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1. The Radiation Field

Photons: The energy in the radiation field is assumed carried by point-lessseutralparticles
called photonsThe energy of a photds (in Jouled is ! |, where! =6.6261761.0%* Js (Joules
second) is PlanckOs constant amdis photon frequencyi s'). Frequency is related to
wavelength! (in metes) as" = c/! wherec =2.9979245810° ms' is speed of lightPhotors
travel in straight lines between collisioaad are regarded as a point partislewith position
described inCartesian coordinatedsy the vectorr =(x,y,z) anddirection of travel bythe unit
vector ! =( ! ! ,), ||Q]l=1 (Fig. 1). Here and throughout the book the symbel|| is
used to denote the length thfe vectorr, i.e., | r|’=x*+y  +2z°. We will also usea polar
coordinate system to specify the unit vecfdr Cartesian coordinates 6f can be expressed via
the polar angled and the azimuthal angle as Q =sinOcosgp, Q =sinbsing, Q, =cos0

(Fig. 1).

The description of photon distribution requires the consideraborphotons traveling in
directions confined to a solid angke solid angle is a part of spa bounded by the line segment
from a point (the vertex) to all points of a closed curve. A cone is an example of the solid angle
which is bounded by lines from a fixed point to all points on a given circle. The solid angle
represents the visual angle unddich all points of the given curve can be seen from the vertex.



A measure, or OsizeO, of a solid angle is the area of that part of the unit sphere with center at
vertex that is cut off by the solid glle. Units of the solid angle are expressedteradan (sr).

For a unit sphere whose areadts, its solid angle istrt sr. In the polar coordinate system, the
differential solid angledQ2 cuts an area consisting of points with polar and azinhthgles

from intervals[6,0 + dO] and [¢, ¢ + dgp)].

>
>

Q... Figure 1. Representation of the unit vectoQ =
Ry o (Q,.Q,,Q), | Q= +Q; +Q] =1, in Cartesian ar
polar coordnate system Here Q , € and Q are
Cartesian coordinates ¢ ; 6 and ¢ arethe correspondir
2 »Y polar and azimuthal anglé@s apolar coordinate system.

Particle Distribution Function: Let f(r,v,Q,t) denote thedensitydistribution function such
thatthe number of photorgn at time tin the volume elemendr (in m®) about the point, with
frequency Iin a frequency interval to v+dv (in s), and traveling along a directiof2 within
solid angledQ (in sr,see Problen3) is

dn = f dr dv dQ. «y

In the frequency domain, the particle distributionfunction f(r,v,,t) has units of photon
number pem?® perfrequency intervaper steradiafm?ssr). In the above definitionpne can
use thewavelength interval A to A +dA (in m) insteadof its frequency counterpart to define the
particle distribution function. In thevavelength domain, therefore the particle distribution
functionhas units of photon number paf per m per steradiam® sr?).

Specific Intensity. Many radiometric devices used in remote sensing respond to radiant energy.
It is convenient, therefore, to express the particle distribution in terms of energy that photons
transport Consider a volume elemedt = do,dz with the basedo,, (in m?) perpendicular to a
direction Q and the height dz (in mJ.he number of photons in this volume traveling along the
direction Q is determined by the number of photamsich crossdog, in the time intervat to

t+dz/c where ds speed of lighsincethe distance traversed by a photon within the interval
dt=dz/cdoesnot exceed dZquation () can be rewritten agn = f do,, cdt dv dQ. Since the
enagy of one photon igiv, the amount, dE, of radiantenergy(in J) in a time interval dt and in

the frequency intervalv to v+dv, which crosses a surface elemelat, perpendiclar to Q

within a solid angledQ is given by

dE=7Avdn=chv f(r,v,,t)do,dtdvdQ2. (2



The distribution of energy that photons tjamd is given byspecific intensity (Or radiance)
defined as

I(r, v, 1) = civi(r,v,£2,0). (38)

lts unis areJ m™sr* in the frequency domain aniis®* m>sr'=w m?®sr* in the wavelength
domain Here W (L watt=Js") is the unit of radiant power.

Some radiometric dewds count photons impinging on a detection area foergéaio time
interval. It is also convenient to express the photon distribution in terms of number of photons
crossing a surface of unit area, per unit time per unit frequency per unit steradian. This quantity,
intensity of photons (in numbetsi®sr?), is simply the ratio between OradiantO intensity and the
energy of one photoAv and can be expressed via the particle density distribution function as

I(r,v,L2,t) = cf(r, v, 2, 1). (30)

We will useintensity asthe basic radiaometric quéty throughout tis book, allowing for both
possibilities in its definitionlf the specific intensity is independent @f at a point, it is said to
be isotropic at that point. If the intensity is independent of bethnd Q, the radiation field is
said to behomogeneous and isotropic. 1t should be emphasized that the particle distribution
function f describes photong time t while the specific intensity refers to radiant energy
(number ofphotons)passing a unit area the time interval t to t+dt.

o/ /LSS

Ny, Figure 2. A beamof photonsincident on the area#dat anangle
= %’
/ onto a plane perpendicular to a directi@n of photon travel. It

| 4 0 to the normaln,. Here do, is theprojection of the area#
5 0-

‘ area can be expressed ad', =d'cos . Note tha
cos' =|!_en,| where! ¥n, is the scalar product of twunif

~

\A vectors! andn,.

dOQ

Figure 2 shows an example wherphotonbeamof intensity lis incidenton an aread! at an
angle! to the normaln, to d! . It is clear that the number of photon crossing the atea d
coincides with the number of photons crossitsgprojectedarea d", . Thus, the amount of
radiant energynumber of photonsiiE in a time interval dt,n the frequency interVal to

v +dv, which crosses a surface elemetitid directions confined to a differential solid angle
d!_, which is oriented at an ango the normalng of d! can be expressed as

dE=I(r,#," ,t) cosbd#d" d dt (4



Radiative flux density. Equation (4) gives the energy in the frequency intetvab ! +d!
which flows across an element areadbf in a direction which is inclined at an andeo its
outward normalngy and confined to an element of solid angle . The netflow in all direction
is given by

where the integration is performed ovére unit sphered! of directions The quantityF, is
called thenet monochromatic flux density at r and defines the rate of flow of radiant energy
across ¢ of unit area and per unit frequency intervi.units is Jm™ in the frequency domain
and Wm? in the wavelength domain.

