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Ongoing spring warming allows the growing season to begin
earlier, enhancing carbon uptake in northern ecosystems1–3.
Here we use 34 years of atmospheric CO2 concentration
measurements at Barrow, Alaska (BRW, 71◦ N) to show that
the interannual relationship between spring temperature and
carbon uptake has recently shifted. We use two indicators: the
spring zero-crossing date of atmospheric CO2 (SZC) and the
magnitudeofCO2 drawdownbetweenMayand June (SCC). The
previously reported strong correlation between SZC, SCC and
spring land temperature (ST) was found in the first 17 years
of measurements, but disappeared in the last 17 years. As
a result, the sensitivity of both SZC and SCC to warming
decreased. Simulations with an atmospheric transport model4
coupled to a terrestrial ecosystem model5 suggest that the
weakened interannual correlation of SZC and SCC with ST in
the last 17 years is attributable to the declining temperature
response of spring net primary productivity (NPP) rather
than to changes in heterotrophic respiration or in atmospheric
transport patterns. Reduced chilling during dormancy and
emerging light limitation are possible mechanisms that may
have contributed to the loss of NPP response to ST. Our results
thus challenge the ‘warmer spring–bigger sink’ mechanism.

For the past decade, boreal forests have been a net carbon sink6;
but the sink-or-source status of arctic tundra cannot be deduced
from current observations7. Both modelling and observational
studies have shown that spring warming has advanced leaf onset
in the Northern Hemisphere, thus lengthening the photosynthesis
season and, in turn, strengthening net carbon uptake1–3,8. The effect
of temperature on spring CO2 uptake by plants has been identified
as the main mechanism explaining the year-to-year variations
of atmospheric CO2 in spring. For instance, at Point Barrow

(hereafter referred to as Barrow) atmospheric measurement station
in north Alaska, the periodical spring drawdown of atmospheric
CO2 occurs earlier in the year when spring temperature is warmer1,9.
Beyond the rather well-studied interannual variations, examples
of decadal changes in climate affecting ecosystems remain elusive.
Limited evidence from tree-ring data10 and satellite vegetation
greenness11,12 does give hints that the response of northern terrestrial
carbon fluxes to temperature may not be constant over timescales
of decades.

Here, we investigate changes in the interannual relationship
between spring temperature and CO2 uptake by northern
ecosystems (NEP, net ecosystem productivity) over the past three
decades. We use: the longest high-latitude atmospheric CO2
record from Barrow; the LMDZ4 (Laboratoire de Météorologie
Dynamique, ‘Z’ stands for zoom) atmospheric transport model4
simulating CO2 concentrations from NEP produced by the
process-based terrestrial carbon model ORCHIDEE5 (ORganizing
Carbon and Hydrology In Dynamic Ecosystems), which also
allows the partitioning of NEP into its component fluxes of NPP
and heterotrophic respiration (HR); and satellite observations
of vegetation greenness, a proxy for photosynthesis. Temporal
variations in the seasonal variability of CO2 in spring at Barrow
reflect changes in northern NEP and atmospheric mixing1,13. We
consider two indicators of spring CO2 variations at Barrow, namely
the SZC (the day of year when CO2 crosses down through its
annual mean level; Supplementary Figs 1 and 2a) and the SCC
(spring carbon capture, the seasonal magnitude of the observed
CO2 decrease between the first week of May and the last week of
June; Supplementary Figs 1 and 2b)1,13,14. These two indicators are
correlated with land temperature to give the response of spring
NEP to temperature (all variables are detrended, see Methods).
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Figure 1 | Time series of detrended anomalies. a, SZC (black) and ST (red).
b, SCC (black) and ST (red). Interannual correlation coe�cients of SZC and
SCC with ST during the first 17 years (1979–1995) and the last 17 years
(1996–2012) are inset as (r). Note that we have reversed the scale of ST
in a for a better visual e�ect.

The average spring temperature from March to June (ST) over
vegetated land north of 50◦N was used, since this time period
shows the strongest negative interannual correlation between ST
and SZC, and the strongest positive interannual correlation with
SCC (Supplementary Fig. 3).

