the atmosphere. 
Therefore radiation penetrating into the canopy through the upper boundary  is determined 
by atmospheric conditions, i.e., the upper canopy boundary is exposed to both direct solar 
irradiance and diffuse radiation from all points of the sky. The former is caused by photons in the 
solar parallel beam which arrive at the upper canopy boundary without experiencing a collision. 
The latter results from photon-atmosphere interactions. Thus, the boundary condition at the 
upper boundary  can be written as 
 
        (7) 
 
Here  and  are intensities of the solar beam and diffuse radiation at point  on 
the boundary  and  is the Dirac delta function. Both  and  are 
wavelength dependent. The direction of the solar beam is given by the unit vector . 
Since  coincides with the cosine of the polar angle  of the direction , the condition 

 for incoming directions can be written as . In other words, the upper 
boundary condition is formulated for downward directions. In terms of notations used in Eq. (6), 

,  for  on the surface .  
 
The canopy-radiation regime is sensitive to the partition between the mono-directional and 
diffuse components of the incoming radiation. The ratio  of the mono-directional to the total 
radiation flux incident on the canopy is used to parameterize the partition; that is, 
 

     (8) 

 
Here  and  are monochromatic downward flux densities (irradiances) of mono-
directional and diffuse components of the incident radiation, i.e., 
 
     (9) 

 
where . The ratio  varies between 0 and 1 and depends on the direction of the 
mono-directional incident beam, wavelength and atmosphere conditions. This parameter along 
with the total downward flux  can be derived from satellite data [Diner et 
al., 1999a]. It is conventional, therefore, to parameterize the upper boundary condition in terms 
of these variables, i.e.,  
 

     (10) 

 
where  is the anisotropy factor of the diffuse radiation. 
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The HDRF and BHR defined in Eqs (3) and (4), respectively, are expressed in terms of solution 
of the transport equation with the upper boundary condition (Eq. (7)). If , the HDRF and 
BHR become the BRF and DHR, respectively. 
 
In many cases, the anisotropy of diffuse radiation can be assumed wavelength independent. A 
model of the anisotropy corresponding to clear-sky conditions proposed by Pokrowski [1929]  
 

      

 
is an example of the angular distribution of incoming diffuse radiation. In the case of the 
standard overcast sky ( ), the intensity  of the incoming diffuse radiation in the 
photosynthetically active region of solar spectrum, 400-700 nm, can be approximated by  
 

    ,  

 
where 1+b is the ratio between sky brightness in the zenith, , and at the horizon,  and 
it varies between 2.1 and 2.4 [Monteith and Unsworth, 1990]. Substituting the above equation 
into  and taking into account Eq. (9) one can express  and d0 as 
 

     (11) 

 
Canopy lower boundary. At the bottom of the canopy, a fraction of the radiation can be 
reflected back into the canopy by the ground. In the remote sensing problems, reflective 
properties of the canopy lower boundary are often approximated as 

,  where  is the 
bidirectional reflectance factor of the canopy ground. The canopy bottom does not emit the 
radiation at solar wavelengths and thus . Substituting these equations into Eq. (6) 
results in 
 
 ,   . (12) 

 
Here -  coincides with the cosine of the polar angle  of the direction . The 
condition  for incoming directions therefore can be written as , i.e., the lower 
boundary condition is formulated for upward directions.  
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Canopy lateral boundary. The radiation penetrating through the lateral sides of the canopy 
depends on the neighboring environment. Its influence on the radiation field within the canopy is 
especially pronounced near the lateral canopy boundary. Therefore inaccuracies in the lateral 
boundary conditions may cause distortions in the simulated radiation field within the domain V. 
These features should be taken into account when 3D radiation distribution in a vegetation 
canopy of a small area is investigated. The problem of photon transport in such canopies arises, 
for example, in the context of optimal planting and cutting of industrial wood, land surface 
climatology, and plant physiology.  

