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1. The Radiation Field 
 
Photons: The energy in the radiation field is assumed carried by point mass-less neutral particles 
called photons. The energy of a photon E (in Joules) is ,ν!  where ! = 6.626176⋅10-34 J s (Joules 
seconds) is Planck’s constant and ν  is photon frequency (in s−

1). Frequency is related to 
wavelength λ  (in meters) as λ=ν /c  where 81099792458.2c ⋅=  m s−

1 is speed of light. Photons 
travel in straight lines between collisions and are regarded as a point particles, with position 
described in Cartesian coordinates by the vector z)y,(x,r =  and direction of travel by the unit 
vector ),,,( zyx ΩΩΩ=Ω  1|||| =Ω  (Fig. 1). Here and throughout the book the symbol ||r||  is 
used to denote the length of the vector r , i.e., .zyx||r|| 2222 ++=  We will also use a polar 
coordinate system to specify the unit vector Ω . Cartesian coordinates of Ω  can be expressed via 
the polar angle θ  and the azimuthal angle ϕ  as ϕθ=Ω cossinx , ϕθ=Ω sinsiny , θ=Ω cosz  
(Fig. 1). 
 
The description of photon distribution requires the consideration of photons traveling in 
directions confined to a solid angle. A solid angle is a part of space bounded by the line segment 
from a point (the vertex) to all points of a closed curve. A cone is an example of the solid angle 
which is bounded by lines from a fixed point to all points on a given circle. The solid angle 
represents the visual angle under which all points of the given curve can be seen from the vertex. 
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A measure, or “size”, of a solid angle is the area of that part of the unit sphere with center at 
vertex that is cut off by the solid angle. Units of the solid angle are expressed in steradian (sr). 
For a unit sphere whose area is π4 , its solid angle is π4  sr. In the polar coordinate system, the 
differential solid angle Ωd  cuts an area consisting of points with polar and azimuthal angles 
from intervals ]d,[ θ+θθ  and ]d,[ ϕ+ϕϕ . 
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Figure 1. Representation of the unit vector ≡Ω  
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2 =Ω+Ω+Ω=Ω , in  Cartesian and 
polar coordinate systems. Here xΩ , yΩ  and zΩ  are 
Cartesian coordinates of Ω ; θ  and ϕ  are the corresponding 
polar and azimuthal angles in a polar coordinate system. 
 

 
Particle Distribution Function: Let )t,,,r(f Ων  denote the density distribution function such 
that the number of photons dn at time t in the volume element rd  (in m3) about the point r , with 
frequency in a frequency interval ν  to ν+ν d  (in s), and traveling along a direction Ω  within 
solid angle Ωd  (in sr, see Problem 3) is  
 
 .ddνrdfdn Ω=  (1) 
 
In the frequency domain, the particle distribution function )t,,,r(f Ων  has units of photon 
number per m3 per frequency interval per steradian (m−

3 s sr−
1). In the above definition, one can 

use the wavelength interval λ  to λ+λ d  (in m) instead of its frequency counterpart to define the 
particle distribution function. In the wavelength domain, therefore, the particle distribution 
function has units of photon number per m3 per m per steradian (m−

4 sr−
1).  

 
Specific Intensity: Many radiometric devices used in remote sensing respond to radiant energy. 
It is convenient, therefore, to express the particle distribution in terms of energy that photons 
transport. Consider a volume element dzdrd Ωσ=  with the base Ωσd  (in m2) perpendicular to a 
direction Ω  and the height dz (in m). The number of photons in this volume traveling along the 
direction Ω  is determined by the number of photons which cross Ωσd  in the time interval t to 
t+dz/c where c is speed of light since the distance traversed by a photon within the interval 
dt = dz/c does not exceed dz. Equation (1) can be rewritten as Ωνσ= Ω dddtcdfdn . Since the 
energy of one photon is ,ν!  the amount, dE, of radiant energy (in J) in a time interval dt and in 
the frequency interval ν  to ν+ν d , which crosses a surface element Ωσd  perpendicular to Ω  
within a solid angle Ωd  is given by 
 
 ΩνσΩν=ν= Ω dddtdt),,,rf(νcdndE !! . (2) 
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The distribution of energy that photons transport is given by specific intensity (or radiance) 
defined as 
 
 t).,,,rf(νct),ν,,rI( Ων=Ω !  (3a) 
 
Its units are J -2m sr−

1 in the frequency domain and J s-1 m−
3 sr−

1=W m−
3 sr−

1 in the wavelength 
domain. Here W (1 watt = Js-1) is the unit of radiant power.  
 
Some radiometric devices count photons impinging on a detection area for a certain time 
interval. It is also convenient to express the photon distribution in terms of number of photons 
crossing a surface of unit area, per unit time per unit frequency per unit steradian. This quantity, 
intensity of photons (in number s-1m-3sr-1), is simply the ratio between “radiant” intensity and the 
energy of one photon ν!  and can be expressed via the particle density distribution function as  
 
 t).,,,rf(ct),ν,,rI( Ων=Ω  (3b) 
 
We will use intensity as the basic radiaometric quantity throughout this book, allowing for both 
possibilities in its definition. If the specific intensity is independent of Ω  at a point, it is said to 
be isotropic at that point. If the intensity is independent of both r  and Ω , the radiation field is 
said to be homogeneous and isotropic. It should be emphasized that the particle distribution 
function f describes photons at time t while the specific intensity refers to radiant energy 
(number of photons) passing a unit area in the time interval t to t+dt.  
 
 
 
 
                                                   θ 
 
                                                                              dσ 
 
 
 
 
 
 
 
                                                          dσΩ 

Ω  

0n  

 

 
 
Figure 2. A beam of photons incident on the area dσ at an angle 
θ  to the normal 0n . Here Ωσd  is the projection of the area dσ 
onto a plane perpendicular to a direction Ω  of photon travel. Its 
area can be expressed as θσ=σΩ cosdd . Note that 

0ncos •Ω=θ  where 0n•Ω  is the scalar product of two unit 
vectors Ω  and 0n . 
 

 
Figure 2 shows an example where a photon beam of intensity I is incident on an area σd  at an 
angle θ  to the normal 0n  to σd . It is clear that the number of photon crossing the area dσ 
coincides with the number of photons crossing its projected area Ωσd . Thus, the amount of 
radiant energy (number of photons) dE in a time interval dt, in the frequency interval ν  to 

ν+ν d , which crosses a surface element dσ in directions confined to a differential solid angle 
Ωd , which is oriented at an angle θ to the normal 0n  of σd  can be expressed as  

 
 .dtdddcos)t,,,r(IdE σΩνθΩν=  (4) 
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Radiative flux density: Equation (4) gives the energy in the frequency interval ν  to ν+ν d  
which flows across an element area of σd  in a direction which is inclined at an angle θ to its 
outward normal 0n  and confined to an element of solid angle Ωd . The net flow in all direction 
is given by  
 
 ,d|n|)t,,,r(I)r(F

4
0∫

π

ν ΩΩ•Ων=  (5) 

 
where the integration is performed over the unit sphere π4  of directions. The quantity νF  is 
called the net monochromatic flux density at r  and defines the rate of flow of radiant energy 
across dσ of unit area and per unit frequency interval. Its units is J -2m  in the frequency domain 
and W m−

3 in the wavelength domain.  
 