All variables are detrended in the statistical correlation analy-
sis since we focus on the interannual relationship between spring
carbon uptake and temperature (see Methods). As shown in
Figs 1a and 2a, the interannual relationship between SZC and ST is
not stable over the full length of the Barrow record. Partial correla-
tions remove the statistical influence of other climatic variables that
co-varywith ST andmay affectNEP, and in turn atmospheric CO2—
in particular precipitation and radiation (here approximated by
cloudiness). We found that the partial correlation between SZC and
ST (RSZC) was −0.84 during the period 1979–1995, but decreased
to−0.11 during the period 1996–2012. Robustness tests randomly
selecting 14 years in the first period (number of degrees of freedom
= 10) showed that all combinations of years give a statistically
significant negative RSZC (P<0.05) during the first period, whereas
only 2% of the combinations produce (marginally) significant neg-
ative RSZC (P<0.10) during the second period (Fig. 2a). Partial cor-
relations of SZC and SCC with spring cloudiness and precipitation
are not significant for either period (Supplementary Fig. 4).

The sensitivity of SZC to STwas determined usingmultiple linear
regressions with ST, precipitation and cloudiness. The sensitivity of
SZC to ST, hereafter called γSZC, is the slope of the regression between
SZC and ST, with both variables detrended (Supplementary Fig. 5a).
The value of γSZC is negative since warmer years are associated
with an advance of SZC. Like partial correlations between ST and
SZC, γSZC significantly decreased, that is, became less negative, in
the second period relative to the first period (based on two-sample
t-test, P< 0.05) (see Supplementary Fig. 5a). This decrease in γSZC
occurs in parallel with the loss of interannual correlation between
SZC and ST in the second period. Performing the same analysis
using SCC instead of SZC produces similar results, with a decrease
of γSCC (Figs 1b and 2b and Supplementary Fig. 5b).

To investigate whether the decrease in RSZC and RSCC could
be explained by a change in the NEP flux area influencing the
spring drawdown of CO2 at Barrow—that is, the atmospheric
footprint of the station—we calculated the main footprint area,
which is mainly in eastern Siberia and Alaska (see Methods and
Supplementary Fig. 6). Using climate variables averaged only over
the main footprint area where NEP impacts the CO2 drawdown
measured at Barrow, we also found a decline in RSZC and RSCC
(see Methods and Supplementary Fig. 7). Climate observations are
scarce at high latitudes; thus, to test if the decline of RSZC and
RSCC is robust to the choice of a climate forcing data set, we used
different products (Supplementary Fig. 8).We also adopted different
parameters for atmospheric CO2 data processing (see Methods and
Supplementary Fig. 9), changed the duration of the period before
June overwhich ST is averaged (seeMethods, Supplementary Fig. 9),
used weekly instead of daily CO2 data from Barrow (Supplementary
Fig. 10), and tried to include co-variation in snowwater equivalent15
as well as previous winter temperature in the partial correlation
analysis (Supplementary Fig. 11). All these tests confirmed that
the decrease of RSZC and RSCC over time is a robust finding. Two
other long-term northern CO2 records from the Alaskan station at
Cold Bay and the Norwegian Ocean Station M also show a similar
decrease of RSZC and RSCC, albeit with a generally weaker interannual
correlation between CO2 and ST at Station M compared to Barrow
(Supplementary Fig. 12). Finally, the decrease of RSZC and RSCC at
Barrow did not depend on the precise duration of the first and
second periods (Supplementary Fig. 13).

We tested the following hypotheses to explain the decrease of
RSZC and γSZC: (H1a) spring NEP which controls the timing and
magnitude of spring CO2 drawdown at Barrow, shows a decreasing
sensitivity to ST because NPP is becoming less sensitive to temper-
ature, while the sensitivity of HR is stable; (H1b) HR is becoming
more sensitive to temperature, while the sensitivity of NPP is stable;
(H2) the decrease ofRSZC and γSZC are not due to a changing response
of NEP to ST, but reflect changes in atmospheric transport.