 
 

Figure 3. Computer simulated Norway spruce stand about 50 km near Goettingen, Germany, in the Harz 
mountains. The stand is about 45 years old and situated on the south slope. A 40´40 m2 section of the 
stand with 297 trees was sampled for reconstruction. The stem diameters varied from 6 to 28 m and the 
tallest trees were about 12.5 m in height. The trees were divided into five groups with respect to stem 
diameter. A model of a Norway spruce based on fractal theory was used to build a representative of each 
group [Knyazikhin et al., 1996]. Given the distribution of tree stems in the stand, the diameter of each 
tree, the entire sample site was generated (left panel). The right panel shows the spatial distribution of leaf 
area index L(x,y) at spatial resolution of 50 cm2, i.e., distribution of the mean leaf area index L(x,y) taken 
over each of 50 by 50 cm ground cells.  
 
In order to demonstrate the range of the influence of the neighboring environment we simulate 
two extreme situations for a small 40 by 40m sample stand bounded from below by a black 
surface (i.e.,  in Eq. (12) is set to zero). Canopy structure of this stand is shown in Fig. 3. In 
the first case, we “cut” the forest surrounding the sample plot. The incoming solar radiation can 
reach the sides of the sample stand without experiencing a collision in this case. The boundary 
condition (Eq. (6)) with  and , ,  
can be used to describe photons penetrating into the canopy through the lateral surface. In the 
second case, we “plant” a forest of an extremely high density around the sample stand so that no 
solar radiation can penetrate into the stand through the lateral boundary . The lateral 
boundary condition (Eq. (6)) takes the form , , . The radiative 
regimes in a real stand usually vary between these extreme situations. For each situation, the 
boundary value problem (Eqs. (1) and (6)) was solved and a vertical profile of mean downward 
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radiation flux density was evaluated. Figure 4 demonstrates downward fluxes normalized by the 
incident flux at noon on both a cloudy and clear sunny day. A downward radiation flux density 
evaluated by averaging the extinction coefficient  and area scattering phase function  over 
the 40 by 40m area first and then solving the radiative transfer equation is also plotted in this 
figure. One can see that the radiative regime in the sample stand is more sensitive to the lateral 
boundary conditions during cloudy days ( ). In both cases, a 3D medium transmits more 
radiation than those predicted by the 1D transport equation. 

  

Figure 4. Vertical profile of the downward radiation flux normalized by the incident flux derived from 
the one-dimensional (1D model) and three-dimensional (3D: black and 3D: white) models on a cloudy 
day ( ) and on a clear sunny day ( ). Curves 3D: black correspond to a forest stand 
surrounded by the optically black lateral boundary, and curves 3D: white to an isolated forest stand of the 
same size and structure (from Knyazikhin et al., [1997]). 
 
The following technique can be used to approximate the lateral boundary condition. One first 
calculates the radiative field in a vegetation canopy by solving a one-dimensional transport 
equation using average characteristics of canopy structure and optics over a given stand. Its 
solution, i.e. the vertical profile of the horizontally averaged radiation intensity, is then taken as 
the radiation penetrating through the lateral canopy boundary which, to some degree, accounts 
for photon interactions with both the stand and its neighboring environment. The size of an area 
impacted by such an approximation of the lateral boundary condition as a function of the 
adjoining vegetation and atmospheric conditions was studied by Kranigk [1996]. In particular, it 
has been shown that the “impacted area” consists of points being less than about 5m apart from 
the lateral boundary of a forest. Thus, the lateral boundary conditions can be expressed as 
 
       . (13) 
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Here  and  are wavelength dependent mean intensities of the direct and diffuse 
radiation at depth z predicted with the 1D radiative transfer equation. In terms of notations used 
in Eq. (6), ,  if  belongs to . The 
lateral side effects, however, decrease with distance from this boundary toward the center of the 
domain. It has been shown that these lateral effects can be neglected when the radiation regime is 
analyzed in a rather extended canopy. A “zero” boundary condition for the lateral surface can 
then be used to simulate canopy radiation regime [Knyazikhin et al., 1997]. 
 