The net flux can in turn be represented as a sum of two hemispherical fluxes with respect to an
arbitrary sirface element# as F. (r)=F'(r)! F (r). Here F* are the monochromatic flux
densitiesat different sides of#l or themonochromatic irradiances,

EM= 11#",)|n¥" |d" . (6)

I ng¥ >0

The total hemispherical flux density, in Wm?, or iradiance, for alfrequencies (wavelengths)
can be obtained by integrating the monochromatic irradiance ovesntite electromagnetic
spectrum

F(r) = | K (r)o#. (7)

0

The integral of the irradiance over an area A is the tota] #uW, orradiant power,

fEIF(Dd" . (8)

A

Forhomogeneous and isotrop@diation,intensity I(r,! ," ,t) =i(! ,t) is independentfaangular
and spatial variab&the above quantitiese

FO="10.0, FO) =Sl F =$ALI . ©

Normalizationof the above quantities by the energy of one phdtbmesults in caesponding
fluxes for photons.



2. Inter action of Radiation with Matter

Absorption: The absorption coefficient | _ (in m'') is defined such that the probability of a
photon being absorbedhile traveling a distancels is #_(r,",! ,t)ds An absorption event
signifies true loss of a photon from the count.

Scattering: The scattering coefficient 1's (in m'") is defined in analogy to thabsorption
coefficient,
Probability of scattering #§r,",! ,t) ds

Unlike absorption, a scattering event serves to change the direction and/or frequency of the
incident photonThus, it is convenient to definedgfferential scattering coefficient ! ¢ (in m'!

11
sr-) as,

Probability of scattering $(r,!#' !, # | t)dsd! .

The change in photon frequenag a result of a scattering eventgesnerallynot relevant in
optical remote sensing of vegetatidinis important to note that photon scattering in vegetation
media depends on the coordinates dfand ! in gereral. The scattering coefficients', and

I s are related as

$o(r,!,1L0) =ZA5 "Og "S.(r,!# 1ML # L"), (10

In some cases, the differential scattering coefficient is decomposed into the product

$(rt# LL# L O=8r ! #LAYK(r,I# 1L# LY, (13)

such hat, the kerneK, termeda scattering phase function, has the interpretation of a probability
density function,

6;@ o K(r,$# $!1# | t)=1 (12)

In the case ofoherenscattering, there is no freguicy change upon scattering and
Kr!"$ L #'S #,0=Kr#"$ #,9"(" 1), (13a)
where! is the Dirac delta functionn the case ofsotropicscattering,

K(r, #' 1,9 %J,t):%K([,!#" ,1). (13b)



Therefore, the simplest scattering kerc@tesponds to isotropic coherent scattermgnely,

K@ # 1,&# &1 _4%/0$(!# . (130)
Extinction: The extinction or the total interaction coefficient ! (in m'?) is simply the sum

I +!.. Therefore," (r,!,! ,t)ds is the probability that a photon would disappear from the
beam while traveling a distanas in the medium (note that it can reappear at a different
frequency and/or directionThe quantityl/! denotephoton mean free path, that is, the average
distance a photon will travel in the medium before suffering a colliSiba.cependence on the
direction of photon travel is noteworthy and is especially important in the case of vegetation
media.

Single Scattering Albedo The probability of scattering given that a collision has occurred is
given by thesingle scattering albedo, # =!"/! (dimensionless)in the case otonservative
scattering,! =1. The casé =0 corresponds tpure absorption.

Emission Photons can be introduced inteetmedium througtexternal and/or internabsrces.
In the frequency domainhé number of photons emittéy volume dr at r in the directioh.
about the differential solid angld! at frequencyin theinterval v to ! +d! between t and
t+dtis q(r,”,! ,t)drd" d!_dt

It should be noted thate neglectphotonto photon interactionn the above definitionsThis

means that the photon density is low, that is, low enough such that the overlap in the tails of
wavepacketsf two photons is negligibly small. This is especially required in the case of source
photons emitted at the same locatidvie also assume thabllisions and emission processes
occur instantaneouslyThis imposes a limit on the time resolution over whibke above
definitions are applicable.

3. The Equation of Transfer

Consider the change dN in tin& of the number of photons which are located in a volume
elementdr =" S"! about the pointr (Fig. 3) Herethe base! S of the volumedr is
perpendicular to theirection! of photon traveland the height' ! =c&t where c is speed of
light. The number of photons in this volume traveling along the dire€dds determined by the
number of photons which cro&s in the time interval t to t+dz/tt follows from Eq. (3B that

this count is given by

i yrsmr



The number of photorigavingthe volumedr through its lower surfac&S in the direction
in the time interval t to t+dz/c can be expressed as

i rew ey s e 1

reference poinf, < Figure 3. A volume elementdr =" S" ! with the

base ! S perpendicular to a directioh and th

height! " =cl t. Pointsr, and r, on the upper ar

lower boundaries of the volume element car

"S represented asr, =r,+"! and r,=r,+

point I; = +1# ﬁvﬁﬁ_z (" +#")! , respectively. Herd and ! +"! are

"y E ¢ distances between these points and a pintn the
pointr, =r,+(! +"1)# < , ' o [/ boundary! V along a direébn opposite tol

L
B3

The changeén time ! t of the number of photons idr is
dN=Lipisw oo,
o S L

where
"=+t e+ )" (LT, (19

In the increment1d), the spatial variable depends on.tUsing the chain rule for functioof
several variableone gets

lll "IdX lll dy IIIdZ
| __| |
Eattrea Yy a tzde U

where X, y ana are Cartesian coordinates of psint+ctl , 0" t' (/c. Thus,

dN:éé%%H X((_|+! y((;/"" Z((Iﬁﬁ tIS I 11

where! ', ! ,and! , are Cartesian coordinates of the unit vedtarThe first term !'I/!t, in
parenthesess thetime rate of changef the number of photon3he otherterms represerd
derivative" ¥! | at r along the directiorl_ which showsthe net rate of photons streaming out
of the volume element along tdeection! . Thus,



dN = %#,I[It'S'# ML ) S (15)

n
tirgl streamlng
temporafateof change

Here) is the vector operator, called OnabBi¥@n a scalar function f, vectpif has the form

wyp= (L T

= (W’ Ty’ E).

