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1. Vegetation Canopy Structure 
 
Turbid Medium Approximation: The vegetation canopy is idealized as a medium filled 
densely with small planar elements of negligible thickness and area, i.e., a turbid medium. All 
organs other than green leaves are ignored for the time being. Two important structural attributes 
– leaf area density and leaf normal orientation distribution – are first defined in order to quantify 
vegetation-photon interactions. 
 
Leaf Area Density Distribution: The one-sided green leaf area per unit volume in the 
vegetation canopy is defined as the leaf area density distribution  )r(u L (m-1). The quantity, 
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is called the leaf area index, one-sided green leaf area per unit ground area at (x,y). Here ZH is 
depth of the vegetation canopy. The vertical distribution of (z),u L  
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where XS and YS are horizontal dimensions of a stand, shows the profile of leaf area distribution 
along the vertical. The variables L and (z)u L are key parameters of climate, hydrology, bio-
geochemistry and ecology models as they govern the exchange of energy, mass and momentum 
between the land surface and the atmospheric planetary boundary layer. 
 
Direct measurements of L and (z)u L are labor-intensive and expensive. The modeling of )r(u L  
is a challenge as it requires computer simulation of vegetation canopies based on tedious field 
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measurements (Fig. 1). Hence the interest in remote sensing of these variables from space-based 
measurements of reflected solar radiation and lidar backscatter returns (Fig. 2).  

 
 

Figure 1. Computer simulated Norway spruce stand about 50 km near Goettingen, Germany, in the Harz
mountains. The stand is about 45 years old and situated on the south slope. A 40×40 m2 section of the 
stand with 297 trees was sampled for reconstruction. The stem diameters varied from 6 to 28 m and the
tallest trees were about 12.5 m in height. The trees were divided into five groups with respect to stem 
diameter. A model of a Norway spruce based on fractal theory was used to build a representative of each
group [Knyazikhin et al., 1996]. Given the distribution of tree stems in the stand, the diameter of each
tree, the entire sample site was generated (left panel). The right panel shows the spatial distribution of leaf 
area index L(x,y) at spatial resolution of 50 cm2, i.e., distribution of the mean leaf area index L(x,y) taken
over each of 50 by 50 cm ground cells.  
 

  
 
 
Figure 2. Global distribution of annual average vegetation green leaf area index L(x,y) at 1 km resolution
derived from MODIS measurements of surface reflectances [Knyazikhin et al., 1998]. Data from a four
year period, July 2000 to June 2004, were used to produce this image. This MODIS product has been 
developed from an algorithm based on radiative transfer theory developed in this book. 

0.0 0.1 0.3 0.5 0.8 1.2 1.6 2.1 2.8 3.4 4.4 5.4 6.0 7.0 No data 



3 

 
Needle Area Density Distribution: For non-flat leaves such as conifer needles, the counterpart 
to one-sided leaf area is the hemi-surface or half-of-total leaf (needle) area. In coniferous 
canopies, thus, the hemi-surface needle area is used in expressing the leaf area density ( Lu ) and 
leaf area index (LAI).  
 
Leaf Normal Orientation Distribution: Let  
 
 )2,0(),1,0(),,(),( LLLLLLL π∈ϕ∈µϕµ≡ϕθ≡Ω   
 
be the normal to the upper face of a leaf element. If this normal is in the lower hemisphere, the 
lower face may be treated as the upper face, i.e., the definition of the upper face of a leaf element 
is the face the normal to which is in the upper hemisphere. Hence, the space of leaf normal 
orientation is always π2  steradians. Further, let )(g)(1/2 LL Ωπ  be the probability density 
function of leaf normal orientation, 
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If Lµ and Lϕ  are assumed independent, then  
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where )(µg LL and )(h)(1/2 LL ϕπ  are the probability density functions of leaf normal inclination 
and azimuth, respectively, and 
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The functions )(g LL Ω , )(µg LL  and )(h LL ϕ  will depend on the location r  in the vegetation 
canopy but this has been suppressed for clarity.  
 
The simplest model of leaf normal orientation distribution is constant leaf normal inclination and 
uniform distribution of azimuths, 
 
 ).µδ(µ2π
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The following example model distribution functions for leaf normal inclination are widely used 
[Bunnik, 1978]: (1) planophile – mostly horizontal leaves, (2) erectophile – mostly erect leaves, 
(3) plagiophile – mostly leaves at 45 degrees, (4) extremophile – mostly horizontal and vertical 
leaves, (5) uniform – all inclinations equally probable, and (6) spherical – leaf normals 
distributed as on a sphere. These distributions can be expressed as, 
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 Planophile:   ,)2θcos(1π

2θsin  )(θg LLLL +=   (5a) 

 Erectophile:   ),2θcos(1π
2θsin  )(θg LLLL −=  (5b) 

 Plagiophile:   ),4θcos(1π
2θsin  )(θg LLLL −=  (5c) 

 Extremophile:   ),4θcos(1π
2θsin  )(θg LLLL +=  (5d) 

 Uniform:   ,
π
2sin )(θg LLL =θ  (5e) 

 Spherical:   ,θsin  sin)(θg LLLL =θ  (5f) 
 
and are plotted in Fig. 3.  
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Figure 3. The LL sin)(g θθ
for (a) planophile (mostly 
horizontall leaves), (b) 
erectorphile (mostly vertical 
leaves), (c) pla-giophile 
(leaves inclined mostly at 
about 450), (d) extremephile 
(mostly horizontal and vertical 
leaves) and (e) uniform (all 
inclina-tions equally probable) 
distributions. 

Certain plants, such as soybeans and sunflowers, exhibit heliotropism, where the leaf azimuths 
have a preferred orientation with respect to the solar azimuth. A simple model for Lh  in such 
canopies is [Verstraete, 1987], 
 
 η),φ(φcosπ

1φ),(φh2π
1

L
2

LL −−=  (6) 

 
where η  is the difference between the azimuth of the maximum of the distribution function Lh  
and the azimuth of the incident photon ϕ . In the case of diaheliotropic distributions, which tend 
to maximize the projected leaf area to the incident stream 0=η . On the other hand, 
paraheliotropic distributions tens to minimize the leaf area projected to the incident stream, 

π=η 5.0 . A more general model for the leaf normal orientations is the beta distribution, the 
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parameters of which can be obtained from fits to field measurements of the leaf normal 
orientation [Goel and Strebel, 1984]. 
 
