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Plant phenology is a sensitive indicator of climate change1–4 
and plays an important role in regulating carbon uptake by 
plants5–7. Previous studies have focused on spring leaf-out by 
daytime temperature and the onset of snow-melt time8,9, but 
the drivers controlling leaf senescence date (LSD) in autumn 
remain largely unknown10–12. Using long-term ground pheno-
logical records (14,536 time series since the 1900s) and satel-
lite greenness observations dating back to the 1980s, we show 
that rising pre-season maximum daytime (Tday) and minimum 
night-time (Tnight) temperatures had contrasting effects on the 
timing of autumn LSD in the Northern Hemisphere (> 20° N). 
If higher Tday leads to an earlier or later LSD, an increase in Tnight 
systematically drives LSD to occur oppositely. Contrasting 
impacts of daytime and night-time warming on drought stress 
may be the underlying mechanism. Our LSD model consider-
ing these opposite effects improved autumn phenology mod-
elling and predicted an overall earlier autumn LSD by the end 
of this century compared with traditional projections. These 
results challenge the notion of prolonged growth under higher 
autumn temperatures, suggesting instead that leaf senes-
cence in the Northern Hemisphere will begin earlier than  
currently expected, causing a positive climate feedback.

Climate change over the past several decades has modified 
the dates of plant flowering, leaf emergence, growth stages and 
senescence, collectively termed phenology13, with substantial 
ecological and environmental consequences4. Both observations 
and model simulations have found that air temperature has a 
positive influence on the onset of plant growth in the Northern 
Hemisphere; for example, higher spring temperature triggers 
earlier leaf-out and flowering dates and hence extends the grow-
ing season8,14,15. In contrast to those extensive research efforts on 
spring phenology, autumn phenology, particularly LSD, is more 
challenging to understand and has not received sufficient atten-
tion16,17, while also serving as an important indicator of changing 
foliar physiological properties. However, autumn phenology may 

be as important as spring in regulating the interannual variability 
of carbon balance7.

LSD has been occurring later in most regions over the past few 
decades18, but providing an explanation for this change is difficult9. 
An increase in global temperature is assumed to be a driver of LSD 
trends19, but studies have indicated that the contribution of tem-
perature to LSD variability is low, especially compared with spring 
phenology20,21. We argue that ignoring the asymmetric effects22 of 
Tday versus Tnight and their differing impacts on LSD contributes to 
the reported overall low contribution of temperature to LSD vari-
ability. To test this, we used measured and gridded pre-season 
(defined as months from June to LSD) Tday and Tnight values in the 
Northern Hemisphere, together with LSD data from three different 
datasets: (1) long-term phenological observations at ground sites 
from 14,536 time series since the 1900s (Supplementary Fig. 1),  
(2) the latest third generation of the normalized difference vegeta-
tion index (NDVI; Global Inventory Modeling and Mapping Studies 
NDVI3g version 1) for 1982–2015 and (3) NDVI and enhanced veg-
etation index (EVI) values from the Moderate-Resolution Imaging 
Spectroradiometer (MODIS) products for 2001–2015.

Pre-season forcing had a better predictive strength on LSD than 
either summer or autumn climate forcing alone (Supplementary  
Fig. 2). Because pre-season Tday and Tnight were highly correlated, we 
used a partial correlation to remove the effects of Tnight and of precip-
itation and radiation (similarly for Tnight) to investigate the response 
of LSD to Tday. Correlations were classified into four types, Tday

+Tnight
+ 

(type A), Tday
−Tnight

− (type B), Tday
+Tnight

− (type C) and Tday
−Tnight

+ (type D),  
where T+ and T− represent the positive and negative partial correla-
tion coefficient, R, respectively, of temperature T with LSD.

Overall, all three datasets suggest that the onset of autumn LSD 
responded oppositely to Tday and Tnight. The proportions of ground 
sites of types A and B were significantly lower than those of types 
C and D (Fig. 1a). More significant R values for both Tday and Tnight 
were found within types C and D, with only two and one records 
out of 2,231 time series having significant R values within types  
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A and B, respectively. These results from ground sites are consistent 
with those for the two satellite greenness products (Fig. 1b,c). Types 
C and D together accounted for 83.7% and 80.0% for NDVI3g and 
MODIS pixels, respectively. Only 0.8% and 1.5% of the pixels had the 
same sign of response of LSD to Tday or Tnight (that is, significant pixels 
for types A +​ B) for the NDVI3g and MODIS datasets, respectively. The 
NDVI3g dataset contained different fractions of types C and D (45.6% 
versus 38.1%), but the compositions of types C and D in NDVI3g (that 
is, contrasting effects of night and day temperatures) became more con-
sistent with the MODIS results when the overlapping periods between 
the two sensors were considered (Supplementary Figs. 3 and 4).  
More details on the fractions of the four correlation types for different 
vegetation types are provided in Supplementary Figs. 5 and 6.