The changedescribed by Eq.156) is due to four processe® absorption outscattering,
inscattering and emissipand these are described below

Absorption: A fraction of photons in the volume elemesht will be absorbed while traveling a
distance! " =c! t along the directiori . This fractionis determined by thprobability #," ! .
Thus, the number of absorbed photons is

absorption= 1I(r $!# ) Sl $' # AN S, L

b# T 11 babillyof ab
probabiliyof absorptior
numberof photons whiletraveling! " =c! t

=0(r,",! L0 1(r,",L ) SLt$# "1 ] . (16)

Outscattering: Another fraction of photons in the volume ekmhr traveling in the direction

! will change their direction and/or frequency as a result of interaction with matter. The number
of photons OlostO dteeoutscattering from !, | to all other frequencies and directionbile
traveling a distancé" =c! t is given by

outscattering: ¢ t" S(#" "$ 1'% d$% (r,! & % & $;%)%|([,! $.0

0 a#
=#Kr,", L) I Nt St A (a7
Inscattering: Similarly, the numberof photors gaired due toinscattering to !, ! from all

other frequencies and directiotesn be evaluated as

(
inscattering= #t#S" $#" #"_ 1d&A d" #4(r,"#$ "," # " O 1(r,"#"_1). (18)

0 4
The rate of the production of photons in fidume elemenis simply

emissior=cq(r,",! ,t)! t! S"#" 11, (19)



Transfer Equation: The equation of transfer is essentially a statement of photon number
conservation at by equating the sum of thieur terms, Eqgs.16) to (19), with appropriate signs
to designate a loss or gain,ttee overall ate of change given by Ed5):

dN= - absorption - outscattering + inscattering + emission,

or, after dividing all terms byc! t! S"#!" 1l and accountingfor the definition of the
extinction coefficientt =!_+!7, one gets

IR (¥ +#(", LI

THS LI A A ! (20)

= | d8A d" #oA(r, 15 1,

0o 4

Sometimes, the second and the third terms on the left hand side @DFaye( grouped together;
the term[# ¥" +!] then denotes th&reaming-collision operator.An equaton for the particle
density distribution function can lmbtained by normalizing Eq. (R@y c! ! if | is the radiant
intensity or by c if | represents intensitygfotons (se Eqs(3a) and(3b)).

It should be noted that this equattigivesthe expected or mean value of the photon distribution
Fluctuations about the mean are not considérkd.derived equatioalsoassumes unpolarized

light. Four parameters are required to specify the state of polarization of a beam of light, and
accordingly, a proper description of photon transport including polarization effects involves four
coupled equations of transfer. Assuming the light to be unpolarized by the medium, these
equations can be averaged to derive a single equation of transfénsaim/olves some error.
Finally, the radiative transferequation (20) does not describe behavior resulting from
interference of wave3herefore, the equation is valid only when the distance between scatterers
is large compared to the wave packets.

4. Initial and Boundary Conditions

In many practical cases, one is interested in the photon distribution in a restricted region of
spacelt is necessary to specify a domain V in whiclradiative transfer process is studatl

a surface!V that bounds V Equation 20) is usually formulated fora domain V whose
composition and shapdepends oma specific problem underconsideration In solving the
radiative transfer equationt is necessary to specify both the photon distribution iat \¥ome

initial time t=0 (initial condition) and the photon distribution incident on V at all times
(boundary condition). The initial condition is given by

I(r,!,",0)=1y(r,!,"), r! V. (21



The boundary condition specifies the radiatemtering the domain V through point& the
boundary!'V,

I(rg, !}, 0) =B(rg, !, 1), rg" IV, n(rg)¥! <O0. (22

Here B is theintensity of photonsincidenton the domain V at pointg; on the surfacd V;
n(r;) is an outward normal vector at this po{ftg. 4). The radiative transfer problem is thus
completely specified by the equation of transfer [2)]( the initial conditionEg. (21)] and he
boundary condition [Eq. @].

n(rg)

Figure 4. Directions! (! ") along whichincident photon
can enter éxit) the domain V through the poiig (r_!B) on
the boundary!V satisfies the inequalityn(ry)¥! <O
(n(r';)¥! ">0). Here n(ry)(n(rly)) is the outwar
normal atrg (rly).

n(r'’s)
The incoming radiation Ban resultfrom sources on the boundaty and photons from V

incident on the boundary that the boundary reflects back to the dom&mthe case of the
boundarycoherent scatteringtie incoming radiation Bam be written as

B(ro L) =3 1A 1#5(, 05, ) () ¥L I ) dL”

"V L¥(rg)>0

+0(rs, ! 1), N(rg)¥! <O. (23

Here #,(r'y,! 1'y,! ) is theboundary scattering function; that is, the probability density that a
photon having escaped from the domain V through the p#jrit!V in the direction! " will
come back to V through the point" 'V in the direction! . It should be emphasized that i
generalthe boundary condition depends on the solutioh the radiatie transfemproblem The

case ofvacuum boundary condition refers to! ; =0 and g, = 0.

5. Stationary Radiative Transfer Problem

If the extinction and differential scattering coefficients, emission and the boundaryiaowaidi
not change with time!l/1t =0, the radiative transfer problem beconsedationaryradiative
transfer problemin the case otoherentscattering, théoundary value problem for radiative
transfer equation in the wavelength domain hasthe form

10



T¥&L(L")+%(, ) (n) = 1d e (R #S M) L (" F+q (), (249)

(el ) =B, (s ), Is" 1V, n(r)¥L <O. (24b)

Here I, (r,! ) is themonochromatispecific intensity which depend evavelength! , location r

and direction! . Note that the wavelength is a parameter of the radiative transfer problem.
We have emphasized this feature in notations by moving the wavelength from the ardgiment
to subscriptin our analyses of the boundary value problem, therefore, we will often suppress
this parameter in notation$he stationary radiative transfer equatinthe basidool used in
optical remote sensing.his equationnotationsand the onvention regarding the wavelength
dependencetroduced heravill be used in the rest of thizook.