The net flux can in turn be represented as a sum of two hemispherical fluxes with respect to an 
arbitrary surface element dσ as )r(F)r(F)r(F −

ν
+
νν −= . Here ±

νF  are the monochromatic flux 
densities at different sides of dσ, or the monochromatic irradiances,  
 
 .d|n|)t,,,r(I)r(F

0n
0

0

∫
>Ω•

±
ν ΩΩ•Ων=

∓

 (6) 

 
The total hemispherical flux density, in Wm-2, or irradiance, for all frequencies (wavelengths) 
can be obtained by integrating the monochromatic irradiance over the entire electromagnetic 
spectrum 
 

 ∫
∞

±
ν

± ν=
0

.d)r(F)r(F  (7) 

 
The integral of the irradiance over an area A is the total flux, in W, or radiant power, 
 
 .d)r(FF

A
∫ σ= ±±  (8) 

 
For homogeneous and isotropic radiation, intensity )t,(i)t,,,r(I ν=Ων  is independent of angular 
and spatial variables, the above quantities are 
 

 ,)t,(i)r(F νπ=±
ν    ,d)t,(i)r(F

0
∫
∞

± ννπ=    ∫
∞

± ννπ=
0

d)t,(iAF . (9) 

 
Normalization of the above quantities by the energy of one photon ν! results in corresponding 
fluxes for photons. 
 



5 

2. Interaction of Radiation with Matter 
 
Absorption: The absorption coefficient aσ  (in 1m− ) is defined such that the probability of a 
photon being absorbed while traveling a distance ds is .ds)t,,,r(a Ωνσ  An absorption event 
signifies true loss of a photon from the count. 
 
Scattering: The scattering coefficient s'σ  (in 1m− ) is defined in analogy to the absorption 
coefficient, 
 Probability of scattering = .ds)t,,,r(s Ωνσ$   
 
Unlike absorption, a scattering event serves to change the direction and/or frequency of the 
incident photon. Thus, it is convenient to define a differential scattering coefficient sσ  (in 1m−  

1sr − ) as,  
 
 Probability of scattering = .d dst),ν,ν,r(s ΩΩ→Ω#→#σ   
 
The change in photon frequency as a result of a scattering event is generally not relevant in 
optical remote sensing of vegetation. It is important to note that photon scattering in vegetation 
media depends on the coordinates of 'Ω  and Ω  in general. The scattering coefficients s'σ  and 
sσ  are related as 

 .t),,νν,r( dνdt),ν,,r( s
4π0

s Ω""→Ω""→σΩ""""=Ωσ" ∫∫
∞

 (10) 

 
In some cases, the differential scattering coefficient is decomposed into the product 
 
 t),,ν,ν,rK( t),,ν,r(t),ν,ν,r( ss Ω→Ω#→#Ω##σ#=Ω→Ω#→#σ  (11) 
 
such that, the kernel K, termed a scattering phase function, has the interpretation of a probability 
density function, 
 

 .1)t,,,r(Kdd
40

=Ω→Ω#ν→ν#Ων ∫∫
π

∞

 (12) 

 
In the case of coherent scattering, there is no frequency change upon scattering and 
 
 ,ν)νδ(t),,rK(t),ν,ν,rK( −"Ω→Ω"=Ω→Ω"→"  (13a) 
 
where δ   is the Dirac delta function. In the case of isotropic scattering, 
 
 ).t,,r(K4

1)t,,,r(K ν→ν#
π

=Ω→Ω#ν→ν#  (13b) 
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Therefore, the simplest scattering kernel corresponds to isotropic coherent scattering, namely, 
 
 ).(4

1)t,,,r(K ν−ν#δ
π

=Ω→Ω#ν→ν#  (13c) 

 
Extinction: The extinction or the total interaction coefficient σ  (in 1m− ) is simply the sum 

sa σ"+σ . Therefore, ds t),ν,,r( Ωσ  is the probability that a photon would disappear from the 
beam while traveling a distance ds in the medium (note that it can reappear at a different 
frequency and/or direction.) The quantity σ1 denotes photon mean free path, that is, the average 
distance a photon will travel in the medium before suffering a collision. The dependence on the 
direction of photon travel is noteworthy and is especially important in the case of vegetation 
media. 
 
Single Scattering Albedo: The probability of scattering given that a collision has occurred is 
given by the single scattering albedo, σσ"=ω s  (dimensionless). In the case of conservative 
scattering, 1=ω . The case 0=ω  corresponds to pure absorption. 
 
Emission: Photons can be introduced into the medium through external and/or internal sources. 
In the frequency domain, the number of photons emitted by volume dr at r in the direction Ω  
about the differential solid angle Ωd  at frequency ν in the interval ν  to ν+ν d  between t and 
t+dt is .dtddrd)t,,,r(q ΩνΩν  
 
It should be noted that we neglect photon to photon interaction in the above definitions. This 
means that the photon density is low, that is, low enough such that the overlap in the tails of 
wavepackets of two photons is negligibly small. This is especially required in the case of source 
photons emitted at the same location. We also assume that collisions and emission processes 
occur instantaneously. This imposes a limit on the time resolution over which the above 
definitions are applicable. 
 
 
3. The Equation of Transfer 
 
Consider the change dN in time Δt of the number of photons which are located in a volume 
element ξΔΔ= Srd  about the point r  (Fig. 3). Here the base SΔ  of the volume dr is 
perpendicular to the direction Ω  of photon travel and the height ξΔ =cΔt where c is speed of 
light. The number of photons in this volume traveling along the direction Ω  is determined by the 
number of photons which cross ΔS in the time interval t to t+dz/c. It follows from Eq. (3b) that 
this count is given by  
 

.ΔΔνΔξSΔt),ν,,r(Ic
1

1 ΩΩ  
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The number of photons leaving the volume rd  through its lower surface ΔS in the direction Ω  
in the time interval t to t+dz/c can be expressed as 
 
 .ΔΔνΔξSΔt)t,ν,,tcr(Ic

1
2 ΩΔ+ΩΩΔ+   

 

 
The change in time tΔ  of the number of photons in rd  is 
 

Ω= ΔΔνΔξSΔΔIc
1dN , 

 
where 
 
 t).,ν,,rI(Δt)t,ν,,tcrI(ΔI Ω−+ΩΩΔ+=  (14) 
 
In the increment (14), the spatial variable r  depends on t. Using the chain rule for function of 
several variables, one gets 
 

 ,tdt
dz
z
Itdt

dy
y
Itdt

dx
x
Itt

IΔI Δ
∂
∂

+Δ
∂
∂

+Δ
∂
∂

+Δ
∂
∂

=   

 
where x, y and z are Cartesian coordinates of points Ω+ ctr , 0 ≤ t ≤ ξ/c. Thus, 
 

 ,ΔΔνΔξSΔΔtz
I

y
I

x
I

t
I

c
1dN zyx Ω"

#
$

%
&
'

∂
∂

Ω+
∂
∂

Ω+
∂
∂

Ω+
∂
∂

=   

 
where xΩ , yΩ , and zΩ  are Cartesian coordinates of the unit vector Ω . The first term, I∂ / t∂ , in 
parentheses is the time rate of change of the number of photons. The other terms represent a 
derivative I∇•Ω  at r  along the direction Ω  which shows the net rate of photons streaming out 
of the volume element along the direction Ω . Thus, 
 

 
 
 
 
 
                                                  ξ 
 
                                                                                                ΔS 
 
 
                                                Δξ 
 
 

reference point 0r  

point Ωξ+= 01 rr  

point ΩξΔ+ξ+= )(rr 02  

Ω  

 

 
Figure 3. A volume element ξΔΔ= Srd  with the 
base SΔ  perpendicular to a direction Ω  and the 
height tcΔ=ξΔ . Points 1r  and 2r  on the upper and 
lower boundaries of the volume element can be 
represented as Ωξ+= 01 rr  and += 02 rr  

ΩξΔ+ξ )( , respectively. Here ξ  and ξΔ+ξ  are 
distances between these points and a point Br  on the 
boundary Vδ  along a direction opposite to Ω . 
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 .ΔΔνΔξSΔΔtI)(ΔΔνΔξSΔΔtt
I

c
1dN

streaming
change of rate temporal

!!!! "!!!! #$
!!! "!!! #$

Ω∇•Ω+Ω
∂
∂

=  (15) 

 
Here ∇ is the vector operator, called “nabla.” Given a scalar function f, vector ∇f has the form  
 
 )z

I,y
I,x

I(I
∂
∂

∂
∂

∂
∂=∇ .  