Needle and shoot orientation: The orientation of three-dimensional and non-cylindrical conifer 
needles however cannot be defined by one vector alone (as the leaf normal in case of flat leaves) 
but an additional vector is needed. These two vectors can be defined, for example, as the main 
axis of a needle and a normal to this axis (Oker-Blom and Kellomäki 1982). The needle axis 
defines the needle inclination for which the same characterizations as for planar leaves (e.g. a 
planophile or an erectophile needle inclination distribution) can be used. Whenever the needles 
are not cylindrical, the rotation angle, defined by the normal to the needle axis, must in addition 
be specified. We define the spherical needle orientation so that the needle main axis has no 
preferred direction in space and, for any fixed direction of the needle axis, the rotation angle is 
uniformly distributed.  
 
Conifer needles are typically tightly grouped into annual shoots, which (for reasons that will 
become clear later) are often used as the basic foliage elements in modeling radiative transfer in 
coniferous canopies. To define shoot orientation, the same approach as defined above can be 
used (Stenberg 1996). For example, the main shoot axis has equal probability of pointing in any 
direction in the case of spherical shoot orientation distribution. 
 
The shoot inclination in many conifer species changes with depth in the canopy so that it 
becomes more horizontal deeper down in the canopy. In shade-tolerant species, especially, this 
change is accompanied by changes in the shoot structure so that, for example, shade shoots are 
flatter than ‘sun shoots’ (Fig. 4). 
 

 
Figure 4. Determination of shoot 
orientation and illustration of 
‘sun shoot’ and ‘shade shoot’ 
geometry. 

 
 
2. Vegetation Canopy Optics 
 
A photon incident on a leaf element can either be absorbed or scattered depending on its 
frequency.  If the scattered photon emerges from the same side of the leaf as the incident photon, 
the event is termed reflection.  Likewise, if the scattered photon exits the leaf from the opposite 
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side, the event is termed transmission. Scattering of solar radiation by green leaves does not 
involve frequency shifting interactions, but is dependent on the wavelength.  
 
A photon incident on a leaf element can either be specularly reflected from the surface 
depending on its roughness or emerge diffused from interactions in the leaf interior. Some leaves 
can be quite smooth from a coat of wax-like material, while other leaves can have hairs making 
the surface rough. Light reflected from the leaf surface can be polarized as well. Specularly 
reflected photons contain no information about the constitution of the leaf material as this is a 
surface phenomenon. Photons that do not suffer surface reflection enter the interior of the leaf, 
where they are either absorbed or refracted because of the many refractive index discontinuities 
between the cell walls and intervening air cavities. Photons that are not absorbed in the interior 
of the leaf emerge on both sides, generally diffused in all directions. 
 
Leaf Optics: The interaction of the electromagnetic radiation with plant leaves (reflection, 
transmission, absorption) depends on the chemical and physical characteristics of these leaves. 
The absorption is essentially a function of changes in the spin and angular momentum of 
electrons, transitions between orbital states of electrons in particular atoms (visible: chlorophylls 
‘a’ and ‘b’, carotenoids, brown pigments, and other accessory pigments) and vibrational-
rotational modes within the polyatomic molecules (near infrared and middle infrared: water). 
The refractive index discontinueties within the leaf ( 40.1n ≈  for hydrated cell walls, 33.1n ≈  
for water at 1 mµ , and 1n =  for air) induce scattering.  
 

 
 

Figure 5. Schematic representation 
of Monocot (left) and Dicot (right) 
leaves. Leaf surface (epidermis) is 
shown in yellow, internal cells 
(mesophyll) are in green, and mist 
air space is in white. 

 
Allen et al. (1969) has developed one early model of the leaf optical properties, called ‘plate 
model’. The model considers a compact plant leaf as a single semi-transparent plate with plane 
parallel surfaces, illuminated by partially isotropic light. The expression for the total reflectance 
of the plate was derived by summing the amplitudes of successive reflections and refractions. 
However, plant leaves are not compact but present a wide range of anatomical structures which 
depend on the species (Fig. 5), which significantly limits the applicability of the ‘plate model’. 
Jacquemoud and Baret (1990) have implemented the ‘PROSPECT’ model, one of the most 
popular ‘generalized plate model’ today. In this model a leaf is represented by a pile of N 
homogeneous layers separated by N-1 air spaces. The model considers surface layer and 
remaining N-1 internal layers separately to account for the fact that only surface layer may be 
exposed to non-isotropic radiation, while internal layers interact with the scattered radiation only. 
The process of refraction in the system of 1 and N-1 layers of the PROSPECT model is shown in 
Fig. 6a. An example of simulated leaf transmittance as a function of the spread of incidence 
angle of the incoming beam is shown in Fig. 6b.  



7 

1 plate

N-1 plates

1 plate

N-1 plates

 
 
Figure 6. Modeling of leaf optics with the PROPSPECT model. The left panel shows the model 
representation of the leaf as a pile of N plates (1 surface plate and N-1 internal plates). The right panel 
shows the PROSPECT model simulations of leaf transmittance as a function of the spread of incidence 
angle of the incoming beam. Here 0=α  corresponds to a monodirectional beam, while 

90=α corresponds to a hemispherical flux. 
 