The satellite greenness products also allowed us to evaluate spa-
tial patterns of LSD changes in response to variations in Tday and 
Tnight (Fig. 2). For the NDVI3g data, higher Tday was associated with 
a delayed LSD for 10.7% of the pixels (mostly boreal regions) and 
with an earlier LSD for 7.5% of the pixels (central North America, 
borders of Eurasia and central China). Tnight had evident opposite 
influences on LSD than Tday. The patterns of opposite effects from 
Tday and Tnight on LSD were highly spatially consistent in all regions 
where Tday and Tnight were significantly correlated with LSD. Similar 
results were obtained with MODIS observations (Fig. 2b,d). LSD for 
approximately 20% of all pixels was significantly correlated with Tday, 
of which 60.1% and 39.9% were negatively and positively correlated, 
respectively. The area where LSD was positively correlated with Tnight 
was larger (9.4%) than the area with negative correlations (6.5%).

Vegetation grouped into Köppen–Geiger zones showed con-
trasting patterns between the effects of Tday and Tnight on LSD  
(Fig. 2e,f). Type D was more widely distributed, while type C was 
more common for continental climates. Monsoon-influenced but 
not extremely cold regions and mild climates also had higher pro-
portions of type C. Grouping these correlation types by vegetation 
type led to similar results (Fig. 2g,h). In theory, we would expect to 
find type C more in wet vegetation types and type D in dry types. The 
real world seems to show the same thing, but there could be many 
locations that do not neatly fall into that continuum, suggesting addi-
tional mechanisms may be at work, probably species adaptation.

Our results suggest that ecological trade-offs, particularly those 
driven by regional differences in water stress, may underlie the con-
trasting relationships between LSD and Tday and Tnight. Type C was 
mostly found in humid regions where water is a less limiting factor 
for plant growth. In these cases, a higher Tday, in the likely absence 
of severe water stress, benefits photosynthesis, while elevated Tnight 
increases night-time leaf respiration.

Explanations for the prevalence of type D relations in dry regions 
are more complicated. The standardized precipitation evapotrans-
piration index (SPEI)23, an indicator of drought stress, accounted 
for the contrasting effects of increases in Tday and Tnight on LSD for 
type D (Fig. 3). Partial correlation data indicate that increased Tday 
is negatively correlated with the SPEI (Fig. 3a), a stronger sensitiv-
ity to drought in dry regions that negatively affects plant growth 
and consequently leads to an earlier LSD. In contrast, we found that 
an increase in Tnight is associated with a higher SPEI, that is, wetter 
conditions and, arguably, reduced water stress, which could extend 
the duration of photosynthesis and lead to delayed LSD (Fig. 3b). 
The latter mechanism is consistent with the generally positive par-
tial correlation values between evapotranspiration and Tnight, that is, 
more soil moisture being available for evapotranspiration in the late 
season, sustaining delayed LSD (Fig. 3f), and with studies showing 
that water stress accelerates leaf drop in dry ecosystems more than 
in humid ecosystems24. The responses of radiation to Tday and Tnight 
may also be viewed as further evidence for the linkage between leaf 
senescence and plant water status to support the contrasting pat-
terns (Supplementary Fig. 7), given that a higher Tday was associated 
with stronger radiation and potentially a higher chance of water 
stress. These findings suggest that dry regions, in which type D  
dominates, may be especially vulnerable to earlier onset of LSD if 
climate change reduces local precipitation and increases daytime 
evaporation with rising Tday.

Apart from physiological mechanisms relating to water stress, 
ecological processes may also contribute to these patterns. Warmer 
daytime versus night-time temperature may have contrasting effects 
on different species because species adaptations lead to intrinsic dif-
ferences in their timing of leaf emergence and senescence that are 
optimized to maximize carbon gain and minimize water losses25–27. 
The ecosystem-scale responses of phenology reflect the scaled 
responses of ecological dynamics of multiple individual species 
gaining or losing a competitive advantage in a changing climate, or 

0

10

20

30

40

50

a

b

c

F
re

qu
en

cy
 (

%
)

F
re

qu
en

cy
 (

%
)

F
re

qu
en

cy
 (

%
)