 
The change described by Eq. (15) is due to four processes – absorption, outscattering, 
inscattering and emission, and these are described below. 
 
Absorption: A fraction of photons in the volume element rd  will be absorbed while traveling a 
distance tcΔ=ξΔ  along the direction Ω . This fraction is determined by the probability ξΔσa . 
Thus, the number of absorbed photons is  
 
 absorption !! "!! #$!!!! "!!!! #$

tc  traveling while
absorption of probabiliy

a

photons ofnumber 

t)Δ,,,r(σΔΔΔξSΔt),,,rI(c
1

Δ=ξΔ

ξΩνΩνΩν=   

 .ΔΔΔtSΔt),,,rI(t),,,r(a ΩνξΔΩνΩνσ=  (16) 
 
Outscattering: Another fraction of photons in the volume element r  traveling in the direction 
Ω  will change their direction and/or frequency as a result of interaction with matter. The number 
of photons “lost” due to outscattering from ,ν  Ω  to all other frequencies and directions while 
traveling a distance tcΔ=ξΔ  is given by 
 

 outscattering ∫ ∫
∞

π

ΩΩ%→Ω%→σΩ%%ΩΔ=
0 4

s t),ν,,rI(c
1t),,νν,r(dνdΔΔνξSΔΔtc   

 .ΔΔνξSΔtt)Δ,ν,,r(It),ν,,r(s ΩΔΩΩσ$=  (17) 
 
Inscattering: Similarly, the number of photons gained due to inscattering to ,ν  Ω  from all 
other frequencies and directions can be evaluated as  
 

 inscattering ∫∫ Ω#Ω→Ω#→#σΩ#ν#ΩΔ=
∞

π4
s

0

.t),,ν,r(It),ν,ν,r(ddΔΔνξSΔΔt  (18) 

 
The rate of the production of photons in the volume element is simply 
 
 emission .ΔΔνξSΔΔtt),ν,,rq(c ΩΔΩ=  (19) 
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Transfer Equation: The equation of transfer is essentially a statement of photon number 
conservation at r  by equating the sum of the four terms, Eqs. (16) to (19), with appropriate signs 
to designate a loss or gain, to the overall rate of change given by Eq. (15): 
 
 dN= - absorption  - outscattering + inscattering + emission,   
 
or, after dividing all terms by c ΩΔ ΔΔνξΔSΔt  and accounting for the definition of the 
extinction coefficient sa σ"+σ=σ , one gets 
 

 t),,,r(It),,,r(I)(t
I

c
1 ΩνΩνσ+∇•Ω+
∂
∂   

 .)t,ν,,rq(t),,ν,rI(t),ν,ν,r(dd
π4

s
0
∫∫ Ω+Ω##Ω→Ω#→#σΩ#ν#=

∞

 (20) 

 
Sometimes, the second and the third terms on the left hand side of Eq. (20) are grouped together; 
the term ][ σ+∇•Ω  then denotes the streaming-collision operator. An equation for the particle 
density distribution function can be obtained by normalizing Eq. (20) by νc!  if I is the radiant 
intensity or by c if I represents intensity of photons (see Eqs. (3a) and (3b)).  
 
It should be noted that this equation gives the expected or mean value of the photon distribution. 
Fluctuations about the mean are not considered. The derived equation also assumes unpolarized 
light. Four parameters are required to specify the state of polarization of a beam of light, and 
accordingly, a proper description of photon transport including polarization effects involves four 
coupled equations of transfer. Assuming the light to be unpolarized by the medium, these 
equations can be averaged to derive a single equation of transfer and this involves some error. 
Finally, the radiative transfer equation (20) does not describe behavior resulting from 
interference of waves. Therefore, the equation is valid only when the distance between scatterers 
is large compared to the wave packets. 
 
 
4. Initial and Boundary Conditions 
 
In many practical cases, one is interested in the photon distribution in a restricted region of 
space. It is necessary to specify a domain V in which the radiative transfer process is studied and 
a surface Vδ  that bounds V. Equation (20) is usually formulated for a domain V whose 
composition and shape depends on a specific problem under consideration. In solving the 
radiative transfer equation, it is necessary to specify both the photon distribution in V at some 
initial time 0t =  (initial condition) and the photon distribution incident on V at all times 
(boundary condition). The initial condition is given by  
 
 V.r),ν,,r(I0),ν,,rI( 0 ∈Ω=Ω  (21) 
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The boundary condition specifies the radiation entering the domain V through points on the 
boundary Vδ , 
 
 ),t,ν,,r(Bt),ν,,rI( BB Ω=Ω    VrB δ∈ ,   0)r(n B <Ω• . (22) 
 
Here B is the intensity of photons incident on the domain V at point Br  on the surface Vδ ; 

)r(n B  is an outward normal vector at this point (Fig. 4). The radiative transfer problem is thus 
completely specified by the equation of transfer [Eq. (20)], the initial condition [Eq. (21)] and the 
boundary condition [Eq. (22)]. 

 
 

 
 
 
 
 
 
 
 
 

Ω"  

domain V 
Ω  

Br"  

Br  

)r(n B"  

)r(n B  

 

 
 
 
Figure 4. Directions Ω  (Ω") along which incident photons 
can enter (exit) the domain V through the point Br  ( Br! ) on 
the boundary Vδ  satisfies the inequality 0)r(n B <Ω•  
( 0)r(n B >Ω"•" ). Here )r(n B ( )r(n B! ) is the outward 
normal at Br  ( Br! ). 
 

The incoming radiation B can result from sources on the boundary Vδ  and photons from V 
incident on the boundary that the boundary reflects back to the domain V. In the case of the 
boundary coherent scattering, the incoming radiation B can be written as 
 
 ∫∫

>•"

""ν""•""""=ν
0)r(nΩ

BBBBB
δV

BB

B

Ωdt),Ω,,rI(|Ω)r(n|Ω),r;Ω,r(ρrdπ
1t),Ω,,rB(   

 .0)r(nt),,,r(q BBB <Ω•Ω+  (23) 
 
Here ),r;,r( BBB Ω"Ω""ρ  is the boundary scattering function; that is, the probability density that a 
photon having escaped from the domain V through the point Vr B δ∈#  in the direction Ω" will 
come back to V through the point VrB δ∈  in the direction Ω . It should be emphasized that in 
general the boundary condition depends on the solution I of the radiative transfer problem. The 
case of vacuum boundary condition refers to 0B =ρ  and 0qB = . 
 
 
5. Stationary Radiative Transfer Problem 
 
If the extinction and differential scattering coefficients, emission and the boundary condition do 
not change with time, I∂ / ,0t =∂  the radiative transfer problem becomes a stationary radiative 
transfer problem. In the case of coherent scattering, the boundary value problem for radiative 
transfer equation in the wavelength domain has the form 
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 ∫ Ω+Ω#Ω→Ω#σΩ#=ΩΩσ+Ω∇•Ω λλλλλ

π4
s,λ ),,r(q),r(I),r(d),r(I),r(),r(I  (24a) 

 )r(B),r(I ,BλBλ Ω=Ω ,   VrB δ∈ ,   0)r(n B <Ω• . (24b) 
 
Here ),r(Iλ Ω  is the monochromatic specific intensity which depend on wavelength λ , location r 
and direction Ω . Note that the wavelength λ  is a parameter of the radiative transfer problem. 
We have emphasized this feature in notations by moving the wavelength from the argument list 
to subscript. In our analyses of the boundary value problem, therefore, we will often suppress 
this parameter in notations. The stationary radiative transfer equation is the basic tool used in 
optical remote sensing. This equation, notations and the convention regarding the wavelength 
dependence introduced here will be used in the rest of this book. 
 