6. GreenOs Faction and the Reciprocity Principle

Consider a medium V bounded by a sreflecting(! ; = 0) and noremitting (g, = 0) boundary
V. Thevolume Green’s function, G, (r," ;r\,! 1), is the radiative response of V at a pointn
direction! , to a monodirectional point source located givan point r!, continuously emitting
photons in agiven direction ! ". The volume Green function satisfies thetationaryradiative
transfer equatiorfEq. (248)] with a delta function source terrg(r,$) =#$ " $)#,(" r)
located atr! and with zero incomingadiation(B=0), that is,

T¥EG, (L ) A ) Gy (D)

=007 1S )G, (" Bkt Dt Bl " O (rt r), (25a)
4%

Gy(re, 51 ) =0, rg" 1V, | ¥n(rg) <0. (250)

Here "@# " 1), in sr', and ! ,(r"rY), in m?® are Dirac deltafunctions. Note that

L@ " "D, (" 1Y) is avolume source normalized by its power. The volume Green function,
therefore, is expressed inl s *. It should be also noted that the paihaind the directior] " of

the monodirectional sourcere parameters in theadiative transferequation that is, the
determination of the complete Green function requires the solutibg.¢25) for every pointr!
from V and the directiont ".

The surface Green’s function, Gg(r," ;r';,! 1), is the solution to the transport equation with the
sourceq(r,! ) =0 and tke boundary condition

Gy(r#:rl," ) =8# " " N s(re,rle), 1" IV, n(rp)¥! "<0. (26)

11



Here ! (rg,rly) is a twedimensional deltdunction (in m?). Because theolumesources can be
located on the boundary, the volume and surface Green functions are [[€gedand Zeifel,
1970]

Gy(r,! e, L) =|n(r) ¥L |Gy (1,151, ). (27)

In terms of these two GreenOs functioms may write the general solution to the transport
equation with arbitrary sourcg(r,! ) and boundary conditions with sourceg, on the non
reflecting boundary Vv (! ;=0) as

I(r,#) = 1dr1 G, (r,” ;" g, d

\ 4! o
+1dS 10 "Gr 31,1 ) a1 (29

"V n(p)¥ <0

The first term inEq. (28) is the solution of theadiative transfeequation with the internal source
g(r,! ) and no incoming radiance. The second term describes the 3D radiation field in V
generated by sourceg, distributed over thaeonreflectingboundary! V.

Let the differential scattering coefficient satisf the symmetryproperty $ (r,! #' | )=
%(r# _$ # . Under this condition, the volume GreerfOnction possesses the following
symmetry property

G, (Ll =G, (' L #,"1 ). (29

This equality expresses the fundamental reciprocegrém for thestationaryradiative transfer
equation:the intensity I(r,! ) at v in the direction | due to a point source at 1! emitting in
direction | " is the same as the intensity |(r'# ") at 1! in the direction #! " due to a point
source at I emitting in direction " | .

The Green function concept was oridipadeveloged in neutron transport theordll and
Glasstone, 1970]t has enabled the reformulation of the radiative transfer problems in terms of
some ObasicO spitmblems and to express the solutwfrthe transport equation with arbitrary
sources anthoundary conditions as a superposition of the solutions of the baspraalbms.

We will demonstratehis techniqudater with a relevant example for radiative transierthe
canopysurfaceatmosphersystem.

7. Operator Notations.

We introducehestreaming-collision, L, andscattering, S, operatoras

12



L=t ¥#1(r, ! ) +" (n DI L), SI= 0% # DI, )d " (30

We will use the notation*(r,,! ) to denote the intensity of radiatixiting (sign O+O) or
entering (sign 'GD)the domain Vthrough the pointr,, i.e., 1*(rs,! ) gives values of the
intensity at points; on the boundary V in directions satisfying the inequality(r;) ¥! >0.

To describereflective properties of the boundaty , a scattering operator defined on the
boundary! V for the intensityl® of medium leaving radiatiois introduced as

RI"=11dry 11 o( " ra ) () ¥ |1 (P, ) 08" (3

W n(p)¥E™0

In terms of these notations, tHsoundary value problenkq. (24) for the threedimensional
stationary radiative transfer equation can be expressed as

LI =SI+q, |I'=RI"+q,. (32

The boundary value problem is said to the standard problem if R =0 and g; =0. To
emphasize this in notations, well use symbol L, to denote the streamingpllision operator
corresponding to the standabblem

The boundary value problem fordamain with norreflecting boundary can always be reduced
to a standard problem. Indeed, the solution to the boundary value prable8l +q, I' =q;
can be represented as the sum of two componknrtQ + |, . The first term describes intensity
of radiation generated hyicollided photons; that is, photongrom the boundary sourcg, that
havenot undergone interactisiwithin the domain V. It satisfies the equatitw® =0 and the
boundary conditionQ =q,. The second terml,, describes @ollided, or diffuse, radiation
field; that is, radiation field generated by photons scattered one or more ltirsassfies the
standard problemLl, =Sl +qg with the volume source g'=q+SQ. The uncollided
component Q acts as a source term for scattering prandshughe term SQ gives intensity of
photons from thencollidedfield Q just afterthar first scatteringevent

In mathematical literature, the standard problerofisn formulated in functional space$he
theory of functional analysisRjesz and B. SZNagy 1990; Kantorovit and Akilov, 1964;
Krein, 1972]requires the specification oo sets. The firsbthedomainD of the operatol,
identifiesOpossible candidatesO for the solution. The secondBthaceange H of the operator
L, D specifies mathematical properties of OacceptableO volume salactsirov [1963]
providesa full mathematical description of the standardblem forthe following family of
functional spaces. TheangeH , 0<p" !, consists of functiong(r,! ) for which the norm
lal| , exists, i.e.,

13



llall,= $" Fir#r.” ) lar,”) P <!,

4%

O<p<!,
llall, =supvrailq(r,! ) [<! . (33
VAR
Thesetd, O<p" !, includes all functios(1) which satisy the zero boundary conditiqh=0)

and(2) whosetransformatios Lol and Sl existand are elemens of the space j The standard
problem is formulated as follows: given q from, find an element | from pfor which

L, =Sl+q. OVisuallyOthis formulation issimilar to problemsn linear algebra, i.e., whe L,

and S are matres | and gare vectoss, and the normEq. [33] is the length of the vector
Vladimirov [1963 showed that such an interpretation of the standard problem, with some
caveats is valid and many results fromnatrix theory can be applied to tihadiative transfer
equation. Thidevel of abstraction help® derive many practically important properties of the
radiation fieldwhose directlerivation is either very difficult or impossibM/e will demonstrate

this technique with a relevant exampbe ¢anopy spectral responseitgident solar radiation.