Ground sites

0

10

20

30

40

50
MODIS

0

10

20

30

40

50
NDVI3g

T +
day T

+
night T –

day T
–
night T +

day T
–
night T –

day T
+
night

T +
day T

+
night T –

day T
–
night T +

day T
–
night T –

day T
+
night

T +
day T

+
night T –

day T
–
night T +

day T  –night T –
day T

+
night

P day > 0.05 and P night > 0.05

P day > 0.05 and P night > 0.05

P day > 0.05 and P night > 0.05

P day > 0.05 and P night > 0.05

Correlation type

Correlation type

Correlation type

Fig. 1 | Frequency of the partial correlation coefficient between LSD and 
Tday and Tnight. a, Data for 14,536 time series of ground sites. b, The NDVI3g 
dataset for 1982–2015. c, The MODIS product for 2001–2015. Significance 
was set at P <​ 0.05. The legend in a applies to all panels.
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presenting an induced advantage as a result of land-use change and 
planting17,26. Recent results suggest that the magnitude of phenolog-
ical change to effects by shifts in plant species composition may be 
similar to that by climate change27, and the autumn phenology may 
thus change accordingly.

We tested the implications of the observation analysis on future 
trends in autumn LSD by developing a weighted day–night-tem-
perature growing-degree-day (DNGDD) algorithm incorporating 
these opposite changes in LSD to Tday and Tnight (see Methods). 
Our model substantially improved LSD modelling (in terms of R 
(Supplementary Figs. 8–10), root mean square error (Supplementary 
Figs. 11–13) and percentage of significant pixels (Supplementary 
Figs. 14 and 15)) compared with currently used threshold or GDD 
methods, both for the overall dataset and for vegetation types.

Spatial patterns of improvements using the MODIS and NDVI3g 
were also investigated (Supplementary Figs. 16 and 17). The results 
from the MODIS and the ground sites (Supplementary Fig. 18) were 
more consistent with our model, and the accuracy of the thresh-
old method was much lower, so we used the coefficients from 
the MODIS data to predict LSD variability by the end of this cen-
tury using the DNGDD and traditional GDD algorithms under two 
Representative Concentration Pathway (RCP) scenarios (RCP 4.5 
and RCP 8.5) (Supplementary Fig. 19 and Fig. 4).

LSD from the DNGDD method was overall earlier than conven-
tional predictions across Köppen–Geiger climate classification 

types. Globally, LSD was earlier for about 68% of the terrestrial bio-
sphere under RCP 4.5 and for about 70% under RCP 8.5. LSD was 
mostly later for central North America, western Russia and south-
western China. Most vegetation types showed earlier LSD estimates 
under the two RCP scenarios, while the temperate grasslands were 
expected to have later senescence dates.

Climatic variability, particularly temperature, has driven phe-
nological changes over the past several decades, but has been chal-
lenging to predict. The ability to predict autumn LSD is particularly 
limited. We report, using 14,536 ground time series and more than 
30 years of remotely sensed observations, the opposite responses of 
LSD to daytime and night-time warming, providing a perspective 
to account for the previous low estimation accuracy of autumn LSD 
when relying solely on mean temperature. A model based on mean 
temperature cannot correctly predict LSD changes, because LSD 
responds to Tday and Tnight in opposite directions. Our results also 
provide a perspective to account for the carry-over effects between 
spring and autumn phenology, that is, the start and end of a grow-
ing season always move in the same direction28. An earlier start of 
a season is mainly triggered by higher spring temperatures, with 
increased growth depleting soil water29, which is then associated 
with autumn drought, inducing a reduction in growth and conse-
quently leading to an earlier end to the growing season30.

Our improvement in modelling autumn phenology is strong 
and convincing evidence for the value of incorporating daytime 
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and night-time temperatures in terrestrial models, rather than 
mean temperature alone. The application of this model projects 
an overall earlier than currently expected start of autumn senes-
cence in the Northern Hemisphere by the end of this century, 
particularly in dry regions. The earlier data of autumn senescence 
may be a potentially unrecognized positive feedback to climate 
change and consequently a weakening in the capability of terres-
trial carbon uptake.

Online content
Any methods, additional references, Nature Research reporting 
summaries, source data, statements of data availability and asso-
ciated accession codes are available at https://doi.org/10.1038/
s41558-018-0346-z.
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Methods
Phenological observation data. We used observations of LSD from three 
independent phenological datasets.

(1) The Pan European Phenology Project PEP725 (ref. 31), an open-access 
database with long-term plant phenological observations (since 1868) from 19,608 
sites and 78 species across 25 European countries.

(2) The Chinese Phenological Observation Network, with data since 1963 for  
>​100 species at 42 sites across China32.