To test these hypotheses, we performed factorial simulations
with the atmospheric transport model LMDZ44, coupled with
the spatially and temporally explicit ecosystem model of NEP,
ORCHIDEE5. The transport model can be run with year-to-year
varying winds over the past 34 years (Table 1). Daily NEP from
the ecosystem model forced by historical climate16 and rising atmo-
spheric CO2 (ref. 5) was prescribed to the transport model to simu-
late CO2 at Barrow during 1979–2012 (seeMethods). The version of
ORCHIDEE used here does not include permafrost dynamics such
as soil thaw17 and disturbances such as fire. The factorial simulations
(Table 1) include year-to-year varying atmospheric transport ap-
plied to either year-to-year varying NEP (TFTT) or periodical (with
the same seasonal cycle each year) NEP (CFTT). See Table 1 for
explanation of abbreviations. In addition, we performed runs where
NEP was set to be year-to-year varying in boreal regions (>50◦N)
only and periodical elsewhere (TFTT-B). The contribution of year-
to-year varying NEP to SZC and SCC at Barrow is diagnosed from
the difference in the simulated CO2 concentration between TFTT
andCFTT (referred to as TFCT). The specific contribution of boreal
ecosystem NEP is obtained from the difference in CO2 between
TFTT-B and CFTT (referred to as TFCT-B). This latter diagnostic
shows that, consistent with ref. 18, SZC and SCC variations at
Barrow are dominated by NEP fluctuations in boreal ecosystems
(Supplementary Fig. 14). The observed weakening of RSZC (Fig. 2a
and Supplementary Fig. 13a) is captured by both simulations TFCT
andTFCT-B, indicating that theORCHIDEEmodel has some ability
to capture the changing response ofNEP to ST over the past 34 years.
Further, the consistency between TFCT and TFCT-B implies that
changes inNEP from boreal regions rather than from temperate and
subtropical regions aremainly responsible for the observed weaken-
ing in RSZC. Varying atmospheric transport does not seem to play an
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Figure 2 | The partial correlation coe�cient of spring carbon uptake and temperature during di�erent periods. a,b, Frequency distributions of the partial
correlation coe�cient of SZC (RSZC) (a) and SCC (RSCC) (b) with March–June temperature during the first 17 years (1979–1995) and the second, more
recent 17 years (1996–2012). Frequency distributions of the partial correlation coe�cient of SZC (RSZC) (a) and SCC (RSCC) (b) with March–June
temperature during the first 17 years (1979–1995, blue) and the recent 17 years (1996–2012, red). Statistically significant partial correlation coe�cients are
indicated as dotted lines (magenta: P<0.05 and brown: P<0.1). All variables were detrended for each study period before partial correlation analysis.
Abbreviations of transport simulations are defined in Table 1. CFTT indicates the e�ect of wind change on RSZC and RSCC; TFCT indicates the e�ect of global
NEP change on RSZC and RSCC; TFCT-B indicates the e�ect of boreal NEP change on RSZC and RSCC; TFCT-T indicates the e�ect of change in boreal NEP only
driven by temperature on RSZC and RSCC; TFCT-TP indicates the e�ect of change in boreal NEP driven by both temperature and precipitation on RSZC and
RSCC; TFCT-NPP indicates the e�ect of boreal NPP change on RSZC and RSCC; TFCT-HR indicates the e�ect of boreal HR change on RSZC and RSCC; TFCT-D
indicates the e�ect of change in temperature during the dormancy period only (November–April) on RSZC and RSCC.

important role in the changing interannual correlation between SZC
and STbecause the simulationwith periodicalNEP and year-to-year
varying transport (CFTT) produced no significant change in inter-
annual correlation, as measured by RSZC (Fig. 2a and Supplementary
Fig. 13a). We obtained similar results looking at SCC instead of
SZC at Barrow (Fig. 2b and Supplementary Fig. 13b). In summary,
these simulation results are consistent with both hypothesisH1a and
H1b, but falsify H2 because NEP changes over boreal regions rather
than transport changes explained the loss of interannual correlation
between ST and SZC over time. In addition, we also found negligible
contributions from variation in air–sea CO2 fluxes to the decline in
RSZC or RSCC (see Methods and Supplementary Fig. 15).