8. The Equation of Transfer in Integral Form

The standard problem can be transfornt@dwo types ofintegral equations. The first one is
obtained by inverting the streamiagllision operator b, i.e., | =L;SI+L;q. The second
equation is formulated fasource functior defined as) = Sl + q. It follows from Eq. (30) with
R =0 and g =0 that theintensity | andsource function J arelated asl = L;J. Substituting
this equation into the definition of J results in an operator equation of thelfort., J+q.

Both integral equations require the specification of the inverse opergtarhich actseither on
Sl or J. Let u represents eith@ror J. The functiorv = L, u satisfies the equation

V¥V () v ) =u(n!), (34)

with the zero boundary condition, i.ai(rg,! ) =0, n(rg) ¥! <O0. For a strght line rg +" !,
#! <" <! ,along an incoming directioth , n(ry)¥! <O, this equation takes the following
form

WD) oy 41 1) Wl +1) = Ul +110), V(5! ) =0, (39

This is an ordinarglifferential with respect td . Its solution is
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# #
V(r, +!1%9%) = | lexg & d$- (rg +! BEU U, +1 IV HRIGHR .  (39

0+ (

Note that we havartificially expressed the solutioof the ordinary integral equation as an
integral overd#! ". The presence of thaeltafunction ! (I #! ") in Eq. (36), however makes
this integral equivalent tan integral overthe line r; +"! along the direction ! which is
directly obtainable fromEg. (35). Let r and r'=r$#! ", "# 0, be two points on the line
rg +# ". We make use of the relationshgh!="1"d"!d! ! to convert the volumeslement
"1?g"Id! ! expressed in polar coordinates witte origin atr into the volume elementr! in
Carte5|an coordinatesNoting that |r-r|=!", one can express the unit vector' as
#!=(r" r)/|r-r. In Cartesian coordinasgthe functionv = L\;u can baewritten as

é& (37)

Here I (r,r')! ) is the optical distance between pointsand r! on a straight line along the
direction! ,i.e.,

ext) Hr.r )] o '
0 eE O

|W

Lou=v(r,*) =

|ﬂ

< w —

e
"(nri$) = 1d&%r#17$,9). (39)

0

The*-function in Eq. (3Yindicates that the points and r! lie on a line along the directioh .
Equation (37 specifies the ogrator L, which ses in correspondence to a volume source u the
three dimensional distribution(r,! ) of photons from the source u that arrive at point r along
the direction!_ without suffering acollision.

Substitutingu = Sl into Eq. (37 oneobtains the following integral equation

I(r,#) = 11K, (r$# 8% r,#)1(r$4 $ard# $+ Q(r, #) . (39

4"V

Here

K@) 1)) =2 *“’“D]"s(m'* )_)!§%(|[( (40)

r
Ir(r|p [r (g™
and the sourc& = L;q is calculated using Eq. (R7The kerel K, is the transition density.e.,

K,dr'th " is the probability that photons whi¢taveundegoneinteractions at+in the direction
I "will have their next interaction at along the directionl .
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Multiplying Eq. (37 by the differential scattering coefficieht(r,! #' ! ) and integrating over
all scatteringdirectiors | " one obtains a kernd{ ¢ of the integral operato8L,:

Kot )'* 1))= ex‘fl(r*(‘fr:ﬁ'l;”] e R (@1

Thus, the source function J satisfies the following integral equation

I )= VIKS(r$# D% r,#) 0% Jord S o1, #). (42

4"V

The intensity | can be expressed via J as,;J where the peratorL’; transformsthe function

in accordance with Eq. (37In many cases the solom of the integral equation (3#2or the
source functions a simpler task than Eq. (4for the intensitysince thentegration overl " can

help to get rid of the angular variablor example, in the case of isotopic source q, scattering
(I,=1/41") and extinctioni(e.,! does not depend oh ), the solution J becomes anttion of

the spatial variable while theorresponding intensity =L';:J depends on both spatial and
angular variables. The integral equatioB)(# especially useful in the study of radiative transfer
problems with simple forms of anisopy. The integral equation for the intensity serves as a
theoretical basis for many Monte Cantmdels for ratative transfer process in various media.

9. Eigenvalues and Eigenvectors of the &liative Transfer Equation

An eigenvalue of the radiative @insfer equation is a numbérsuch that there exists a function
gr,! ) whichsatisfies

IL,e=Se. (43)

Since the eigenvalue awtbenvector problem is formulated for zero boundary conditions@g

I and ¢r,! ) are independent on the incoming radiation. Under some general conditions
[Vladimirov, 1963] the set of eigenvalues , k=0,1,2,E and eigenvectorg, (r,! ), k=0,1,2,is

a discrete sefhe eigenvectorare mutually orthogonathat is,

118 #)e(r.#)e(r#)d# dr =", (44)

V 4%

where ! | is the Kroneker symbolThe solution of the standard problem can be expanded in
eigenvectors. The expansion in eigenvectas nainly a theoretical value because the problem
of finding these vectors is much more complicated than finding the solution of the transport
equation. However, this approach can be useful to estimate integrals of the sblatemhat

Eqg. (8) is equiralent to finding of nottrivial solutions to the integral equatiore, = L, Se, .
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The discretenesd the eigenvalue sehakesthe radiative transfer problem similer problems

in linear algebra, i.e., the intensity can be represented as aiteinfector which satisfiesna
infinity number oflinear algebraic equations given by a matrix determinet!'{8.