 
4. Decomposition of the Boundary Value Problem for Radiative Transfer Equation 
 
The Green’s function concept allows us to express the solution to the transport equation with 
arbitrary sources and boundary conditions as a superposition of the solutions of some basic 
subproblems. In this section we demonstrate this technique with an example for canopy-surface 
system. It will be shown that the three-dimensional radiative transfer problem with a reflecting 
boundary can be expressed as a superposition of the solutions of two radiative transfer sub-
problems with purely absorbing boundaries ( ). The first one is formulated for a 
vegetation canopy illuminated from above by the incident radiation and bounded from below by 
an absorbing surface. We term this sub-problem a “black soil problem.” The second sub-
problem, called “S problem,” describes the radiative transfer in the same vegetation canopy 
which is illuminated from the bottom by anisotropic sources and bounded from above by a non-
reflecting surface. Such a decomposition underlies the retrieval technique for operational 
producing global leaf area index from data provided by two instruments, the moderate resolution 
imaging spectroradiometer (MODIS) and multiangle imaging spectroradiometer (MISR), during 
the Earth Observing System (EOS) Terra mission ([Knyazikhin et al., 1998a,b], [Myneni et al., 
2002]). The Green’s function formalism described in Section 6 of Chapter 2 and operator 
notations introduced in Section 7 of Chapter 2 are required to follow this section. 
 
Black Soil Problem. Consider the boundary value problem for the 3D radiative transfer equation 
in vegetation canopy   with the boundary scattering operator and 
source qB introduced in the previous section. We neglect lateral effects by assuming the zero 
boundary condition for the lateral surface . We represent a solution of the boundary value 
problem as the sum of two components, . The first term describes 
intensity of radiation in the vegetation canopy bounded from below by a non-reflecting surface 
and satisfies  
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  (14a) 
 
This is our first basic problem – the black soil problem.  
 
Canopy-Surface Interaction. The function Irest satisfies the radiative transfer equation 
 
   
 
and the boundary conditions expressed as 
 
   
   
  (14b) 
 
This boundary value problem describes radiation field due to the interaction between the 
underlying surface and the vegetation canopy. Unlike the black soil problem,  depends on the 
solution of the “complete transport problem,” i.e., . And, therefore, requires further 
transformations to decompose it sub-problems with .  
 
The lower boundary conditions can be rewritten as 
 

 . (15) 

 
Here T is downward radiation flux density at the canopy bottom, i.e.,  
 
 ,    (16) 

 
Note that the ratio  is a factor of  smaller than ground HDRF. A cosine-weighted 
integral of the ratio is the ground BHR  
 

  (17) 

 
Here  is the BRF of the canopy ground (see Eq. (12)). It is clear that the ground BHR depends 
on ground reflective properties, vegetation canopy and radiation incident on the canopy upper 
boundary. For horizontally inhomogeneous vegetation canopies, the downward radiation flux T 
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can vary significantly. However, it does not necessarily involve large variation in the BHR. As it 
follows from Eq. (17), its range of variation is given by  
 
   

   

  (18) 

 
If 
 
   

 
is independent on , the ground BHR becomes independent from  and the ground BHR 
coincides with the ground DHR. Here we neglect the dependence of the ground BHR on the 
intensity of downward radiation at the canopy bottom within range given by the inequality, Eq. 
(18).  
 
An effective ground anisotropy is another parameter used to characterize the canopy–ground 
interaction. This parameter, , is defined as  
 

  (19) 

 
Its cosine-weighted integral over downward directions is unity. In terms of these notations, the 
lower boundary conditions, Eq. (15), can be rewritten as  
 
 . (20) 
 
We neglect variations in rb and db due to variation in . However, the downward radiation flux 
density  is sensitive to both ground reflectance properties and radiation regime within the 
vegetation canopy. This variable must be carefully specified.  
 
We use Eq. (28) of Chapter 2 to express  in terms of the Green’s function, namely,  
 
  (21) 
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  (22a) 

 
where  
 
  (22b) 

 
is the intensity of radiation field at r generated by a point anisotropic source  
located at . Substituting Eq. (22) into Eq. (16) one obtains an integral equation for T 
 
  (23) 

 
Here  is the downward radiation flux density at the lower boundary for the case of a black 
surface underneath the vegetation canopy, i.e.,  
 
  (24) 

 
The kernel  is the downward radiation flux density at  due to the point anisotropic source 

,  
 
  (25) 