 
6. Green’s Function and the Reciprocity Principle 
 
Consider a medium V bounded by a non-reflecting ( 0B =ρ ) and non-emitting ( 0qB = ) boundary 
Vδ . The volume Green’s function, )Ω,r;,r(GV !!Ω , is the radiative response of V at a point r , in 

direction Ω , to a monodirectional point source located at a given point r! , continuously emitting 
photons in a given direction Ω". The volume Green function satisfies the stationary radiative 
transfer equation [Eq. (24a)] with a delta function source term )rr()(),r(q V !−δΩ!−Ωδ=Ω  
located at r!  and with zero incoming radiation (B=0), that is, 
 
 )Ω,r;,r(G),rσ()Ω,r;,r(G VV !!ΩΩ+!!Ω∇•Ω  
 
 ,)rr()δΩδ(Ωd)Ω,r;Ω,r()GΩΩ,r(σ V

4π
Vs !−!−Ω+!!!!!!→!!= ∫  (25a) 

 
 ,0)Ω,r;,r(G BV =!!Ω    V,rB δ∈    .0)r(n B <•Ω  (25b) 
 
Here )Ωδ( !−Ω , in sr−1, and )rr(δV !− , in m−3, are Dirac delta functions. Note that 

)rr()δΩδ( V !−!−Ω  is a volume source normalized by its power. The volume Green function, 
therefore, is expressed in m−2sr−1. It should be also noted that the point r!  and the direction Ω" of 
the monodirectional source are parameters in the radiative transfer equation; that is, the 
determination of the complete Green function requires the solution of Eq. (25) for every point r!  
from V and the direction Ω". 
 
The surface Green’s function, )Ω,r;,r(G BS !!Ω , is the solution to the transport equation with the 
source 0),r(q =Ω  and the boundary condition  
 
 ),r,r()δΩ()Ω,r;,r(G BBSBS !!−Ωδ=!!Ω    V,r B δ∈#    .0)r(n B <Ω"•"  (26) 
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Here )r,r(δ BBS !  is a two-dimensional delta function (in m−2). Because the volume sources can be 
located on the boundary, the volume and surface Green functions are related [Case and Zweifel, 
1970] 
 
 ),r;,r(G|)r(n|),r;,r(G BVBBS Ω""ΩΩ"•"=Ω""Ω . (27) 
 
In terms of these two Green’s functions, we may write the general solution to the transport 
equation with arbitrary source ),r(q Ω  and boundary conditions with sources Bq  on the non-
reflecting boundary Vδ  ( 0B =ρ ) as 
 
 ∫∫ """"""=Ω

4π
V

V

Ωd)Ω,rq()Ω,r;Ω,r(Grd),rI(   

 ∫∫
<"•"

""""Ω"+
0Ω)r(n

BBBS
δV B

.)Ω,r(q)Ω,r;,r(GΩddS  (28) 

 
The first term in Eq. (28) is the solution of the radiative transfer equation with the internal source 

),r(q Ω  and no incoming radiance. The second term describes the 3D radiation field in V 
generated by sources Bq  distributed over the non-reflecting boundary .Vδ  
 
Let the differential scattering coefficient satisfies the symmetry property ),r(s Ω→Ω#σ = 

),r(s Ω"−→Ω−σ . Under this condition, the volume Green’s function possesses the following 
symmetry property 
 
 ),r;,r(G),r;,r(G VV Ω−Ω#−#=Ω##Ω .  (29) 
 
This equality expresses the fundamental reciprocity theorem for the stationary radiative transfer 
equation: the intensity ),r(I Ω  at r  in the direction Ω  due to a point source at r!  emitting in 
direction Ω" is the same as the intensity ),r(I Ω"−"  at r!  in the direction Ω"−  due to a point 
source at r  emitting in direction Ω− .  
 
The Green function concept was originally developed in neutron transport theory [Bell and 
Glasstone, 1970]. It has enabled the reformulation of the radiative transfer problems in terms of 
some “basic” sub-problems and to express the solution of the transport equation with arbitrary 
sources and boundary conditions as a superposition of the solutions of the basic sub-problems. 
We will demonstrate this technique later with a relevant example for radiative transfer in the 
canopy-surface-atmosphere system.  
 
 
7. Operator Notations. 
 
We introduce the streaming-collision, L, and scattering, S, operators as 
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 ),rI(),r(),rI(LI ΩΩσ+Ω∇•Ω= ,   .d),r()I,r(SI
4π

s Ω"Ω"Ω→Ω"σ= ∫  (30) 

 
We will use the notation ),r(I B Ω

±  to denote the intensity of radiation exiting (sign “+”) or 
entering (sign “−”) the domain V through the point Br , i.e., ),r(I B Ω

±  gives values of the 
intensity at points Br  on the boundary Vδ  in directions satisfying the inequality 0)r(n B >Ω• . 
To describe reflective properties of the boundary Vδ , a scattering operator defined on the 
boundary Vδ  for the intensity +I  of medium leaving radiation is introduced as 
 
 .d),r(I|)r(n|),r;,r(ρrdπ

1I
0Ω)r(n

BBBBB
δV

B

B

∫∫
>"•"

++ Ω"Ω""Ω"•"ΩΩ"""=R  (31) 

 
In terms of these notations, the boundary value problem Eq. (24) for the three-dimensional 
stationary radiative transfer equation can be expressed as 
 
 ,qSILI +=    .qII B

- += +R  (32) 
 
The boundary value problem is said to be the standard problem if 0=R  and 0qB = . To 
emphasize this in notations, we will use symbol 0L  to denote the streaming-collision operator 
corresponding to the standard problem.  
 
The boundary value problem for a domain with non-reflecting boundary can always be reduced 
to a standard problem. Indeed, the solution to the boundary value problem qSILI += , BqI =−  
can be represented as the sum of two components, difIQI += . The first term describes intensity 
of radiation generated by uncollided photons; that is, photons from the boundary source Bq  that 
have not undergone interactions within the domain V. It satisfies the equation 0LQ =  and the 
boundary condition BqQ =− . The second term, difI , describes a collided, or diffuse, radiation 
field; that is, radiation field generated by photons scattered one or more times. It satisfies the 
standard problem qSIIL difdif0 !+=  with the volume source SQqq +=! . The uncollided 
component Q acts as a source term for scattering process and thus the term SQ gives intensity of 
photons from the uncollided field Q just after their first scattering event.  
 