Overall, the ‘PROSPECT’ model simulates the hemispherical reflectance and transmittance of 
various plant leaves (monocots, dicots or senescent leaves) over the solar spectrum (from 400 nm 
to 2500 nm). Scattering is described by a spectral refractive index (n) and a structure parameter, 
specifying the average number of air/cell wall interfaces within mesophyll (N). Absorption is 
modeled using pigment concentration (Ca+b, µg cm−2), water content (Cw, cm or g cm−2), and the 
corresponding specific spectral absorption coefficients (Ka+b and Kw). The internal parameters of 
the model (n, Ka+b and Kw) were estimated with field measurements (LOPEX data base for 
leaves, needles, stems, etc.) The remaining three key parameters (N, Ca+b, Cw) constitute the 
model’s input to be adjusted for particular leaves types. 
 
Leaf Scattering Phase Function: The angular distribution of radiant energy scattered by a leaf 
element is specified by the leaf element scattering phase function. Consider an elemental leaf 
area dσL on which monochromatic radiation of intensity I is incident along Ω′ . The amount of 
radiant energy flowing through the leaf area dσL along Ω′  confined to the solid angle Ω′d  in a 
time interval dt is 
 
 dt.ddσ)I(Ed LL Ω′Ω′•ΩΩ′=′   
 
The wavelength dependence is assumed and will not be explicitly denoted in what follows. One 
part of Ed ′  is absorbed and the rest is scattered in all directions. Consider the direction Ω  about 
the solid angle Ωd  into which some part of the incident energy is scattered Ed  upon interaction 
with the leaf element. The leaf scattering phase function Lγ  which introduces the appropriate 
stream is 
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The leaf albedo, ),( LL ΩΩ′ω , is the fraction of incident energy scattered by the leaf, i.e., 
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Radiant energy may be incident on the upper or the lower faces of the leaf element (−or +) and 
the scattering event may be either reflection or transmission. Integration of the leaf scattering 
phase function over the appropriate solid angles gives the leaf hemispherical reflectance m

Lρ  and 
transmittance m

Lτ coefficients: 
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The leaf albedo ),( LL ΩΩ′ω  is simply the sum of Lρ  and Lτ ; for example, 
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and in general depends on the incident photon direction Ω′  and the leaf normal orientation LΩ . 
Typical spectra of a green leaf reflectance Lρ and transmittance Lτ are shown in Fig. 7. The 
diffuse and specular leaf scattering phase functions are discussed below. 
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Figure 7. Typical reflectance (left axis) 
and transmittance (left axis) spectra of 
an individual plant leaf from 400 to 
2000 nm for normal incidence. Note 
the following features – strong 
absorption at blue and red, moderate 
scattering at green, very strong 
scattering at near-infrared wavelengths 
and water absorption peaks in the mid-
infra red. The dramatic increase in 
scattering from red (about 700 nm) to 
near-infrared (800-1100 nm) is often 
the basis for remote sensing of green 
vegetation. 

 
Diffuse Leaf Scattering Phase Function: A simple but realistic model for diffuse leaf scattering 
phase function was proposed by Ross [1981] and others, and is extensively used in remote 
sensing works. In this model, a fraction d,Lρ  of incident energy is assumed reflected in a cosine 
distribution (i.e., Lambertian) about the leaf normal. Similarly, another fraction d,Lτ  is assumed 
transmitted in a cosine distribution on the opposite side of the leaf. In this model, transmission 
and reflection do not depend on whether radiant energy is incident on the upper or the lower side 
of the leaf element. This bi-Lambertian model can be written as  
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Specular Leaf Scattering Phase Function: Specular reflection from the leaf surface depends on 
the angle of incidence α′ (the angle between the leaf normal LΩ  and the incident photon 
direction Ω , the wax coat refractive index n and the roughness of the leaf surface κ. The index 
of refraction n is a weak function of wavelength and a standard value of about 0.9 is used in most 
studies (which is why specularly reflected light from smooth leaves looks white). A simple 
model for specular leaf scattering phase function S,Lγ  is 
 
 ).(δ),K()α'(n,F),(γ *

2rLSL, Ω•Ωα′κ=ΩΩ→Ω′  (10) 
 
Here, rF  is the Fresnel reflectance averaged over the polarization states, 
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where sin n/)(sins α′=θ . The function K defines the correction factor for Fresnel reflection 
( 1K0 ≤≤ ), and the argument κ ≈ 0.1 to 0.3 characterizes the roughness of the surface. A simple 
model for leaf surface roughness is 
 
 [ ].)αtan(κexp)αK(k, ′−=′   
 
The function δ2 is a surface delta function, 
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The vector ),( L

** ΩΩΩ=Ω  defines the direction of specular reflection. The leaf albedo for 
specular reflection is therefore, 
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3. Total Interaction Coefficient 
 
The probability that a photon while traveling a distance dξ  in the medium will interact with the 
elements of the host medium is given by )dξ,rσ( Ω  where ),rσ( Ω is the total interaction 
coefficient (m-1). This probability can be derived as follows. 
 
Consider an elementary volume dSdξ  at r in the medium and which contains a sufficient number 
of small planar leaf elements of negligible thickness. The probability that photons in the incident 
radiation will collide with leaf elements in this volume is given by the ratio of the total shadow 
area of leaves on a plane perpendicular to the direction of photon travel Ω  to the area dS , 
 

 dS
 lar toperpendicu plane aon  area shadow total)dξ,rσ( Ω≡Ω   
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||s  ...  ||s ||s LNNL22L11 Ω•Ω++Ω•Ω+Ω•Ω
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where is  is the area of leaf element of orientation LiΩ . If the leaf elements are sufficiently small 
and numerous, their shadows do not overlap and, the ratio of the area of all leaf elements is of 
orientation LiΩ  to the total leaf area oS in the elementary volume is equivalent to the number or 
the probability of leaf elements of orientation LiΩ , that is, 
 
 . )d,r()g(1/2   )/S(s LiLiLoLii ΩΩπ=Ω   
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Therefore, 
 
 ),r(G)r(u),rσ( L Ω=Ω , (13) 
 
because /dSdξ(So ) is the leaf area per unit volume or the leaf area density )r(uL . The function 

),rG( Ω  is the geometry factor, first proposed by Ross [1981], and may be defined as the 
projection of unit leaf area at r onto a plane perpendicular to the direction of photon travel Ω . 
The geometry factor G satisfies the following condition: 
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Example G−functions for model leaf normal orientations are shown in Fig. 8.  
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Figure 8. The G-function with 
projection zenith angle θ for (a) 
planophile, (b) erectophile, (c) 
plagiophile, (d) extremophile and (e) 
spherical leaf normal distribution 
functions. A distribution with mostly 
horizontal leaves (planophile) has a 
higher probability of intcercepting 
photons incident from directions 
close to the vertical and vice-versa. 
The G-function for uniform 
orientation is equal to one-half. 
Variations seen in the figure are due 
to numerical errors. 