To attribute simulated RSZC and RSCC changes to temperature
versus precipitation effects on NEP, we performed two additional
simulations: TFCT-T where only historical temperature was varied
and precipitation as well as other climate drivers of the ORCHIDEE
ecosystem model are periodical; and TFCT-TP where both
historical temperature and precipitation were varied (see Methods
and Table 1). Atmospheric CO2 simulated with only historical
temperature impacting NEP, reproduced a decrease of RSZC and

γSZC at Barrow (Fig. 2a and Supplementary Fig. 5a). Further,
the simulated decrease of RSZC in TFCT-T was close to the one
found in TFCT-B where all historical climate drivers were varied
(Supplementary Fig. 13a). This suggests that the decrease ofRSZC and
γSZC is mainly attributable to changes in the temperature response of
NEP in boreal regions (see also Fig. 2b and Supplementary Fig. 5b
for SCC).

In the terrestrial ecosystem model used in this study
(ORCHIDEE), interannual variations of spring NEP are mainly
explained by NPP variations rather than variations in HR
(Supplementary Fig. 16). As a further test of H1a against H1b, we
performed two additional transport simulations where HR was set
to be periodical and NPP was year-to-year varying (TFCT-NPP),
and vice versa (TFCT-HR) (see Methods and Table 1). The results
shown in Fig. 2 indicate that the simulated decrease of RSZC
and RSCC, which matches the observed decrease, is mainly due
to a loss of interannual correlation between NPP and ST (see
also Supplementary Fig. 13). This favours hypothesis H1a over
H1b, although this result should be reproduced in the future by
alternative sets of NPP and HR from terrestrial ecosystem models.
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Table 1 | Summary of transport simulations performed.

Simulation name Abbreviation Carbon flux Wind

Constant Flux (NEP) with Transient Transport CFTT Periodical NEP of 1979 from ORCHIDEE simulation S3 where
both CO2 and all historical climate variables are varied

vary

Transient Flux (NEP) with Transient Transport TFTT Year-to-year varying NEP from simulation S3 where both CO2
and all historical climate variables are varied

vary

Transient Boreal Flux (NEP) with Transient Transport TFTT-B Year-to-year varying NEP in boreal regions (north of
50◦ N) and periodical NEP of 1979 elsewhere

vary

Transient Flux (NEP) with Transient Transport under scenario
with varied Temperature

TFTT-T The same as TFTT-B, but NEP from simulation S1 where
only historical temperature is varied

vary

Transient Flux (NEP) with Transient Transport under scenario
with varied Temperature and Precipitation

TFTT-TP The same as TFTT-B, but NEP from simulation S2 where
both historical temperature and precipitation are varied

vary

Transient Flux (NPP) with Transient Transport TFTT-NPP Year-to-year varying NPP and periodical HR of 1979 in
boreal regions

vary

Transient Flux (HR) with Transient Transport TFTT-HR Year-to-year varying HR and periodical NPP of 1979 in
boreal regions

vary

Transient Flux (NEP) with Transient Transport under scenario
with varied temperature from May to October

TFTT-D The same as TFTT-B, but NEP from simulation S4 where
only historical temperature from May to October is varied

vary

Transient TEmperate Flux (NEP) with Transient Transport TFTT-TE Year-to-year varying NEP in temperate regions
(30◦ N–50◦ N) and periodical NEP of 1979 elsewhere