(3) LSD data for two tree species (Acer palmatum and Ginkgo biloba) at 54 
meteorological stations in South Korea for 1989–200733.

The definitions of LSD notably differ among the datasets. LSD for the PEP725, 
Chinese Phenological Observation Network and South Korean datasets is defined 
as the date when 50%, 90% and 20% of the tree leaves, respectively, change colour 
from green to red or yellow. We removed outliers using methods34 to exclude 
potential biases and inadequate degrees of freedom and focused on time series with 
at least 15 years of records for 1900–2015. We thus analysed 14,536 LSD time series 
for 24 species (Supplementary Table 1).

LSD derived from satellite data. LSD in the Northern Hemisphere was 
determined using two satellite-derived vegetation indices, the NDVI and the EVI 
(ref. 35). Both the NDVI and the EVI are direct indicators of vegetation growth and 
have been widely applied for investigating vegetation phenology36. We used two 
datasets to reduce the uncertainties caused by a single data source: NDVI3g data 
derived from the Advanced Very-High-Resolution Radiometer, and NDVI and 
EVI values derived from the MODIS. The NDVI3g data have a spatial resolution 
of 1/12°, a half-month interval and a 34-year time span (1982–2015). The MODIS 
16-day composite product MOD13C1 (Collection 6) includes both NDVI and EVI 
values with a 0.05° resolution for 2001–2015.

We eliminated the impacts of areas with sparse vegetation from the results  
by first excluding pixels with annual NDVI <​ 0.1 or annual EVI <​ 0.08 (ref. 37).  
A Savitzky–Golay filter was then used to smooth the NDVI (EVI) time series38.  
We then estimated LSD using two methods.

The first method was a dynamic-threshold approach, which uses an annually 
defined threshold for each pixel based on the NDVI ratio:

= − ∕ −NDVI (NDVI NDVI ) (NDVI NDVI ) (1)ratio min max min

where NDVI is the daily NDVI, and NDVImax and NDVImin are the annual daily 
maximum and minimum NDVI, respectively. The NDVIratio ranges from 0 to 1. 
LSD is determined when NDVIratio decreases to 0.5 in autumn39,40.

The second method was based on a series of piecewise logistic functions. The 
NDVI time series were first divided into two sections by the maximum daily NDVI 
in each year, and a double logistic function was applied to fit each section41:
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where y(t) is the NDVI at day of year t and a1–a7 are fitting parameters. LSD was 
then defined as the time when the curvature changing rate reached its last local 
maximum value.

For NDVI3g data, we calculated LSD using the NDVI from both the dynamic-
threshold approach and the piecewise logistic function method. Since the MODIS 
sensor provides the EVI, we further used an EVI-based logistic function method 
to derive LSD. To sum up, for the NDVI3g data, average LSD from a threshold 
approach and logistic function method were used, and for the MODIS data, an 
additional LSD from an EVI-based logistic function method was used (not for 
MODIS NDVI data).

At high latitudes (or elevations), snow cover is important for regional climate 
and arrives early in autumn, potentially masking evergreen vegetation. However, 
we have suggested that using a Savitzky–Golay filter could solve the noise from 
a ‘sudden’ change in the time series of the NDVI due to snow38. In particular, a 
previous study showed that snowfall had little influence on determining the end 
of a growing season in western Arctic Russia42. For high elevations, our previous 
analysis on the Tibetan Plateau showed that for more than 98% of regions, snow 
occurred later than LSD43.

Climatic data. We used the CRU-TS (Climatic Research Unit Time Series) 4.00 
dataset with a spatial resolution of 0.5° ×​ 0.5° for 1901–201544. We extracted 
monthly data for maximum temperature, Tmax, minimum temperature, Tmin, mean 
temperature, Tmean, precipitation and cloud cover from this dataset for analysing 
LSD from in-situ observations and the two remote-sensing datasets. We modelled 
past and future LSD by temperature by acquiring daily gridded data for maximum 
and minimum temperature with a spatial resolution of 0.5° from the National 
Oceanic and Atmospheric Administration Earth System Research Laboratory’s 
Physical Sciences Division for 1982–2015. We used daily Tmax and Tmin simulated 
by the CCSM (Community Climate System Model) 4.0 under two climatic 
scenarios (RCP 4.5 and RCP 8.5) for future climatic data (2081–2100). These 
data were from an open-access database of the Coupled Model Intercomparison 
Project Phase 5.