It is important to note that the geometry factor is an explicit function of the direction of photon 
travel Ω in the general case of non-uniformly distributed leaf normals. This imbues directional 
dependence to the interaction coefficients in the case of vegetation canopies, that is, the 
vegetation canopy radiation transport is non-rotationally invariant. The transport problem reduce 
to the classical rotationally invariant form only in the case of spherically distributed leaf normals 
(G = 0.5). Another noteworthy point is the frequency independence of σ , that is, the extinction 
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probabilities for photons in vegetation media are determined by the structure of the canopy rather 
than photon frequency or the optics of the canopy. 
The total interaction coefficient ),rσ( Ω  can be estimated from transmission measurements made 
below the vegetation canopy at wavelengths where leaves strongly absorb the incident radiation. 
Such measurements can be inverted to solve for the leaf area density distribution )r(uL  and the 
leaf normal orientation distribution function )(g)2/1( LL Ωπ . 
 
The G-function for needles and shoots: The geometry factor G for needles varies with the 
cross-sectional needle shape, including forms close to a half circle (Scots pine) or a rhomb 
(Norway spruce), and cannot be calculated using the simple expressions (sf. Problem Sets, 
Problem 8). For vertical needles with uniform rotation angle, however, the same value 

θπ= sin)/2(G  as for vertical leaves is obtained (Oker-Blom and Kellomäki 1982). More 
importantly, the condition given by Eq. (14) that the mean of G over all possible directions 
equals 0.5 holds true also for needles, irrespective of their shape as long as they are convex 
(Lang 1991). Also, the G value of spherically oriented needles equals 0.5 for all directions of the 
incoming beam. 
 
When using the coniferous shoot as the basic foliage element, the geometry factor G corresponds 
to the ratio of the shoot’s silhouette area on a plane perpendicular to the direction of photon 
travel to the hemi-surface needle area. Oker-Blom and Smolander (1988) defined it as the 
silhouette to total area ratio (STAR), where the total (all-sided) needle area was used in the 
denominator. Because here we use the hemi-surface leaf area as the common basis for both flat 
leaves and needles, the shoot geometry factor G equals STAR2× . 
 
The G value of spherically oriented shoots ( STAR2× ) no longer equals 0.5 but is essentially 
smaller due to needle overlapping in the shoot (i.e. the shoot is not a convex object). Empirical 
data for Scots pine and Norway spruce shoots show a range of approximately 0.2 to 0.4 (smaller 
values in the upper canopy and higher values in lower canopy) and a mean around 0.3 for 

STAR2× . This corresponds to a 40 % reduction in the G value of shoots as compared to that of 
single leaves or needles (for which G=0.5)  
 
 
4. Differential Scattering Coefficient 
 
The probability that a photon while traveling a distance ξd  in the medium will scatter from 
direction Ω′  to direction Ω  is given by dξ)d,r(s ΩΩ→Ω′σ  where sσ  is the differential 
scattering coefficient (m-1 sr-1). This probability can be derived as follows. 
 
Consider an elementary volume dSdξ  at r in the medium and which contains a sufficient number 
of small planar leaf elements of negligible thickness. The probability that photons incident along 
Ω′  will scatter into a differential solid angle about Ω  is given by 
 

 dS
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s
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=ΩΩ→Ω′   
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where is  is the area of leaf element of orientation LiΩ  and Lγ  is the scattering phase function. 
The point interactions are assumed to be independent and uncorrelated.  Implicit in the 
formulation of the above is the assumption that the leaf elements are sufficiently small and 
numerous. The ratio of the area of all leaf elements is of orientation LiΩ  to the total leaf area 

oS in the elementary volume is therefore equivalent to the number or the probability of leaf 
elements of orientation LiΩ , that is, , )d,r()g(1/2   )/S(s LiLiLoLii ΩΩπ=Ω  and,  
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Thus the differential scattering coefficient may be written as, 
 
 ),r(1)r(u  ),r(σ Ls Ω→Ω′Γ

π
=Ω→Ω′ , (15) 

 
because /dSdξ(So ) is the leaf area per unit volume or the leaf area density )r(uL . Here Γπ)/1(  is 
the area scattering phase function first proposed by Ross [1981]. It is important to note that the 
differential scattering coefficient is non-rotationally invariant, that is, it is an explicit function of 
the polar coordinates of Ω′  and Ω . It can be reduced to the rotationally invariant form, 

),r(),r( ss Ω•Ω′σ=Ω→Ω′σ  in a few limited cases. This property precludes the use of Legendre 
polynomial expansion and the addition theorem typically used in transport theory for handling 
the scattering integral. 
 