vary

TFCT= TFTT–CFTT, indicating the e�ect of global NEP change. TFCT-B= TFTT-B–CFTT, indicating the e�ect of boreal NEP change. TFCT-T= TFTT-T–CFTT, indicating the e�ect of boreal NEP
change driven by only historical temperature change. TFCT-TP= TFTT-TP–CFTT, indicating the e�ect of boreal NEP change driven by both historical temperature and precipitation change. TFCT-NPP
= TFTT-NPP–CFTT, indicating the e�ect of boreal NPP change. TFCT-HR= TFTT-HR–CFTT, indicating the e�ect of boreal HR change. TFCT-D= TFTT-T–TFTT-D, indicating the e�ect of boreal NEP
change driven by only historical temperature change during the dormancy period. TFCT-TE= TFTT-TE–CFTT, indicating the e�ect of temperate NEP change.
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Figure 3 | Spatial distribution of di�erence in average partial correlation coe�cient of spring carbon flux (NEP, NPP and HR) and NDVI with March–June
temperature between 1996–2012 and 1979–1995. The partial correlation coe�cient is calculated by statistically controlling for interannual variation in
precipitation and cloud cover from March to June. Here we compute the spring carbon flux as the total flux from May to June. Carbon fluxes are derived
from ORCHIDEE simulations S3 where atmospheric CO2 and all historical climatic factors were changed (a–c), from simulation S1 where only historical
temperature was changed (d–f), and from the di�erence between simulation S1 and S4 where only historical temperature from May to October was
changed (g–i). For each grid, we calculate the partial correlation coe�cient through randomly selecting 14 years in the periods of 1979–1995 and
1996–2012, and then taking the mean value for the corresponding period. Only gridded pixels with statistically significant di�erence at 95% (P<0.05)
level are shown. Note that NDVI data (j) are only available from 1982 to 2011, so in this case we calculate the partial correlation coe�cient through
randomly selecting 12 years among 1982–1996 and 1997–2011. All variables are detrended for each study period before partial correlation analysis.

Finally, we examined the spatial distribution of changes in
the partial correlation coefficient between ST and NEP (RNEP-T)
simulated byORCHIDEEduring the past three decades (Fig. 3). The
main footprint region of NEP fluxes influencing the Barrow CO2
drawdown in spring is Alaska and eastern Siberia (Supplementary
Fig. 6). In these two regions, we found a significant decrease in
the local RNEP-T according to ORCHIDEE simulations (Fig. 3a),
resulting from a decrease in the interannual correlation between
ST and NPP (RNPP-T) (Fig. 3b). Similar spatial patterns of change in
RNPP-T also emerge from the analysis of long-term time series of the
Normalized Difference Vegetation Index (NDVI) data, a proxy for

vegetation photosynthesis which is related to NPP (see Fig. 3j and
Supplementary Fig. 17). This suggests that the decrease in the partial
correlation between SZC, SCC and ST at Barrow is unlikely to be
due to changes in the spatial coherence of temperature variation. In
addition to Alaska and eastern Siberia, bothORCHIDEE simulation
and NDVI show a significant decline of the vegetation response to
temperature in northern Europe that is also identified as one of the
footprint areas of Barrow by the previous study18. Further, the spatial
patterns of changes in RNEP-T (Fig. 3a) and RNPP-T (Fig. 3b) when
NEP is driven by historical precipitation, radiation and temperature
are similar to those obtained when NEP is calculated only from
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historical temperature (Fig. 3d,e). This suggests that temperature
change predominantly explains the simulated decline in localRNPP-T.