 
Note that  
 
  (26) 

 
is the intensity of radiation field in vegetation canopy generated by the isotropic homogeneous 
sources db located at the canopy bottom. It satisfies the equation  and boundary 
condition    This is our second “basic problem” – 
the “S problem.” It follows from this property that 
 
  (27) 

 
Thus integration of  over the lower boundary results in downward flux at  which 
accounts for contribution from all anisotropic sources at the canopy bottom.  
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Equations (22) and (23) are basic equations which describe canopy-ground interaction. They are 
parameterized in terms of ground reflectance properties (the ground BHR and effective ground 
anisotropy) which are independent on the vegetation canopy; the radiation field in the vegetation 
canopy bounded at the bottom by a black surface (black soil problem) and radiation field in the 
vegetation canopy generated by anisotropic heterogeneous source db located at the surface 
underneath the canopy (S problem). 
 
Decomposition Equations. Given  one can resolve the integral equation (23) and 
substitute it into Eq. (21). As a results one obtains a solution to the three-dimensional radiative 
transfer problem with the reflecting lower boundary . The integral equation (23) allows for 
an analytical solution in the case of a horizontally homogeneous vegetation canopy bounded 
from below by a homogeneous Lambertian surface (i.e., the ground BRF is constant with respect 
to angular variable and points on the canopy bottom). The radiation fluxes T,  become 
independent of horizontal coordinates x and y. The ground BHR is independent of on the 
intensity of downward radiation at the canopy bottom and coincides with the ground BRF, i.e., 

. The effective ground anisotropy is also independent on  and equal to . 
The solution of Eq. (23) is then  
 

  (28) 

 
where  
 
   

 
is the downward flux density at  generated by isotropic sources  distributed over the 
lower boundary and is given by Eq. (27). This variable is independent of points on the canopy 
bottom and varies between 0 and 1. Substituting Eq. (26) into Eq. (22) and accounting for Eq. 
(28) one gets the following decomposition of the boundary value problem into solutions of the 
black soil and S problems 
 

 . (29) 

 
In the case of horizontally inhomogeneous medium, however, Eq. (23) needs to be solved in 
order to decompose the solution of the boundary value problem. The following approximation to 

 can be performed. Consider the ratio 
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 , (30) 

 
which is the BHR calculated for the vegetation canopy illuminated by anisotropic sources 

 from below. We term the ratio, Eq. (30) a “bottom-of-canopy 
reflectance”. For horizontally inhomogeneous vegetation canopies, the downward radiation flux 
T can vary significantly. However, it does not necessarily involve large variation in RS. A 
theoretical explanation of this result can be found in the linear operator analysis [Krein, 1967] 
and, specifically, in its applications to radiative transfer theory ([Knyazikhin, 1991]; [Kaufmann 
et al., 2000]; [Zhang et al., 2002]; [Lyapustin and Knyazikhin, 2002]). One of the theorems of 
the operator theory states that for a continuous positive linear operator B, minimum, , and 
maximum, , values of the function  converge to the maximum eigenvalue, , 
of the operator B from below and above for any arbitrarily chosen positive function u, i.e., 

 and  − tends to zero as n tends to infinity. For example, for the problem 
of atmospheric radiative transfer over common land–surface types, including vegetation, soil 
sand, and snow, the proximity of  and  to a high accuracy holds at  [Lyapustin and 
Knyazikhin, 2002]. Here the numerator in Eq. (30) can be treated as a positive integral operator 
B with a kernel . For n=1, the ratio (30) varies within an interval [ , ] around the 
maximum eigenvalue which is independent of . We will demonstrate the eigenvalue 
technique with an example for canopy spectral response to the incident radiation in next section. 
Here we assume that an acceptable accuracy takes place at n=1 and we replace  with the 
maximum eigenvalue  of an integral operator with the kernel . 
 