In mathematical literature, the standard problem is often formulated in functional spaces. The 
theory of functional analysis [Riesz and B. Sz.-Nagy 1990; Kantorovich and Akilov, 1964; 
Krein, 1972] requires the specification of two sets. The first – the domain D of the operator 0L  – 
identifies “possible candidates” for the solution. The second space – the range H of the operator 

0L  – specifies mathematical properties of “acceptable” volume sources. Vladimirov [1963] 
provides a full mathematical description of the standard problem for the following family of 
functional spaces. The range pH , ∞≤< p0 , consists of functions ),r(q Ω  for which the norm 

pq  exists, i.e., 
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 ,|),r(q|),r(rdd||q||
V

p

4
p ∞<ΩΩσΩ= ∫∫

π

  

 ∞<< p0 ,  
 .|)Ω,rq(|supvrai||q||

4πΩV,r
∞<=

∈∈
∞  (33) 

 
The set Dp, ∞≤< p0 , includes all functions (1) which satisfy the zero boundary condition (I−=0) 
and (2) whose transformations L0I and SI exist and are elements of the space Hp. The standard 
problem is formulated as follows: given q from Hp find an element I from Dp for which 

qSIIL0 += . “Visually,” this formulation is similar to problems in linear algebra, i.e., where L0 
and S are matrixes, I and q are vectors, and the norm Eq. [33] is the length of the vector. 
Vladimirov [1963] showed that such an interpretation of the standard problem, with some 
caveats, is valid and many results from matrix theory can be applied to the radiative transfer 
equation. This level of abstraction helps to derive many practically important properties of the 
radiation field whose direct derivation is either very difficult or impossible. We will demonstrate 
this technique with a relevant example for canopy spectral response to incident solar radiation. 
 
 
8. The Equation of Transfer in Integral Form 
 
The standard problem can be transformed to two types of integral equations. The first one is 
obtained by inverting the streaming-collision operator L0, i.e., qLSILI 1

0
1
0

−− += . The second 
equation is formulated for a source function J defined as qSIJ += . It follows from Eq. (30) with 

0=R  and 0qB =  that the intensity I and source function J are related as JLI 1
0
−= . Substituting 

this equation into the definition of J results in an operator equation of the form qJSLJ 1
0 += − .  

 
Both integral equations require the specification of the inverse operator 1

0L
−  which acts either on 

SI or J. Let u represents either SI or J. The function 1
0Lv −= u satisfies the equation 

 
 ),,r(u),r(v),r(),r(v Ω=ΩΩσ+Ω∇•Ω  (34) 
 
with the zero boundary condition, i.e., 0),r(u B =Ω , 0)r(n B <Ω• . For a straight line Ωη+Br , 

∞<η<∞− , along an incoming direction Ω , 0)r(n B <Ω• , this equation takes the following 
form 
 

 ),ξru(),ξrv(),ξr(dξ
),ξrdv(

BBB
B ΩΩ+=ΩΩ+ΩΩ+σ+

ΩΩ+ ,   .0),r(v B =Ω  (35) 

 
This is an ordinary differential with respect to ξ . Its solution is  
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 .'ξd)d(δ),ξru(),ξr(ξdexp),ξrv(
4 0

BBB ∫ ∫ ∫
π

ξ ξ

ξ$

Ω$Ω$−ΩΩ$Ω$$+
'
'

(

)

*
*

+

,
Ω$Ω$$$+σ$$−=ΩΩ+  (36) 

 
Note that we have artificially expressed the solution of the ordinary integral equation as an 
integral over Ω"ξ"d . The presence of the delta function )(δ Ω"−Ω  in Eq. (36), however, makes 
this integral equivalent to an integral over the line Ωη+Br  along the direction Ω  which is 
directly obtainable from Eq. (35). Let r  and Ω"ξ"−=" rr , 0≥ξ# , be two points on the line 

Ω"η+Br . We make use of the relationship Ωdξdξrd 2 !!!=!  to convert the volume element 
Ωdξdξ 2 !!!  expressed in polar coordinates with the origin at r  into the volume element rd !  in 

Cartesian coordinates. Noting that ξ"="r-r , one can express the unit vector Ω" as 
r-r/)rr( !!−=Ω! . In Cartesian coordinates, the function 1

0Lv −= u can be rewritten as  
 

 [ ]∫ "#
$
%

&
'
(

"−
"−−ΩΩ"

"−
Ω"τ−=Ω=

V

2
1-
0 rd||rr||

rrδ),ru(
||rr||
),r,r(exp),rv(uL  (37) 

 
Here ),r,r(τ Ω"  is the optical distance between points r  and r!  on a straight line along the 
direction Ω , i.e.,  
 

 ∫
"−

ΩΩ""−σξ""=Ω"
||rr||

0

),ξr(d),r,r(τ . (38) 

 
The δ-function in Eq. (37) indicates that the points r  and r!  lie on a line along the direction Ω . 
Equation (37) specifies the operator 1

0L
−  which sets in correspondence to a volume source u the 

three dimensional distribution ),r(v Ω  of photons from the source u that arrive at point r along 
the direction Ω  without suffering a collision.  
 
Substituting SIu =  into Eq. (37) one obtains the following integral equation  
 
 ∫ ∫

π

Ω+Ω$$Ω$$Ω→Ω$$=Ω
4 V

I .),r(Qdr)d,r)I(,r,r(),rI( K  (39) 

 
Here 
 

 [ ]
!
"
#

$
%
&

'−
'−−ΩΩ→Ω''

'−
Ω'τ−=Ω→Ω''

||rr||
rrδ),r(σ

||rr||
),r,r(exp),r,r( s2IK , (40) 

 
and the source qLQ 1

0
−=  is calculated using Eq. (37). The kernel IK  is the transition density, i.e., 

Ω""drdIK  is the probability that photons which have undergone interactions at r+ in the direction 
Ω" will have their next interaction at r  along the direction Ω . 
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Multiplying Eq. (37) by the differential scattering coefficient ),r(σs Ω→Ω#  and integrating over 
all scattering directions Ω"  one obtains a kernel SK  of the integral operator 1

0SL− : 
 

 [ ] .||rr||
rr)δ,r(σ

||rr||
),r,r(exp),r,r( s2S !

"
#

$
%
&

'−
'−−Ω'Ω→Ω'

'−
Ω''τ−=Ω→Ω''K  (41) 

 
Thus, the source function J satisfies the following integral equation 
 
 ∫ ∫

π

Ω+Ω$$Ω$$Ω→Ω$$=
4 V

S .),rq(dr)d,r)J(,r,r(Ω)J(r, K  (42) 

 
The intensity I can be expressed via J as JLI 1

0
−=  where the operator 1

0L
−  transforms the function 

in accordance with Eq. (37). In many cases the solution of the integral equation (42) for the 
source function is a simpler task than Eq. (40) for the intensity since the integration over Ω" can 
help to get rid of the angular variable. For example, in the case of isotopic source q, scattering 
( π= 4/1σs ) and extinction (i.e.,σ  does not depend on Ω ), the solution J becomes a function of 
the spatial variable while the corresponding intensity JLI 1

0
−=  depends on both spatial and 

angular variables. The integral equation (42) is especially useful in the study of radiative transfer 
problems with simple forms of anisotropy. The integral equation for the intensity serves as a 
theoretical basis for many Monte Carlo models for radiative transfer process in various media. 
 
 
9. Eigenvalues and Eigenvectors of the Radiative Transfer Equation 
 
An eigenvalue of the radiative transfer equation is a number γ  such that there exists a function 

),r(e Ω  which satisfies  
 
 SeeγL0 = . (43) 
 
Since the eigenvalue and eigenvector problem is formulated for zero boundary conditions (e−=0), 
γ  and ),r(e Ω  are independent on the incoming radiation. Under some general conditions 
[Vladimirov, 1963], the set of eigenvalues kγ , k=0,1,2, … and eigenvectors ),r(ek Ω , k=0,1,2, is 
a discrete set. The eigenvectors are mutually orthogonal, that is, 
 
 ,rdd),r(e),r(e),r(

V
l,k

4
lk∫ ∫ δ=ΩΩΩΩσ

π

 (44) 

 
where l,kδ  is the Kroneker symbol. The solution of the standard problem can be expanded in 
eigenvectors. The expansion in eigenvectors has mainly a theoretical value because the problem 
of finding these vectors is much more complicated than finding the solution of the transport 
equation. However, this approach can be useful to estimate integrals of the solution. Note that 
Eq. (43) is equivalent to finding of non-trivial solutions to the integral equation k

1
0k SeLγe −= . 