The transport equation has a unique positive eigenvalue whichresponds to a unique positive
[normalzed in the sense diq. (44)] eigenvector. This eigenvalue is greater than the absolute
magnitudes of the remaining eigenvalues. This means that only one eigenvectgy,tags on
positive values for any! V and! . This positive couplet of eigenvector and eigenvalue plays
an important role in transport theory, fekample in neutron transport theoryhe positive
eigenvalue alone determines if the fissile assembly will function as a reactor, or as an@&xplosiv
or will melt. In vegetation canopyadiatve transfey the positive eigenyae determines canopy
absorptionproperties.The positivecoupld, !, and g,, can beiteratedbased on the following
property of the opator T = L';'S

o = rlnm? Loms
&) =lime,, (L) (45)
Here
_lIT™q|]
Tl
T"q
n(l) = —m—, (46)
% Tl

where||...||p is the norm defined by Eq. (Band q is a source from the functionalsp#i . The
limits given by Eg. (45) and (4% do not depend op (i.e.,on functional spaceH,, in which the
problemwas formulatedpndthe sourceq! H, needed to initialize the sequenc#s! , —and
€m- If p=1,value of!, ., gives the probability that a photon from the source g scattered
times will be scattered again. Tleerrespondingunction g, (r,! ) is the probability density
that a photonscatteredm times will arrive atr along the direction! without suffering a
collision. These interpretatios directly follow from theintegral formEq. (39) of the operaor

T =L,S and the definition of the total interaction coefficient Note that!, ande,, are
related as

=1
TeO,m . 0,m+1eO,m+l'

There is anothdormulationof the eigemalues and eigenvectorslinear transport theorjfCase
and Zweifel,1967. Their approach is similar to that used in the theory of ordiddigrential
equationsj.e., solutions ofthe homogeneous problerg € 0) arerepresented ahe product of
an exponential function of spatial variable ammrespondingeigenfunction which depends on
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angular variable. Unlike the definitiogiven by Eqg. (33)the Case and Zweifel formulation
results in bothdiscrete and continuumf eigenvalues. Theigenfunctions corresponding to the
continuum of the eigenvectorseaSchwartz distributions, i,enot functions in the wml sense.
This approach allowgor analyticalsolutions to the radiative transfer equation for a number of
special caseand, thertore, providedn-degh understanding of the physics of radiative transfer
processFor details of this approach, the readerdferred to Case and Zweifel [19&#{d Bell

and GlasstonelP7Q. In this book, we follow the definition of the eigenvalue/aeigzctor
problem given by Eqg. @).

10. The Law of Energy Conservation

The stationaryradiative transfer equatiof24a) expresses thenh of energy conservation for
each spatial point r within V and for each direction The boundry condition 24b) describes
energy exchange between V ahe surroundingmedium.Here wederive an expression of the
energy conservation law for the domain V bounded by a sutfdce.e., we perform integration
of Eq. (Aa) over V ad the unit spherd! of directions

IS ¥(IdSdr+ 1[%r,$)" %&$)]I(r,$)dS dr= 1q(r,$)db dr. (47)

44"V 44"V 4"V

Figure 5. Representation of spal
points within a volume V bounde
by the surfacel V. Here " (r,,! )
is a plane perpendicular to the di
tion ! and passing through a fix
point ry; (1 and (o are distance
between the poinQ on the plan
"(ro,! ) and the boundary!V
along the directionsl and " ! ,
respectively; rg denotes points ¢
the boundary! V and n(rg) is the
outward rmal to !V at this point

direction!

point I,

point Qon the
plane %! )

boundary$V

outward norman(rs) Y’ plane %, | )

For a fixeddirection! , let"(r,,! ) bea plane perpendicular to and passinghrougha fixed
point r, (Fig. 5). Let Q be a variat@ point on the plané (ry,! ). Thus,the spatial pointr
within V can be represented as= Q+"! . A volume elementdr aboutr is dr =dQd! , where
dQ is a surface element on the Bla'hgo,!_) around the poir®. It should be em_phasized that
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the surface elemendQ is perpendiculatto the direction! . If one usesanother elementary
surfacedg! aroundthe pointQ which is perpendicular t@ direction ! “, thevolume element
dr is

dr =|"_¥" 1| dQld! . (49)

Let (1 and (o be distances between the pof@tand the boundaryV along the directions
and" | , respectivelyForthe first term in Eq. (47 we have

ol 1&,&
1&¥ ldedr=ae |ag) 2T S

4o/ B Q) #,

=18 10Q[IQ+1.#.#)SIQS! ., #)

4 (1Q)

= |d# |dQIQ+!#.#)$ 1d# 1dQIQS! #.#)
4 "(r0,Q) 4 "(r.Q)

= ldrg  1d"|n(rg)¥" [I(rs,") $ 1drg 10" |n(rg) ¥ |I(rs,")

A e A A A A L B B
flux densityof radiationleavingthemedium flux densityof radiationenteringthemedium
atrg on theboundary through hepointrg on theboundary

— + ! — !
=4 (rg)drg ! 4 (rg)drg =E°(1V) ! E (V). (49)

FrHl" FlLgpl"

energyof incoming energyof outgoing

radiation radiation

In the second term of Eq. (4 the difference betweeh and! ; is the absorption coefficient.
This term,therefore, gives the amount of radiant energy at a wavelengdbsorbed by the
domain V (in Wm?). We use the symbdE,_ (V) to denote this variable. Finally, the right hand
integral of Eq. (%) is the total amountf energy emitted by sources located within the volume
V. We denote tls quantity by q(V). Thus, thedaof energy conservation for a given volume V
bounded by a surfade/ can be expressed as

E'(1V)+E.(V) =E (V) +q(V), (50)
that i, the amount of radiant energy reflectdf (! V), and absorbedg,(V), by the volume V

is equal to the amount of energf (! V), incident on the boundaryV and energy, q(V),
emitted bythe internal sourcesf the volume V.
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11. Uniqueness Theorermn

Here we formulate conditions under which the boundary value problem fostdhienary
radiative transfer problem has a unique solutidre radiative transfer problem is formulated for
a domain V bounded by a reflecting surfat® . Photoninteractins with the boundary are
specifiedby Eq.(23).