Equation (23) can be rewritten as  
 
  (31) 
 
Solving this equation for T and substituting it into Eq. (21) one gets 
 

  (32) 

 
where  is given by Eq. (22b). Further simplification can be done by either replacing 

 or the ratio in the integral term of Eq. (32) with a mean value over the canopy 
bottom. In the former case we have 
 

 . (33) 
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where  is the solution of the S problem and given by Eq. (26);  and  are mean values of 
the ground BHR and downward flux density for the black soil problem over the lower boundary 

, respectively. Thus we have parameterized the solution of the transport problem in terms of 
the ground BHR and solutions of the “black-soil problem,” , and “S problem,” . The 
solution of the “black-soil problem” depends on Sun-view geometry, canopy architecture, and 
spectral properties of the leaves. The "S problem" depends on spectral properties of the leaves 
and canopy structure only. Substituting Eq. (33) into definitions of the surface HDRF, BHR, 
BRF, BRDF, and DHR, one obtains the following decompositions of these reflectance quantities 
 

 , (34) 

 

 . (35) 

 
Here  and  are HDRF and BHR calculated for a vegetation canopy bounded from below 
by a black surface;  is the canopy transmittance defined as the ratio of the mean downward 
flux at the canopy lower boundary to mean incident irradiance  where the 
angle brackets denotes the mean over the upper (subscript “t”) or lower boundary (subscript “b”) 
of the parallelepiperd V. If the ratio  of the mono-directional to the total incident radiation 
flux is unity, the HDRF and BHR become BRF and DHR, respectively. The transmittance 
quantity  is the ratio of the mean radiance, , leaving the top of the vegetation 
canopy to mean radiance reflected from an ideal Lambertian surface into the same beam 
geometry and illuminated by anisotropic sources located at the canopy bottom, i.e., 
 

 . (36) 

 
Finally,  is the transmittance of the vegetation canopy illuminated from below by anisotropic 
sources, i.e., the ratio of the mean irradiance exitance to the mean irradiance of the radiation 
incident on the canopy from below,  
 

  (37) 

 
Thus, the three-dimensional radiation field can be expressed in terms of ground reflectance 
properties which are independent on the medium; the radiation field in the medium bounded at 
the bottom by a black surface (black soil problem); and the radiation field in the medium 
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generated by anisotropic heterogeneous sources located at the surface underneath the medium (S 
problem). Solutions to the black soil and S problems are surface independent parameters since no 
multiple interaction of radiation between the medium and underlying surface is possible and, 
therefore, have intrinsic canopy information. This decomposition of underlay the retrieval 
technique for operational producing global leaf area index from data provided by the MODIS 
and MISR instruments.  
 
 
Problem Sets 
 
• Problem 1. Show that HDRF=BRF=BHR=DHR for Lambertian surfaces. 
• Problem 2. Show the validity of Eq. (5). 
• Problem 3. Derive the BRF and DHR for a mirror. 
• Problem 4. Let a vegetation canopy located in the parallelepiped V is isotropically 

illuminated from above and bounded from below and lateral sides by a black surface, i.e., 
 if  and , otherwise. Prove that the BHR is less than 1. 

Use Theorem I.1. 
• Problem 5. Prove that the BHR is an increasing function with respect to single scattering 

albedo. Do not use the assumptions of the Problem 4. Use Theorem I.1.  
• Problem 6. Derive Eq. (11). Explain why Eq. (11) is not used in remote sensing of 

vegetation.  
• Problem 7. Show that  for the boundary conditions (Eqs (7), (10) and (13)) is given by 

   

This is albedo of the surface underneath the canopy.  
• Problem 8. Show that . 
• Problem 9. Demonstrate the validity of Eq. (19). 
• Problem 10. Find the effective ground reflectance for the case of Lambertian surface 

underneath the canopy.  
• Problem 11. Show that  
   

• Problem 12. Find the effective ground anisotropy for the case of Lambertian surface 
underneath the canopy.  

• Problem 13. Show that the function  
   

is the intensity of radiation field in vegetation canopy generated by the anisotropic 
heterogeneous source db located at the canopy bottom. It follows from this property that  
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• Problem 14. Show that for a horizontally homogeneous vegetation canopy bounded from 
below by a homogeneous Lambertian surface the downward flux density,  

   

does not depend on rb and varies between 0 and 1. 
• Problem 15. Show that for a horizontally homogeneous vegetation canopy bounded from 

below by a homogeneous Lambertian surface Eq. (26) does not depend on horizontal 
variables x and y.  
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