17 

The discreteness of the eigenvalue set makes the radiative transfer problem similar to problems 
in linear algebra, i.e., the intensity can be represented as an infinite vector which satisfies an 
infinity number of linear algebraic equations given by a matrix determined by SL 1

0
− . 

The transport equation has a unique positive eigenvalue which corresponds to a unique positive 
[normalized in the sense of Eq. (44)] eigenvector. This eigenvalue is greater than the absolute 
magnitudes of the remaining eigenvalues. This means that only one eigenvector, say 0e , takes on 
positive values for any Vr∈  and Ω . This positive couplet of eigenvector and eigenvalue plays 
an important role in transport theory, for example, in neutron transport theory. The positive 
eigenvalue alone determines if the fissile assembly will function as a reactor, or as an explosive, 
or will melt. In vegetation canopy radiative transfer, the positive eigenvalue determines canopy 
absorption properties. The positive couplet, 0γ  and 0e , can be iterated based on the following 
property of the operator SLT 1

0
−=  

 
 m,0m0 γlimγ

∞→
= ,  

 )Ω,r(elim)Ω,r(e m0,m0
∞→

= . (45) 

 
Here 
 

 ,
||qT||
||qT||

γ
p

m
p

1m

1m0,

+

+ =   

 ,
||qT||
qT)Ω,r(e
p

m

m

m0, =  (46) 

 
where 

p
...  is the norm defined by Eq. (33) and q is a source from the functional space .Hp  The 

limits given by Eqs. (45) and (46) do not depend on p (i.e., on functional space pH  in which the 
problem was formulated) and the source pHq∈  needed to initialize the sequences of m,0γ  and 

m,0e . If 1p = , value of 1m,0 +γ  gives the probability that a photon from the source q scattered m 
times will be scattered again. The corresponding function ),r(e m,0 Ω  is the probability density 
that a photon scattered m times will arrive at r  along the direction Ω  without suffering a 
collision. These interpretations directly follow from the integral form Eq. (39) of the operator 

SLT 1
0
−=  and the definition of the total interaction coefficient σ . Note that m,0γ  and m,0e  are 

related as  
 
 1m0,1m0,m0, eγTe ++= .  
 
There is another formulation of the eigenvalues and eigenvectors in linear transport theory [Case 
and Zweifel, 1967]. Their approach is similar to that used in the theory of ordinary differential 
equations, i.e., solutions of the homogeneous problem ( 0q = ) are represented as the product of 
an exponential function of spatial variable and corresponding eigenfunction which depends on 
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angular variable. Unlike the definition given by Eq. (33), the Case and Zweifel formulation 
results in both discrete and continuum of eigenvalues. The eigenfunctions corresponding to the 
continuum of the eigenvectors are Schwartz distributions, i.e., not functions in the usual sense. 
This approach allows for analytical solutions to the radiative transfer equation for a number of 
special cases and, therefore, provides in-depth understanding of the physics of radiative transfer 
process. For details of this approach, the reader is referred to Case and Zweifel [1967] and Bell 
and Glasstone [1970]. In this book, we follow the definition of the eigenvalue/eigenvector 
problem given by Eq. (43).  
 
 
10. The Law of Energy Conservation  
 
The stationary radiative transfer equation (24a) expresses the law of energy conservation for 
each spatial point r within V and for each direction Ω . The boundary condition (24b) describes 
energy exchange between V and the surrounding medium. Here we derive an expression of the 
energy conservation law for the domain V bounded by a surface V,δ  i.e., we perform integration 
of Eq. (24a) over V and the unit sphere π4  of directions, 
 
 .rdd),rq(rdd),rI()],r(),r([rddI

V4V4
s

V4
∫∫∫
×π×π×π

ΩΩ=ΩΩΩσ&−Ωσ+Ω∇•Ω  (47) 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Ωξ−= 0B Qr
rB=Q−ξ0Ω 

outward normal )r(n B  

boundary Vδ  

 point 0r  

ξ  

point Q on the  

plane ),r( 0 Ωπ  
Q  

plane ),r( 0 Ωπ  

direction Ω  

Ωξ−= 1B Qr  

Ω  

r  

 

 
Figure 5. Representation of spatial 
points within a volume V bounded 
by the surface Vδ . Here ),r( 0 Ωπ  
is a plane perpendicular to the direc-
tion Ω  and passing through a fixed 
point 0r ; ξ1 and ξ0 are distances 
between the point Q  on the plane 

),r( 0 Ωπ  and the boundary Vδ  
along the directions Ω  and Ω− , 
respectively; Br  denotes points on 
the boundary Vδ  and )r(n B  is the 
outward normal to Vδ  at this point. 
 

 
For a fixed direction Ω , let ),r( 0 Ωπ  be a plane perpendicular to Ω  and passing through a fixed 
point 0r  (Fig. 5). Let Q  be a variable point on the plane ),r( 0 Ωπ . Thus, the spatial point r  
within V can be represented as ΩξQr += . A volume element rd  about r  is dξQdrd = , where 
Qd  is a surface element on the plane ),r( 0 Ωπ  around the pointQ . It should be emphasized that 
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the surface element Qd  is perpendicular to the direction Ω . If one uses another elementary 
surface Qd !  around the point Q  which is perpendicular to a direction Ω", the volume element 
rd  is 

 
 dξQdrd !Ω!•Ω= . (48) 
 
Let ξ1 and ξ0 be distances between the point Q  and the boundary Vδ  along the directions Ω  
and Ω− , respectively. For the first term in Eq. (47), we have 
 

 ∫∫∫∫
ξ

ξ−ππ×π

ΩΩ+
Ω=Ω∇•Ω

1

00
dξ

),ξQdI(
QddrddI
)Q,r(4V4

 

 
 [ ]∫∫

ππ

ΩΩ−−ΩΩ+Ω=
)Q,r(

01
4 0

),ξQI(),ξQI(Qdd  

 
 ∫∫∫∫

ππππ

ΩΩ−Ω−ΩΩ+Ω=
)Q,r(

0
4)Q,r(

1
4 00

),ξQI(Qdd),ξQI(Qdd   
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 (49) 

 
In the second term of Eq. (47), the difference between σ  and sσ"  is the absorption coefficient. 
This term, therefore, gives the amount of radiant energy at a wavelength λ  absorbed by the 
domain V (in W m−

1). We use the symbol )V(Ea  to denote this variable. Finally, the right hand 
integral of Eq. (47) is the total amount of energy emitted by sources located within the volume 
V. We denote this quantity by q(V). Thus, the law of energy conservation for a given volume V 
bounded by a surface Vδ  can be expressed as  
 
 ),V(q)V(E)V(E)V(E a +δ=+δ −+  (50) 
 
that is, the amount of radiant energy reflected, )V(E δ+ , and absorbed, )V(Ea , by the volume V 
is equal to the amount of energy, )V(E δ− , incident on the boundary Vδ  and energy, q(V), 
emitted by the internal sources of the volume V. 
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11. Uniqueness Theorems  
 
Here we formulate conditions under which the boundary value problem for the stationary 
radiative transfer problem has a unique solution. The radiative transfer problem is formulated for 
a domain V bounded by a reflecting surface Vδ . Photon interactins with the boundary are 
specified by Eq. (23). 
 
The following parameters characterize optical properties of scatters and the entire medium as 
well as the interactions between the medium and the boundary. 
 