The following parameters characterize optical properties of scatters and the entire medium as
well astheinteractiors betweerthe medium and the boundary

The maximum boundary reflectance, ! /(! V), quantifies themagnitude of boundargeflectance
andis defined as

Lo@¥) = sup Lpdrg 11,08, #1," ) [n(rg) ¥ |d . -
rﬁ%r,?ési\!c;»o SV n(rg)¥# <0

The maximum optical path is the maximum value of theptical distace between two points in
thedomain V[EQ. 38)]

Lo(V) = supl(r,r! ). (52)

Themaximum single scattering albedo is the maximum value of trengle scattering albedo

_ ()
#o(V) =, ;t;gﬁ NADE (53)

The following theorem is a special case of Germoga@s maximum principl[&ermogenova,
1984 which is proved here undeéhe assumption oSymmetry properes for the differential
scattering coefficient$.(r,! "# ! )=$(r,! # ! ") and the boundary scattering function,
$o(r's,) rg,! ) =S, (rp A 'y # ). This restrictionwill be relaxedcf. next section)

Theorem 1
Let I(r,! ) satisfies Eq. (24a) in the domain V and " ,(V)! 1, ",(V)<! and q=0. The
following inequality holds true

[, sup [I(rg,L), (54)

rg$#V;! ¥n(rg)<0

SJorall r" V +1V and all directions.

This theorem states that the intensifyradiationwithin V camot exceed a maximum value of
the intensity of radiation penetrating in¥ through the boundaryV. This theoren also
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presupposes that timcomingradiation fieldB is givenby a bounded function. It means that this
theoremcamot be appliedf B containsa singular component, e.g., Diraelta function.lt is
also assumed that the total interaction coefficienand the differential scattering coefficient
I s are positive functions.

Proof
O Let I =Sup., 0w 4 |1(r,1) | where OsupremumQaken over all spatial points frol*V
and over all directions. We have

X&) =98(r ) I(r )+ dE &g (r, # 1 )I(r!)

&% ()1 )+ 1" #,(," 4 ") sup {I(r" 9)

=# EDIED +TEER D)

o4 T (1,1)

S[1#10,)T (1), (55)

Note that the symmetrgf the differential scattering coefficiemtas used taelate its integral
over incident direction$ " to the scattering coefficierit, (Section 2) Comparing the first and
last term in(55), oneobtains

[T#1(r, 10 () +* ¥$[T#1(r,")]! 0. (56)

Multiplying this equatiorby exp[#ﬂi[,[#"!_,!_)] yields
#%{[i#m#!;,;)] exd#t(r,r#1 ")} o.

Integrating the above over the interval [0esults in
[Tae v D) exdr e 1, D]# 17101, (57)

Let us assume that the solutidfr,! ) reaches its maximum at a poirg within V and ina
direction! ., i.e., I =1(r,! o). Let ! g be the distance between the poigtand the boundary
*V along the directiorf" ! ;). It follows from (55) and ", (V) <! that

O#[1" 1(re " 15 Lo,L_o)lEXpl" "(ro,Fo " 16 onl o)) #1" I(rg,! ) =0,

which holds true if and only il =I(r"! o,! ,). It means that the maximum of the solution

I(r,! ) taken over all internal poistand over all directions caont exceedthe intensity of
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radiation entering the canopythe direction!_, through the point, on the boundary V. This
completes the pro@l

The nequalitygiven by Eq(57) for a more general case was originally derivedsigymogenova
[1986]. This results providea theoretical justification to many existing radiation models. Based
on Theorem 1, the following uniqueness theorem can be easily provedhmassumption o&

symmetical differential scattering coefficient ;, andboundary bidirectional reflectance factor
.

Uniqueness Theorem

Let " ' 1, 1<l and ",(V)<! . The radiative regime within a given volume V of space
bounded by a reflecting surface 'V is uniquely determined by sources within V and the
boundary conditions given by Eq. (23).

Proof

ClLet 1,(r,! ) and I,(r,! ) be two solutios of the transport equatio(22) with boundary
condtion given by Eq. (2B The function# (r,! ) =1,(r,1 )" 1,(r,! ) satisfiesEq. 24a) with
g =0 and the boundary conditiagiven by Eq.(23) with gg=0. It follows from Theorem Jand

the symmetry$,(r's,! "rg,! ) =$,(rg# 1’ # ) thatthefollowing inequality

It _Sup B(rg, L)

-B
L ¥n(rg)<0

= sup L 1dry  1#,(0.%616,99 () ¥96'| &(1', 98) 0%

{Birﬁ?:sk $"v | "¥n(1) >0
" %(V) sup [P (re, )1, (58)
N{rg)¥ <0

is valid for all spatial pointg! V +!V and directions# " 4! . Therefore,

sup |! (rg, L) [#"4(V) sup [!(rs, )] (59)
[BU/&V [BO/@V
n(rg)¥_<0 n(rg)¥ <0

Since ! (V) <1, the inequality given by Eq. (59 holds true if and only n‘1 ([,!_)|:O, le.,
1,(r, )=1,(r,! ). The uniqueness theoremtimisprovedm

12. General Case of Asymmetry

Theorem 1 and consequently the uniqueness thewrera proved underthe assumptionof
certain symnetry in the differential scattering coefficienand the boundary bidirectional
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reflectance factoiThis assumption was requiredderive theinequalitiesgiven by Egs(55) and
(58). To extendthe validity of the ungqueness theoremo the gneral case, considdre adjoirt
formulation of the transport equatipell and Glasstone, 197Germogenova, 1936

PUMEI()+AT)N(T) = 1% S AN Ad # (60)

4

I"(rg,! )=B"(rg.l), rg" 'V, n(rg)¥! >0, (61)

where

(s, #)d "

+q*(rB’! ), nrg)¥! >0. (62)

B (s #) =g 10y 1400, #3054 () ¥
"V

n(rg)¥ <0

The following differences should be noted betw#enstandardormulation given by Eqg24)
and(23) and its adjoint counterpagiven by Eqgs. §0)-(61): (a) the gradienbperator" ¥! has
the opposite sign; (b) the incideht" and scatterind  directions have been interchanged, i.e.,
I # | in(23) and @4) becomed # ! "in Egs.(60) and €2); and (c) the boundary condition

(61) isformulated in terms of exitinghotons, i.e.n(r;) ¥! >0.