The scattering phase function combines diffuse scattering from the interior of a leaf and specular 
reflection from the leaf surface, 
 
 ).,r(Γ),r(Γ),rΓ( sd Ω→Ω′+Ω→Ω′=Ω→Ω′   
 
The functions dΓ  and sΓ  are discussed below. 
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Area Scattering Phase Function for Diffuse Scattering: With the bi-Lambertian leaf scattering 
phase function introduced earlier [Eq. (9)], the diffuse area scattering phase function 

),r(),r( dd Ω′→ΩΓ=Ω→Ω′Γ  may be written as,  
 
 ,),r(Γτ),r(Γρ),r(Γ dL,ddL,dd Ω→Ω′+Ω→Ω′=Ω→Ω′ +−  (16) 
 
where, 
 

 .)()()(µgdµd2π
1)( LLL,LL

2π

0
L

1

0
Ld Ω•Ω′Ω•Ωϕϕ±=Ω→Ω′Γ ∫∫±  (17) 

 
The (+) in the above definition indicates that the Lϕ  integration is over that portion of the 
interval ]2,0[ π  for which the integrand is either positive (+) or negative (−). The dependence on 
spatial point r is suppressed for clarity. The bi-Lambertian phase function imbues the area 
scattering phase function with a useful symmetry property, 
 
 ).()()( ddd Ω−→Ω′−Γ=Ω′→ΩΓ=Ω→Ω′Γ   
 
For the special case of d,Ld,L τ=ρ , an additional symmetry holds, 
 
 ).()( dd Ω→Ω′−Γ=Ω→Ω′Γ   
 
An expression for the diffuse area scattering phase function can be derived from Eqs. (16) and 
(17) in canopies with horizontal, vertical and uniformly distributed leaf normals. For horizontal 
leaves 1L =µ , one obtains,  
 

 
⎪⎩

⎪
⎨
⎧

<′

>′
=Ω→Ω′

0.µµ   |,µ'µ|ρ
0,µµ   ,µ'µτ

)(Γ
L,d

L,d
d  (18) 

 
For vertical leaf orientations ( 0µ L = ) 
 
 22

1d 11)()( µ′−µ−βΓ=Ω→Ω′Γ , (19) 
 
where ϕ′−ϕ≡β ; π≤β≤ 20 , and,  
 

 .βcos2
τ

βcosβ)(sinβ2π
ω

)( dL,dL,
1 +−=βΓ   

 
In the case of spherically distributed leaf normals, the rotationally invariant scattering phase 
function is 
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 ,βcosπ
τβcosβ)(sinβ3π

ω)( LL
d +−=Ω→Ω′Γ  (20) 

 
where )arccos( Ω•Ω′≡β . This form of dΓ  is illustrated in Fig. 9. 
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Figure 9. The area scattering 
phase function )( Ω→Ω′Γ for 
uniformly distributed leaf 
normals. Each leaf is assumed 
to scatter according to the bi-
Lambertian model. This 
function is rotationally
invariant and in such cases the 
radiative transfer equation can 
be solved using standard 
methods developed in 
astrophysics and atmospheric 
physics. 

In the general case of distributed leaf normals, the non-rotationally invariant form of the 
scattering kernel must be solved numerically [Eq. (17)]. Some simplifications are possible in the 
case of uniform distribution of leaf normal azimuths 1hL =  and the bi-Lambertian leaf 
scattering phase function. This is achieved by azimuthal averaging of the scattering kernel, 
 

 )(d2π
1µ)µ( d

2π

0
d Ω→Ω′Γϕ=→′Γ ∫   

 [ ],),,(),,()(gd
1

0
Ld,LLd,LLLL∫ µµ′µΨρ+µµ′µΨτµµ= −+  (21) 

 
where 
 

 ).()(dd
4

1)(),,( L

2

0
LL

2

0
2L Ω•ΩΩ•Ω′ϕϕ

π
±=µµ′µΨ ∫∫

ππ
±  (22) 

 
The double integration over ϕ  and Lϕ  for bi-Lambertian scattering distributions also eliminates 
ϕ′ . Evaluation of the double integral in Eq. (22) gives [cf. Shultis and Myneni, 1988], 
 
 ),,(H),(H),(H),(H),,( LLLLL µµ′µµ−+µµ′±µµ=µµ′µΨ± m  (23) 
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where the H function is, 
 

 
[ ]⎪

⎪
⎩

⎪⎪
⎨

⎧

µϕµ−µ−+µϕµµ
π

−<θθ
>θθµµ

=µµ

otherwise,)(sin11)(1
,1)cot(cotif,0

,1)cot(cotif,
),(H

t
2
L

2
tL

L

LL

L   

 
and, 
 
 ).(cotcot)(sin tLt µ−ϕ−π=θθ−=µϕ   
 
The H function is shown in Fig. 10.  
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Figure 10. A contour plot of H(µ,µL) function. 
 
The azimuthally averaged area scattering phase function also possesses symmetry properties, 
namely, 
 
 ).()()( ddd µ−→µ′−Γ=µ′→µΓ=µ→µ′Γ   
 
For the special case of d,Ld,L τ=ρ , Eqs. (21) reduces to,  
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 [ ][ ]),(H),(H),(H),(H)(gd
2

)( LLLL

1

0
LLL

d,L
d µµ′−+µµ′µµ−+µµµµ

ω
=µ→µ′Γ ∫   

 ,),(),()(gd2

1

0
LLLLL

d,L ∫ µµ′ψµµψµµ
ω

=  (24) 

 
and an additional symmetry occurs, µ).µ(µ)( dd −→′−Γ=→µ′Γ  The function ψ  in Eq. (24) is 
given in the Problem 8 of the Problems Sets Section). In the case of horizontal leaf orientation, 
the area scattering phase function is independent of exit azimuth [Eq. (18)]. However, in the case 
of vertical leaves, this is not so [Eq. (19)], and integration over ϕ  from 0 to π2  or alternately 
over β  from 0 to π  results in, 
 

 .11
2

)( 22
2

d,L
d µ′−µ−

π
ω

=µ→µ′Γ  (25) 

 
The scattering coefficient for diffuse bi-Lambertian scattering from the leaf interior sσ′  has the 
explicit form [cf. Eq. (15), (10)], 
 
 )(Γdπ

1)r(u),r(σ d
4π

Ls Ω→Ω′Ω=Ω′′ ∫   

 .)'G(ω)r(u L,dL Ω=  (26) 
 