The maximum boundary reflectance, V)(ρ0 δ , quantifies the magnitude of boundary reflectance 
and is defined as  
 
 .d|)r(n|),r;,r(ρrdπ

1sup)V(ρ
0Ω)r(n

BBBB
δV

B

0)r(n
δVr

0

B
B

B
∫∫

<•>Ω#•#
∈#

ΩΩ•ΩΩ##=δ  (51) 

 
The maximum optical path is the maximum value of the optical distance between two points in 
the domain V [Eq. (38)] 
 
 ).,r,rτ(sup(V)τ

4πΩ
Vr,r

0 Ω"=
∈
∈"

 (52) 

 
The maximum single scattering albedo is the maximum value of the single scattering albedo 
 

 .)Ωr,(
)Ωr,(σsup(V) s

4 V,r
0 σ

"
=ϖ

π∈Ω∈

 (53) 

 
The following theorem is a special case of Germogenova’s maximum principle [Germogenova, 
1986] which is proved here under the assumption of symmetry properties for the differential 
scattering coefficient, ),r(),r( ss Ω"→Ωσ=Ω→Ω"σ  and the boundary scattering function, 

),r;,r(),r;,r( BBBBBB Ω"−"Ω−ρ=ΩΩ""ρ . This restriction will be relaxed (cf. next section). 
 
Theorem 1 
Let ),rI( Ω  satisfies Eq. (24a) in the domain V and 1(V)0 ≤ϖ , ∞<τ )V(0  and 0q = . The 
following inequality holds true  

 ),r(Isup|),r(I| B
0)r(n;Vr BB

Ω≤Ω
<•Ωδ∈

, (54) 

for all VVr δ+∈  and all directions.  
 
This theorem states that the intensity of radiation within V cannot exceed a maximum value of 
the intensity of radiation penetrating into V through the boundary .Vδ  This theorem also 
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presupposes that the incoming radiation field B is given by a bounded function. It means that this 
theorem cannot be applied if B contains a singular component, e.g., Dirac delta function. It is 
also assumed that the total interaction coefficient σ  and the differential scattering coefficient  

sσ  are positive functions.  
 
Proof  
     Let |),rI(|supI 4πΩV;Vr Ω= ∈+∈ δ  where “supremum” is taken over all spatial points from V+δV 
and over all directions. We have 
 
 ),r(I),r(d),rI(),r(),rI(

4π
s ΩΩ→Ω#σΩ#+ΩΩσ−=Ω∇•Ω ∫   

 { }∫ Ω#Ω→Ω#Ω#+ΩΩ−≤
∈#∈4π 4πΩV;r

s ),rI(sup),r(σd),rI(),r(σ   

 ),r(σ),r(σ
),r(σI),rI(),rσ( s Ω

Ω
Ω"

+ΩΩ−=   

 ),r()],rI(I(V)[ 0 ΩσΩ−ϖ≤   
 ).,r()],rI(I[ ΩσΩ−≤  (55) 
 
Note that the symmetry of the differential scattering coefficient was used to relate its integral 
over incident directions Ω"  to the scattering coefficient sσ"  (Section 2). Comparing the first and 
last term in (55), one obtains 
 
 0)],rI(I[),rσ()],rI(I[ ≥Ω−∇•Ω+ΩΩ− . (56) 
 
Multiplying this equation by [ ]),r,r(exp ΩΩξ−τ−  yields 
 

 [ ] ( ){ } 0),ξr,rτ(exp),ξrI(I
dξ
d ≥ΩΩ−−ΩΩ−−− .  

 
Integrating the above over the interval [0,ξ] results in  
 
 [ ] [ ] ),rI(I),ξr,rτ(exp),ξrI(I Ω−≤ΩΩ−−ΩΩ−− . (57) 
 
Let us assume that the solution ),rI( Ω  reaches its maximum at a point 0r  within V and in a 
direction 0Ω , i.e., ).,rI(I 00 Ω=  Let Bξ  be the distance between the point 0r  and the boundary 
δV along the direction ( 0Ω− ). It follows from (55) and ∞<τ )V(0  that 
 
 ( ) 0),rI(I),ξr,rτ()]exp,ξrI(I[0 0000B0000B0 =Ω−≤ΩΩ−−ΩΩ−−≤ ,  
 
which holds true if and only if ).,-rI(I 00B0 ΩΩξ=  It means that the maximum of the solution 

),rI( Ω  taken over all internal points and over all directions cannot exceed the intensity of 
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radiation entering the canopy in the direction 0Ω  through the point 0r  on the boundary .Vδ  This 
completes the proof. 
 
The inequality given by Eq. (57) for a more general case was originally derived by Germogenova 
[1986]. This results provides a theoretical justification to many existing radiation models. Based 
on Theorem 1, the following uniqueness theorem can be easily proved under the assumption of a 
symmetrical differential scattering coefficient sσ  and boundary bidirectional reflectance factor 
ρ . 
 
Uniqueness Theorem  
Let 1≤ϖ , 10 <ρ  and ∞<τ )V(0 . The radiative regime within a given volume V of space 
bounded by a reflecting surface Vδ  is uniquely determined by sources within V and the 
boundary conditions given by Eq. (23).  
 
Proof  
     Let ),r(I1 Ω  and ),r(I2 Ω  be two solutions of the transport equation (22) with boundary 
condition given by Eq. (23). The function ),r(I),r(I),r( 21 Ω−Ω=Ωψ  satisfies Eq. (24a) with 

0q =  and the boundary condition given by Eq. (23) with qB=0. It follows from Theorem 1 and 
the symmetry ),r;,r(),r;,r( BBBBBB Ω"−"Ω−ρ=ΩΩ""ρ that the following inequality  
 
 ),rB(sup|),r(ψ| B

0)r(n
Vr
B

B

Ω≤Ω

<•Ω
δ∈

  

 ∫∫
>•"<•

δ∈
Ω"Ω""ψΩ"•"ΩΩ"""=

0)n(rΩ
BBBBB

δV
B

0)n(rΩ
Vr

B
B

B

d),r(|)r(n|),r;,r(ρrdπ
1sup   

 
 |),(ψ|sup)(

0)r(n
r

0

B
B

Ω≤

<Ω•
∈

B
V

rV
δ

δρ , (58) 

 
is valid for all spatial points δVVr +∈  and directions π∈Ω 4 . Therefore, 
 
 |),r(ψ|sup)V(|),r(ψ|sup B

0)r(n
Vr

0B

0)r(n
Vr

B
B

B
B

Ωρ≤Ω

<Ω•
δ∈

<Ω•
δ∈

. (59) 

 
Since 1)V(0 <ρ , the inequality given by Eq. (59) holds true if and only if 0),r( =Ωψ , i.e., 

),r(I),r(I 21 Ω=Ω . The uniqueness theorem is thus proved.  
 
 
12. General Case of Asymmetry 
 
Theorem 1 and consequently the uniqueness theorem were proved under the assumption of 
certain symmetry in the differential scattering coefficient and the boundary bidirectional 
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reflectance factor. This assumption was required to derive the inequalities given by Eqs. (55) and 
(58). To extend the validity of the uniqueness theorem to the general case, consider the adjoint 
formulation of the transport equation [Bell and Glasstone, 1970; Germogenova, 1986], 
 

 ,d),r(I),r(),r(I),r(),r(I
4π

*
s

** ∫ Ω#Ω#Ω#→Ωσ=ΩΩσ+Ω∇•Ω−  (60) 

 )r(B),r(I ,B
*

B
* Ω=Ω ,   VrB δ∈ ,   0)r(n B >Ω• , (61) 

 

where 

 
 ∫∫

<"•

"Ω""Ω"•"Ω""Ω"=Ω
0Ω)r(n

B
*

BBBB
δV

BB
*

B

Ωd),r(I|)r(n|),r ;,r(ρrdπ
1),r(B   

 Ω),r(q B
*+ ,   0)r(n B >Ω• . (62) 

 
The following differences should be noted between the standard formulation given by Eqs. (24) 
and (23) and its adjoint counterpart given by Eqs. (60)-(61): (a) the gradient operator ∇•Ω  has 
the opposite sign; (b) the incident Ω" and scattering Ω  directions have been interchanged, i.e., 

Ω→Ω#  in (23) and (24) becomes Ω"→Ω  in Eqs. (60) and (62); and (c) the boundary condition 
(61) is formulated in terms of exiting photons, i.e., 0)r(n B >Ω• . 
 