Analyses. We used partial correlation analyses to determine the responses of LSD 
to Tday and Tnight. The reason was that directly correlating LSD to Tday would give 
misleading results because Tnight is a confounding variable that is numerically related 
to both LSD and Tday, violating independence of variables in multiple correlation tests. 
Thus, using the partial correlation between LSD and Tday would measure the degree  
of association with the effect of a set of controlling random variables removed  
(for example, Tnight, precipitation, radiation), given that these factors have shown 
strong influences on LSD10,20. Since a previous study demonstrated that clouds are the 
main atmospheric factor modulating the surface incidence of solar radiation45, cloud 
cover data were used to model the effect of radiation on LSD, as similarly conducted 
in previous analyses8. An R value of at least 0.514 for the MODIS is required for the 
significance test (P =​ 0.05), but this value decreases to 0.339 for the longer NDVI3g 
data. These analyses were investigated for both Köppen–Geiger climate classifications 
and vegetation types (Supplementary Table 2)46,47. Crops were excluded because 
their signal may result from changes in cropping or harvest cycles, rather than from 
climate change. Furthermore, since, at low latitudes, plant phenology of tropical and 
subtropical areas responds to factors other than temperature, regions with latitudes of 
<​ 20° N were also excluded.

Current phenology algorithms in most terrestrial-biosphere models are 
based solely on temperatures in the preceding months15,48. We determined the 
length of the pre-season whose average Tday had the most influence on LSD, by 
calculating the partial correlation coefficients between LSD and mean Tday during 
0, 1, 2, …​ n months before LSD, controlling for corresponding mean Tnight, 
total precipitation and radiation. The maximum range (n) of the pre-season 
is generally from June to the multiyear mean date of LSD (see, for example, 
Supplementary Fig. 20). The partial correlation coefficients with the highest 
absolute values were then used in the following analysis. We obtained the 
relationship between LSD and Tnight in the same way, but replacing Tday with Tnight. 
This analytical procedure was applied for observed LSD from ground sites and 
derived LSD from the MODIS and NDVI3g data.

Models for predicting LSD. Our results indicated that LSD responded oppositely 
to Tday and Tnight, so we developed a weighted DNGDD algorithm from observations 
to model LSD, and compared the algorithm with currently used threshold and 
GDD models based on Tmean (ref. 49).

The threshold model was the simplest method. We calculated average Tmean 
for five days before LSD in each year and used the multiyear mean value as the 
threshold to model LSD. If Tmean was lower than the threshold for five consecutive 
days from 1 July, the last date was considered the LSD.

GDD was calculated as

= −d T T dGDD( ) max( ( ), 0) (3)b mean

∑=
=

dGDD GDD( ) (4)
d d

threshold

LSD

0

where GDD(d) is the acquired growing degree at a date d, GDDthreshold is the 
requirement of accumulated growing degree from d0 to LSD, Tb is the base 
temperature set to 15 °C, 20 °C, 25 °C and 30 °C, Tmean(d) is the mean daily 
temperature and d0 is the date on which the calculation begins (1 July in this study). 
LSD is the observed or derived date of leaf colouring in each year. The date when 
GDD(d) exceeded the multiyear average GDD threshold was defined as the LSD.

Our DNGDD model improved on the original GDD model and was calculated by

= × − + − × −d k T T d k T T dGDD( ) max( ( ), 0) (1 ) max( ( ), 0) (5)b day b night

where Tday(d) is the daily maximum temperature, Tnight(d) is the daily minimum 
temperature and k is the weighting factor. When 0 <​ k <​ 1, the effects of Tday and 
Tnight on LSD are consistently positive; when k >​ 1 or k <​ 0, the effects of Tday and 
Tnight on LSD are opposite. To determine the value of k, we first calculated the ratio 
of Rday to Rnight for each station or pixel, and found that 99.9% of the ratio values 
were between −​10 and 10 for both ground and satellite data (Supplementary  
Fig. 21). In other words, the level of Tday (Tnight) effect could be 1 to 10 times the level 
of Tnight (Tday) effect (note that Tday represents Tday with the effects of Tnight removed). 
Therefore, the values of k ranged from −​1 to 2 (see Supplementary Table 3). In 
addition, when k tends to infinity, the effects of Tday and Tnight on LSD are opposite, 
with the same level.

We evaluated the accuracy and obtained the most appropriate parameters of 
the models by calculating R and the root mean square error between modelled and 
observed LSD. Tb and k with the lowest root mean square error were considered to 
be the most appropriate values for each site or pixel.

Code availability. All code used for data processing in this study is available from 
the corresponding author upon request.

Data availability
The data that support the findings of this study are available from the 
corresponding author upon request.
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