The normalized scattering phase function dP)4/1( π  is therefore,  
 

 ,)G(ω
)(Γ4)(P

dL,

d
d Ω′

Ω→Ω′
=Ω→Ω′  (27) 

 
such that, 
 1.)(Pd4π

1
4π

d =Ω→Ω′Ω∫   

 
The normalized scattering phase function )(Pd Ω→Ω′  for planophile leaf normal inclination 
distribution and bi-Lambertian leaf scattering distribution is shown in Fig. 11. It is clear that the 
scattering phase functions in leaf canopies are non-rotationally invariant, that is, they are not 
unique functions of )( Ω•Ω′ . 
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Figure 11. The normalized azimuthally 
dependent phase function )(P Ω→Ω′ for 
a planophile canopy [predominantly 
horizontal leaves]. The leaf transmittance 
and reflectance are both equal to 0.5, and 
Ω′  is fixed at θ′= 1700 and ϕ  = 00. Each 
dot is the value of the phase function for a 
discrete value of ),( jiij ϕµ=Ω  [the 
nearly horizontal row of dots is for a fixed 

iµ  and j,ϕ varies]. These results 
illustrate that the phase function is non 
rotationally invariant, i.e., it depends on 
the coordinates Ω′  and Ω and not just on 
the scattering angle [acos )( Ω′•Ω ]. 

 
Area Scattering Phase Function for Specular Reflection: Using the model described earlier 
[Eq. (10)] for specular reflection from leaf surfaces, the area scattering phase function for 
specular reflection can be evaluated as (cf. )/4dd L

*
L Ω•Ω′Ω=Ω , 

 
 ∫

+

ΩΩ→Ω′Ω•Ω′ΩΩ=Ω→Ω′Γ
2π

LsL,LLLLs ),(γ)(gd2π
1)(π

1   

 ∫ Ω•Ωδα′α′κΩΩ=
4π

*
2rLL

* )()(n,F),K()(gd8π
1   

 )(n,F),K()(g8π
1 *

r
**

LL αακΩ=  (28) 

 
where ),(*

L
*
L ΩΩ′Ω=Ω  defines leaf normals condusive for specular reflection given the incident 

and exit photon directions. 
 
The scattering coefficient for specular reflection from the leaf surface sσ′  has the form, 
 
 ,)(Γdπ

1)r(u),r(σ s
4π

Ls Ω→Ω′Ω=Ω′′ ∫   

 ∫
+

α′α′Ω•Ω′ΩΩ=
2π

rLLLLL )(n,F)K(κ()(gd2π
1)r(u , (29) 

 ).(Γ)r(u sL Ω′=   
 
The normalized scattering phase function is therefore, 
 



19 

 )(G
)(Γ4)(P

s

s
s Ω′

Ω→Ω′
=Ω→Ω′ , (30) 

such that, 
 
 .1)(Pd4π

1
s

4π

=Ω→Ω′Ω∫   

 
 
Problem Sets 
 
• Problem 1. Let )(f γ , 11 ≤γ≤− , be a function of one variable; ),( ϕθ≡Ω  and 

),( LLL ϕθ≡Ω  are two unit vectors. Show that  
 
 )q(sinθ4πd)f( L

2π
L =ΩΩ•Ω∫

+

.  

 
Here LΩ•Ω  is the scalar product of two vectors, and q(x), 1x0 ≤≤ , is a function of one 
variable defined as 

 

 ∫∫ −+γα+γ=
x

0

1

x

γ)]dγx)f(β(γ,x)f(γ),([2
1dγ)(f2

1q(x) ,  

 
where 1)x,()x,( =γβ+γα , and 

 

 
2

2

γ1x
x1γarccosπ

1x)β(γ,
−
−= .  

 
• Problem 2. Letting γ=γ)(f , show that  
 
 .d

2
L π=ΩΩ•Ω∫

+π

  

 
• Problem 3. Show that the leaf albedo for the bi-Lambertian model is  
 
 L,dL,dLL,d

4π

τρ),(γd +=ΩΩ→Ω′Ω∫ .  

 
• Problem 4. Prove (14).  
 
• Problem 5. Show that the geometry factor ),r(G Ω  for spherically distributed leaf normals 

depends neither r  nor Ω  and is equal to 0.5.  
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• Problem 6. Show that µ=G  for horizontal leaves, and θπ= sin)/2(G  for vertical leaves.  
 
• Problem 7. Let the polar angle, Lθ , and azimuth, Lϕ , of leaf normals are independent (see 

Eq. 3). Show that  
 

 ),,(),r(gd),r(G LL

1

0
LL µµψµµ=µ ∫   

 
where LL cos θ=µ , θ=µ cos , and  

 

 ∫ Ω•Ω
π

=
2π

0
LLLL dφ||)h(φ2

1)µψ(µ, .  

 
• Problem 8. Show that in canopies where leaf normals are distributed uniformly along the 

azimuthal coordinate [i.e., 1)(h L =ϕ ], ),( Lµµψ  can be reduced to 
 

 
⎪⎩

⎪
⎨
⎧

ϕ−−π+−ϕ

≥
=

otherwise,sinµ1µ1)(2/1)/π(2µµ

,sinθsinθµµ   if,µµ
)µψ(µ,

     ,t
2
L

2
tL

LLL
L   

 
where the branch angle tϕ  is )cotcotarccos( Lθ×θ− . 

 
• Problem 9. Show that in canopies with constant leaf normal inclination but uniform 

orientation along the azimuth [cf. Eq. (4)], ),()(G Lµµψ=µ . 
 
• Problem 10. Using Eq. (6), derive the )µψ(µ, L in the case of heliotropic orientations.  
 
• Problem 11. Given the direction of incoming, Ω , and reflected, Ω′ , fluxes at the leaf 

surface ( 1=Ω′=Ω ) show that the direction of leaf normals ),(n LLL ϕµ  in the case of 
specular reflection is given by  

 

 
)1(2L

Ω•Ω′−

µ−µ′
=µ   

 

 
ϕµ−−ϕ′µ′−

ϕµ−−ϕ′µ′−
=ϕ

cos1cos1
sin1sin1

tan
22

22

L   

 
 
 



21 

References 
 
Allen W.A., H.W. Gausman, A.J. Richardson, and J.R. Thomas (1969). Interaction of isotropic 

light with a compact leaf. J. Opt. Soc. Amer.. 59, 1376-1379. 
Bunnik, N.J.J. (1978). The multispectral reflectance of shortwave radiation by agricultural crops 

in relation with their morphological and optical properties. Pudoc Publications, 
Wageningen, The Netherlands. 