Several mechanisms could explain the apparent weakening
response of NPP in spring to interannual temperature variations.
A first possible mechanism is that winter warming comes with a
loss of chilling, so that leaf onset and following spring NPP become
less responsive to ST19. This phenomenon has been suggested
in several observational and experimental studies, involving both
woody plants19 and herbaceous species20. To test this mechanism,
we performed an additional ORCHIDEE simulation to quantify
the relative contribution of changes in chilling days to the decline
of RNPP-T through controlling the historical temperature during the
dormancy period (November–April) (simulation S4, see Methods).
NEP derived from the difference between simulation S1 (only
historical temperature was changed in the ORCHIDEE simulation)
and simulation S4 reflects the effect of temperature change during
the dormancy period only. Namely, this results in a change in spring
NEP in theORCHIDEEmodel where the start of the growing season
is triggered only after a certain accumulation of heat. We found
that changes in chilling days can partly explain a decline of RNPP-T
in eastern Siberia and parts of Alaska (Fig. 3h and Supplementary
Fig. 17). Further transport simulation shows that the effect of
temperature change during the dormancy period reduced RSZC from
−0.73 during the first period to −0.50 during the second period
(Fig. 2a). Changes in temperature during the dormancy period
(Fig. 3h) could, however, not solely explain the full magnitude of
the simulated decline inRNPP-T (Fig. 3b). Other possiblemechanisms
that were not specifically tested are the possible limitations of
shorter day lengths when the growing season progressively advances
earlier into the spring21, and increasing occurrence of extreme events
(such as extreme hot days in eastern Siberia and frost days in
northern Europe) (Supplementary Fig. 18a,b)12. Further studies are
needed to verify these potential mechanisms.

Our results show that the linkage between spring carbon uptake
and temperature is not a stable property of northern ecosystems.
It demonstrates the value of long-term in situ CO2 records for
understanding of the dynamics of the response of the terrestrial
carbon balance to climate change. Our results are also relevant to
predicting feedbacks between the terrestrial carbon cycle and the
global climate system. However, because of the relatively short run
of CO2 observations, it remains uncertain whether the observed
decrease in interannual correlation of spring carbon uptake with
temperature reflects decadal variability, or a long-term shift in the
ecological response of boreal and arctic regions to warming.

Methods
Methods, including statements of data availability and any
associated accession codes and references, are available in the
online version of this paper.
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Methods
Atmospheric CO2 concentration data. Daily atmospheric CO2 concentration
records constructed from surface in situ continuous measurements at Point Barrow,
Alaska, were obtained from the National Oceanic and Atmospheric Administration
(NOAA) Earth System Research Laboratory archive22 for the period of 1979–2012.
To separate the seasonal cycle from the long-term increase in CO2, the daily data
was firstly fitted with a function consisting of a quadratic polynomial for the
long-term trend and four harmonics for the annual cycle23. The residuals from this
function fit are then obtained. A smooth curve was obtained by digitally removing
the short-term variation from the residuals using 1.5 month (or 1.0 month, see
Supplementary Fig. 9) full-width half-maximum value (FWHM) averaging filter
and then adding the filtered residuals to the fitted function. A de-seasonalized
long-term trend was obtained by digitally filtering the residuals using a 390-day
FWHM averaging filter and then adding the filtered residuals to the quadratic
polynomial long-term trend. The difference between the smooth curve and the
de-seasonalized long-term trend is then used to represent the detrended seasonal
CO2 curve. Note that any data lying outside 5 (or 3, 2.5, see Supplementary Fig. 9)
standard deviations of the residuals between the original data and the smooth
curve were regarded as outliers and discarded from the original daily time series24.
This procedure was repeated until no outliers were identified. The spring
(downward) zero-crossing date (SZC) for each year was then determined as the day
of the year (DOY) when the sign of the seasonal CO2 excursion from the annual
mean trend changed from positive to negative (Supplementary Fig. 1). Based on the
detrended seasonal CO2 curve, the mean estimate of SZC over the period of
1979–2012 at Barrow is around DOY 180 with a year-to-year variability of 3.5 days
(DOY range from 173 to 188). The seasonal maximum of atmospheric CO2 occurs
during the period from late April to early May. Defining spring as the months of
May and June, the change in CO2 over this spring period (hereafter SCC) was also
computed for each year from the detrended seasonal CO2 cycle (Supplementary
Fig. 1). We also used records of weekly atmospheric CO2 concentration records,
based on either surface in situ continuous measurements or surface flask samples,
from the NOAA Earth System Research Laboratory25 at Barrow (Supplementary
Fig. 10) and derived similar results. We also used weekly atmospheric CO2

concentration at the surface based on flask samples at the Alaskan Point Cold Bay
and Norwegian Ocean Station M site25 that have relatively longer observations
(34 years and 29 years, respectively) (Supplementary Fig. 12). We did not perform
outlier detection for weekly data because these CO2 concentration records had
already been processed (smoothed, interpolated, and extrapolated) in the
GLOBVIEW-CO2 product to address issues of temporal discontinuity and data
sparseness in atmospheric observations.