Physically, the adjoint radiative transfer problem describes the time-reversed photon flow. This 
gives us the hint that adjoint sources q* describe the position of detectors while the adjoint 
transport equation describes the flow backward in time toward. Adjoint equations and their 
solutions play an important role in radiative transfer theory. Adjoint functions are, in a very real 
sense, orthogonal to the solutions of the radiative transfer equation [Bell and Glasstone, 1970; 
Germogenova, 1986]. For this and other reasons, they are widely used in perturbation theory and 
variational calculations relating to the behavior of 3D optical media. The properties of the 
solutions of the adjoint RTE are also used in the development of effective Monte Carlo 
calculations [Marchuk et al., 1980]. 
 
Consider the function ),r(I),r(I **

0 Ω−=Ω . It satisfies the standard boundary value problem for the 
standard transport equation, i.e., 
 
 ,d),r()I,r(σ),r()I,rσ(),r(I

4π

*
0s

*
0

*
0 ∫ Ω#Ω#Ω#−→Ω−=ΩΩ−+Ω∇•Ω  (63) 

 )r(B),r(I ,B
*

B
*
0 Ω=Ω − ,   VrB δ∈ ,   0)r(n B <Ω• . (64)  

 
The uniqueness theorem can be applied to Eqs. (63)-(64) with the maximum boundary albedo, 
single scattering albedo and optical depth calculated using ),r;,r( BBB Ω"−"Ω−ρ , ),r( Ω−σ  and 
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),r(s Ω"−→Ω−σ . According to the Fredholm alternative [Bronshtein and Semendyaev, 1985, p. 
783], a linear operator equation and its adjoint counterpart have a unique solution 
simultaneously. Therefore, we can use the adjoint transport equation to find the conditions under 
which it has a unique solution. The same conditions guarantee the uniqueness of the transport 
equation. Thus, the requirement for symmetry in the differential scattering coefficient and the 
boundary bidirectional reflectance factor can be relaxed.  
 
 
Problem Sets 
 
• Problem 1. The frequency of red light is ν =4.3×1014 oscillations per second. What is a 

wavelength λ  of red light? 
• Problem 2. How are particle distribution functions in frequency and wavelength domains 

related? 
• Problem 3. Let the differential solid angle Ωd  cuts an area consisting of points with polar 

and azimuthal angles from intervals ]d,[ θ+θθ  and ]d,[ ϕ+ϕϕ . Show that ϕθθ=Ω ddsind .  
• Problem 4. How are the intensities in frequency and wavelength domains related? 
• Problem 5. Some instruments (e.q., the LICOR quantum sensor) register broadband (i.e., 

integrated over a certain spectral interval) fluxes in mol m−
2 s−

1. Therefore, it is often 
convenient to use the intensity )t,,,r(J Ων  expressed in mol m−

3 s−
1 sr−

1 instead of )t,,,r(I Ων  
in J m−

2 sr−
1. How are intensities J, I and the particle distribution function f related? 

• Problem 6. Let x, y and z be Cartesian coordinates of the point 1r . Find Cartesian 
coordinates of the point ΩΔ+= tcrr 12 . 

• Problem 7. Location )t(r1  of a photon at time t traveling along a direction Ω  can be 
expressed as Ω+= tcr)t(r B1  where ξ=tc  is the distance traversed by a photon in time 
interval t. Let Bx , By  and Bz  be Cartesian coordinates of the point Br . Find Cartesian 
coordinates of points )t(r1  and ΩξΔ+= 12 r)t(r  and their derivatives with respect to t. 

• Problem 8. Show that if the extinction coefficient σ  does not depend neither on spatial nor 
angular variables, 2121 rr),r,r( −σ=Ωτ . 

• Problem 9. Using Eq. (37) show that the volume Green’s function for purely absorbing 
media (i.e., S=0) is given by 

 [ ] .||rr||
rr)δ(

||rr||
),r,r(exp),r;,r(G 2V !

"
#

$
%
&

'−
'−−ΩΩ→Ω'δ

'−
Ω''τ−=ΩΩ''   

• Problem 10. Let the total interaction coefficient σ  be independent of the spatial and angular 
variables. Derive integral equations for the intensity and source function for isotropically 
scattering media with isotropic sources. 

• Problem 11. Derive integral equations for the intensity and source function in plane 
geometry, i.e., a medium in which the total interaction coefficient, differential scattering 
coefficient and volume source are functions of the horizontal coordinate z. 
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• Problem 12. Let the total interaction coefficient σ  be independent of the spatial and angular 
variables. Derive integral equations for the intensity and source function for a sphere with 
isotropic scattering and spherically symmetric volume sources. The volume source is said to 
by spherically symmetric if it depends on r  and r/r•Ω . 

• Problem 13. Show that 1m0,1m0,m0, eγTe ++= , where 1m0,γ + and m0,e are eigenvalues and 
eigenvectors of transport equation, SeeγL0 = , and SLT 1

0
−=  (cf. Section 9). 

• Problem 14. Let Vδ  be a reflecting boundary, i.e., a fraction of the medium leaving 
radiation can be reflected back into V. Assume that the boundary reflects as a Lambertian 
surface. The radiation I − penetrating into V through Vδ  is 

0)r(n),,r(qd)r(n),rI(ρ),rI( BB
0)r(n

BBB

b

<Ω•Ω+Ω"Ω"•Ω"
π

=Ω ∫
>Ω"•

 . 

Show that )V(E)V(E)V(E)1( qa δ=+δρ− −+ , where 

.),r(q)r(ndrd)δV(E
0)r(n

BB
V

Bq

B

∫∫
<Ω•δ

− ΩΩ•Ω=  

• Problem 15. Let V be the parallelepiped and tVδ , bVδ  and lVδ  are its top, bottom and 
lateral surfaces. Show that 

 )V(E)V(E)V(E)V(E ltb δ+δ+δ=δ ++++ ,  
 )V(E)V(E)V(E)V(E ltb δ+δ+δ=δ −−−− .  
• Problem 16. Let V be the parallelepiped and tVδ , bVδ  and lVδ  are its top, bottom and 

lateral surfaces. Write the energy conservation law in terms of canopy transmission, t, 
reflection, r, and horizontal energy flow, h, defined as 

 ,d)r(n),rI(r
0)r(n

tt

t

∫
>Ω•

Ω#Ω#•Ω#=   

 ,d)r(n),rI(t
0)r(n

bb

b

∫
>Ω•

Ω#Ω#•Ω#=   

 .d)r(n),rI(h
0)r(n

ll

l

∫
>Ω•

Ω#Ω#•Ω#=   

• Problem 17. Prove the uniqueness theorem without assuming symmetrical differential 
scattering coefficient and boundary bidirectional reflectance factor. 

• Problem 18. Prove that for the horizontally homogeneous media, solution of the transport 
problem depends on vertical coordinate only. 
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