Goel, N.S. and D.E. Strebel, (1984). Simple Beta distribution representation of leaf orientation in 
vegetation canopies. Agron, J., 76, 800-802. 

Jacquemoud S. and F. Baret F. (1990). PROSPECT: a model of leaf optical properties spectra. 
Remote Sens. Environ., 34:75-91. 

Knyazikhin, Y., J.Kranigk, G. Miessen, O. Panfyorov, N. Vygodskaya, and G. Gravenhorst 
(1996). Modeling three-dimensional distribution of photosynthetically active radiation in 
sloping coniferous stands, Biomass and Bioenergy. 11, 2/3: 189-200. 

Knyazikhin, Y., J.V., Martonchik, R.B. Myneni, D.J. Diner, and S.W. Running (1998). 
Synergistic algorithm for estimating vegetation canopy leaf area index and fraction of 
absorbed photosynthetically active radiation from MODIS and MISR data. J. Geophys. 
Res., 103, 32257-32275. 

Lang, A.R.G. (1991). Application of some of Cauchy's theorems to estimation of surface areas of 
leaves, needles and branches of plants, and light transmittance. Agric. For. Meteorol. 
55,191-212. 

Oker-Blom, P. and S. Kellomäki (1982). Effect of angular distribution of foliage on light 
absorption and photosynthesis in the plant canopy: Theoretical computations. Agric. For. 
Meteorol. 26, 105-116. 

Oker-Blom, P. and H. Smolander (1988). The ratio of shoot silhouette area to total needle area in 
Scots pine. Forest Science 34, 894-906. 

Ross, J. (1981). The Radiation Regime and Architecture of Plant Stands. Dr. W. Junk Publishers, 
Delft, The Netherlands. 

Shultis, K.S. and R.B. Myneni (1988). Radiative transfer in vegetation canopies with anisotropic 
scattering. J. Quant. Spectroscp. Radiat. Trans., 39, 115-129. 

Stenberg, P. (1996). Simulations of the effects of shoot structure and orientation on vertical 
gradients in intercepted light by conifer canopies. Tree Physiology, 16, 99-108. 

Vanderbilt, V.C., L. Grant, and S.L. Ustin (1991). Polarization of light by vegetation. In Photon-
Vegetation Interactions: Applications in Optical remote Sensing and Plant Ecology, R.B. 
Myneni and J. Ross (eds.), Springer Verlag, Berlin Heildelberg, pp. 191-228. 

Verstrate, M.M. (1987). Radiation transfer in plant canopies: transmission of direct solar 
radiation and the role of leaf orientation. J. Geophys. Res., 92, 10985-10995. 

 
 
Further Readings 
 
Myneni, R.B., J. Ross, and G. Asrar (1989). A review on the theory of photon transport in leaf 

canopies. Agric. For. Meteorol., 45, 1-153. 
Ross, J. (1981). The Radiation Regime and Architecture of Plant Stands. Dr. W. Junk Publishers, 

Delft, The Netherlands. 



22 

Myneni, R.B. and J. Ross (eds.) (1991). Photon-Vegetation Interactions: Applications in Optical 
remote Sensing and Plant Ecology, Springer Verlag, Berlin Heildelberg. 



1 

Chapter 2 Derivations by Shabanov et al. 
 
Problem 1. Let , , be a function of one variable,  and  
are two unit vectors. Show that  
 
 .  

 
Here  is the scalar product of two vectors, and q(x), , is a function of one 
variable defined as 
 

 ,  

 
where , and 
 

 .  

 
Solution. Let 
 . (1) 

 
In the following derivations we assume that , that is, vector  belongs to ZX plane. 
This assumption does not limit the generality of the derivations as one always can substitute φ 
with ( ) without changing the domain of the integration (i.e., the upper hemisphere). For 
convenience of derivations let us transform the original system of coordinates to a new one, 
where  is aligned with Z-direction (Fig. 1). This can be accomplished with rotation by angle 

 around the Y-axis as specified with the following linear transform, 
 
   
where 
 

   

 
and and  are vectors in the original and new coordinate system, 
respectively. Note the minus sign for angle . This is due to the fact that positive angles are 
counted outward from Z-direction. One example of transformation is for the Z-axis, which is 
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transformed from   in the original system into  in the new 
system. 
 
 
 
 
 
 
 
 
 
 
 
To determine the integration domain in the new coordinate system, let 

 be a unit vector in the new system. The  vector falls into the 
upper hemisphere of the original system if and only if 
 
   
 
Therefore, 
 

  (2) 

 
Note that the angular domain of the upper hemisphere in the original coordinate system is 

 and . This domain is specified differently in the new coordinate system as 
shown in Fig. 2. Namely, three sectors with respect to  can be identified:  
(shown in Red), (shown in green), and  (shown in 
blue). The corresponding variations of  can be derived from the algebraic analysis of Eq. (2). 
The final expression for the angular domain in the new coordinate system is: 
 

  (3) 
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In a view that in the new coordinate system the direction coincides with , the argument of 
function  in Eq. (1) simplifies, i.e., . Therefore, 
 
   

   

   

   

  (4) 

 
Note that in the last step of derivations we substituted  with , and accounted for the 
fact that , , and . Finally, let 

, , and  
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original system of coordinates XYZ in a new 
system of coordinates . Vector is 
aligned with axis  of the new system.  
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Substituting the new variables in Eq. (4) and changing the limits of integration according to the 
variable γ, we finally have  
 

   

 
 
Problem 2. Letting , show that 
 
   

 
Solution. According to the results of Problem 1 
 

   

 
Taking into account that  (cf. Problem 1), we have 
 

   

 
 
Problem 3. Show that the leaf albedo for the bi-Lambertian model is  
 
 .  