Physically, the adjoint radiative transfer problem describedimereversed photon flowThis
gives us the hinthat adjoint sources describe the position of detectors while the adjoint
transportequationdescribes the flow backward in time towakdjoint equations and their
solutions play an important role in radiativansfer theory. Adjoint functions are, anvery real
sense, orthogonal to the solutionfsthe radiative transfer equati¢Bell and Glasstone, 1970;
Germogenova, 198§6For this and other reasons, they are wideskyd in perturbation theory and
variational calculations relating to the behavadr 3D optical media. The properties of the
solutions of the adjoint RTE are also usedthe development of effective Monte Carlo
calculations [Marchuk et al., 1980]

Consider the functior,(r,! )=1'(r,"! ). It satisfies thestandard boundary valygoblem for the
standardransport equation, i.e.,

T¥RI( ) (ES)IG() = 1 (8 % S Hl (" Hd” # (63
-
I:)([B’!_) = B*([B’"!—)’ rg" 1V, D([B) ¥ <0. (64)
The uniquenesshéeorem can be applidd Egs. 63)-(64) with the maximum boundary albed
single scattering albedo and optig#pth calculatedusing $,(rg # ;r'g# "), #(r,"!) and
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%(@r# $ # ). According tothe Fredholm alternativeHronshtein and Semendyae\985, p.

783], a linear operator equation and i&ljoint counterpart have a unique solution
simultaneously. Therefore, we can use the adjoint transport equation togowhditions under

which it has a unique solution. The same conditions guarantee the uniqueness of the transport
equation. Thus, theequirement forsymmetryin the differential scattering coefficierdnd the
boundary bidirectional reflectance factan be relaxed.

Problem Sets

¥ Problem 1. The frequency of red light i$ =4.3 10" oscillations per second. What &
wavelength! of red light?

¥ Problem 2. How are particle distribution functions in fregncy and wavelength domains
related?

¥ Problem 3 Let the differential solid anglell cuts an area consisting of points wgblar

and azimuthal angles from intervgls! +d!] and[! ,! +d! ]. Show thatd# =sin" d"d! .

Problem 4. How arethe intensities in freqgncy and wavelength domairedated?

Problem 5. Some instruments (e.ghe LICOR guantum sensor) registeéroadband (i.e.,

integrated over a certain spectral intervli)xes in molm?s*. Therefore,it is often

convenlent to use the intensiggr,”,! ,t) expressed in mah®s* sr instead ofI(r,",! ,t)

in J m? sr'. Howareintensities J, | and the particlesttibution function f related?

¥ Problem 6. Let x, y and z be Cartesian coordinates of the pojntFind Cartesian
coordinates of the point, =r, +c"t! .

¥ Problem 7. Location r,(t) of a photon at time t traveling along a directibn can be
expressed as,(t) =rg +ct! wherect=! is the distance traversed by a photon in time
interval t. Let xg, yg and zg be Cartesian coordinates of the pomt. Find Cartesian
coordinates of pointg, (t) andr,(t) =r, +#"! and theirderivatives with respect to t.

¥ Problem 8. Show that if the extinction coefficient does not depend neither on spatial nor
angular variables§{(r,,r,,#)="[r,! r|.

¥ Problem 9. Using Eq. (37) show that the volume GreenOs function for purely algsorbin
media (i.e., S8) is given by d ]

dy ey y = XAG () D) .g} r(r #
G,(r,)5r)) TIEa: H* ) (”r(rl,,

¥ Problem 10. Let the total interaction coefficient be independerdf thespatial and angular
variables. Derive integral equations for the msiéy and source functiofor isotropically
scatteing media with isotropic sources.

¥ Problem 11. Derive integral equations for the intensity and source fundctiomplane
geometry, i.e., a medim in which the total interaction coefficient, differential scattering
coefficient and volume source are funcsaf the horizontal coordinate z

K K
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Problem 12. Let the total interaction coefficientt be independerdf thespatial and angular
variables. Derive integral equations for the intensity and source function for a sphere with
isotropic scaering and spherically symmetric volume sources. The volume source is said to
by spherically symmetric if it depends {m and | ¥r/|r|.

Problem 13. Show that Te,, =!, ..€ ., Where !, ..and e, are eigenvalues and
eigenvectors of transport equatidi, ,e=Se, and T = LS (cf. Section 9).

Problem 14. Let 'V be a reflecting boundary, i.e., a fraction of the medium leaving
radigion can be reflected back into V. Assume ttet boundary refleg as a Lambertian
surface. The radiation penetrating into V throughV is

It ) =~ QL () ¥L]d "+ 0.l ), N(rs)¥! <O.
z 3 | |

n(r,)¥ ">0
Show that(1#")E* (! V) +E,(V) = Ej (! V), where
Ei(! V)= | drg I dL| n(rg) ¥L|q([B’L -

# n(rg)¥ <0

Problem 15. LetV be the parallelepiped ard/,, !'V,, and!V, are its top, bottom and
lateral surfaces. Show that

EF(IV)=E*(1V,) +E*('V,)+E*('V,),

E'('V)=E"(V,)+E (V) +E (V).
Problem 16. Let V be the pallelepiped and V,, !V, and !V, are its top, bottom and

lateral surfacesWrite the energy conservationwain terms of canopy transmissiot),
reflection,r, and horizontal energy flovia, defired as

r= 1(r," #n(r,)¥" #d" #

n(r)¥' >0
t= 1y, " #n(r,) ¥ #d" #
n(ry)¥' >0
h=" 1I(r," An(r) ¥ #d" 4
n(r,)¥' >0

Problem 17. Prove the uniquesss theorem without assuming symmetriddferential
scatering coefficient antboundary bidirectional reflectance factor.

Problem 18. Provethat for the horizontally homogeneous media, solution of the transport
problem depets on vertical coordinate only
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