 
Solution.  The bi-Lambertian model for diffuse leaf scattering phase function is, 
 

  (1) 

 
Note that the angles  and are fixed in the integral of interests and integration over whole 
sphere can be spitted into two parts, namely, 
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  (2) 

 
Taking into account Eq. (1), we have 
 
  (3a) 

 

  (3b) 

 
In view that the angles  and  are fixed, the integrals on the right hand side of Eqs. (3a) and 
(3b) are identical and equal to the integral over hemisphere (  or ). The last integral was 
evaluated in the Problem 2, namely, 
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Combining Eqs. (2)-(4) we finally have 
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Problem 6. Show that the geometry factor  for spherically distributed leaf normals 
depends neither  nor  and is equal to 0.5. 
 
Solution. Recall, 
 

   

 
Recall also, that for spherically distributed leaf normals . Combining this result with 
the result of the Problem 2, we have  
 

   

 
 
Problem 7. Show that  for horizontal leaves, and  for vertical leaves. 
 
Solution. Recall, 
 
   

 
Further, let  and . 
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Therefore, 
 

   

   

   
 
Similar derivations can be performed for vertical leaves. In this case the probability density of 
leaf normal orientation is  
 

   

 
Therefore, 
 

   

   

 
 
 
 
 
Problem 8. Let the polar angle, , and azimuth, , of leaf normals be independent. Show 
that  
 

   

 
where , , and  
 

 .  

 
Solution. Since the polar angle, , and azimuth angle, , of leaf normals are independant, the 
following representation of the probability density of leaf normal orientation is valid: 
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where  and  are the probability density functions of leaf normal inclination and 
azimuth, respectively. Therefore, 
 
   

   

   

   

 
 
Problem 9. Show that in canopies where leaf normals are distributed uniformly along the 
azimuthal coordinate [i.e., ],  can be reduced to 
 

   

 
where the branch angle  is . 
 
Solution. Recall (cf. Problem 6), 
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  (1) 

 
Note that in the above derivations we took into account that  and also symmetry of 
function  in the interval . In the derivations to follow we need to 
consider two cases. First, consider the case, when . In this case the expression 

 in the Eq. (1) does not change the sign over the whole interval of 
integration, . Therefore, 
 

   

   

  (2a) 
 
Now consider the second case, when . Here the value of the expression 

 in the Eq. (1) is monotonically decreasing in the interval . The 
value of , where the integrand changes the sign is given by 
 
    
 
Now we can evaluate Eq. (1) by splitting the interval of integration into two parts, where the 
integrand has the opposite signs,  
 

   

   

  (2b) 

 
Combined, the Eq. (2a)-(2b) present the solution to the problem. 
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Solution. For canopies with independent polar angle, , and azimuth, , of leaf normals (cf. 
Problem 7), we have 
 

  (1) 

 
where , , and  
 

  (2) 

 
The condition of constant leaf normal inclination and uniform orientation along azimuth implies  
 

  

  (3) 
 
Combining Eqs. (1)-(3), we have  
 

   

   

   
 
 
Problem 11. Using Eq. (6), derive the in the case of heliotropic orientations. 
 
Solution. Recall (cf. Problem 7), 
 

  (1) 

 
In the case when the leaf azimuths have a preferred orientation with respect to the solar azimuth 
orientation (heliotropism) the function may be modeled as follows, 
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  (3) 
 
Combining Eq. (1)-(3), we have 
 

   

   

   

  (4) 

 
where . To evalute the above integral we need to consider two cases (cf. Problem 8). 
First, consider the case, when . In this case the integrand does not change the sign 
over whole interval of integration. Therefore, 
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The evaluation of two definite integrals in Eq. (5) requires derivations of corresponding 
indefinite integrals, and : 
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Therefore, the corresponding definite integrals over interval  are 
 
  and  (7) 
 
Combining Eqs. (5)-(7), we have 
 
  (8) 
 
Now consider the second case, when . In this case the expression under sign of 
integral in Eq. (4), , will change sign two times (first at  and second at 

) over the interval . The value of  is given by 
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In order to evaluate integral in Eq. (4) we need to consider three intervals, where integrand has 
constant sign: , , and . Therefore, 
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where  is given by Eq. (9). Overall, Eqs. (8) and (12) present the complete solution to the 
problem. Finally, note that in the special case of dia-heliotropic distribution, ( ), the Eq. (12) 
reduces to 
 

   

 
and in the case of para-heliotropic distribution ( ), to 
 

   

 
 
Problem 12. Calculate area scattering phase function for diffuse radiation, , in the 
case of uniform leaf normal distribution, . 
 
Solution. Recall,  
 
  (1a) 
 
where, 
 

  (1b) 
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interval  for which the integrand is either positive (+) or negative (-). We need to calculate 
phase function for the case of uniform leaf normal orientation, . In view of the symmetry 
of the integrand with respect to , the integral over the upper hemisphere is equal to that over 
lower hemisphere and, 
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Taking into account Eq. (2) and performing trigonometric transformations, we have  
 
  (3) 
 
Let , an angle between  and , . Let , and 

. Therefore, 
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Note, the integrand in Eq. (4) is changing sign two times over the interval : 
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  (6) 

 
Finally, substituting Eq. (6) into Eq. (1), we have 
 
   

   

   

 
 
Problem 13. Given the direction of incoming, , and reflected, , fluxes at the leaf surface 
( ) show that the direction of leaf normals  in the case of specular 
reflection is given by 
 

   

 

   

Solution. Consider the geometry of interaction of solar beams with a leaf surface in the case of 
specular reflection as shown in Fig. (1). Given the incoming, , and reflected, , directions, 
the angle between them is given by . The leaf normal in the case of specular 
reflection is 
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The norm  can be calculated as follows (cf. Fig. 1(b)): 
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Let 
 
  (3a) 
  (3b) 
  (3c) 
 
Combining Eqs. (1)-(3) we will get formulas for the thee components of vector , namely, 
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