We adopted two different approaches to identify the areas that mainly affect the
change in spring CO2 concentration at Barrow (hereafter as spring footprint area).
The first approach to define spring footprint area is through using the adjoint code
of the LMDZ atmospheric transport model26 to calculate the specific sensitivity of
the Barrow CO2 measurements to NEP in the Northern Hemisphere. This adjoint
code applies the chain rule to all partial derivatives within LMDZ and therefore
allows us to compute exact partial derivatives of concentration measurements with
respect to NEP everywhere over the globe and at anytime before a given CO2

observation at Barrow. The derivatives in units of concentration (ppm) per unit
flux (kgCm−2 h−1) were computed for measurements made at the Point Barrow
station on the 28th day of each month at 19:00 UTC, a typical flask sampling time at
this station, and for all global grid-point fluxes at the daily scale since the start of
the month. We then averaged the derivatives for the months fromMarch to June in
each year between 1979 and 2012 to get an average footprint of the measurements
during spring (Supplementary Fig. 6a–c).

The second method to define spring footprint area is based on the Lagrangian
particle dispersion model FLEXPART (version 8.2). FLEXPART simulates
atmospheric transport using wind fields from global forecast models to determine
source to receptor pathways of air masses27, and the simulations are available for
the period of 1985–2009 inclusive, at 3-hourly resolution. For our simulations, the
model was forced with wind field data from the European Centre for
Medium-Range Weather Forecasts (ECMWF). Backward in time, or so-called
‘retroplume’28, calculations were made to provide a footprint map of the Barrow
measurements. Every 3 h, 40,000 particles are released from the measurement site
location and followed backwards in time for 20 days. Integrating time at the lowest
model output layer (0–100m) over the 20-day period provides a map of Potential
Emission Sensitivity for the measurement site. Post-processing of the results was
conducted to evaluate the variability of the mean footprint source region for
Barrow. The 3-hourly results were averaged into monthly values fromMarch to
June, and subsequently into spring values (Supplementary Fig. 6d–f).

Climate data.Monthly climate data (temperature, precipitation and cloud cover)
at a spatial resolution of 0.5◦ from 1901 to 2012 were taken from the University of
East Anglia’s Climate Research Unit CRU TS 3.22 data set29. We also applied
another two climate data sets (Climatic Research Unit–National Centers for
Environmental Prediction (http://dods.extra.cea.fr/data/p529viov/cruncep) and
Watch Forcing Data methodology applied to ERA-Interim data

(http://www.eu-watch.org/gfx_content/documents/README-WFDEI.pdf)), and
returned very similar results (Supplementary Fig. 8). Snow water equivalent was
derived from the European Space Agency’s Global Snow Monitoring for Climate
Research (GlobSnow) product that is generated by combining satellite data with
ground measurements of snow depth15.

Satellite Normalized Difference Vegetation Index (NDVI) data.We used the
third Normalized Difference Vegetation Index (NDVI3g) data product generated
from Advanced Very High Resolution Radiometer (AVHRR) data by the Global
Inventory Monitoring and Modeling Studies (GIMMS)30. AVHRR NDVI3g has a
spatial resolution of 8 km and a repeat cycle of 15 days for 1982–2011. This product
has been carefully assembled from different AVHRR sensors, removing several
detrimental effects, such as calibration loss, orbit drift, and volcanic eruption.

Terrestrial carbon-cycle model. ORCHIDEE (ORganizing Carbon and Hydrology
In Dynamic Ecosystems) is a process-based model that calculates the fluxes of CO2,
H2O and heat between the atmosphere and the land surface on a half-hourly basis,
and the variations in the water and carbon pools on a daily basis5. Here, we used
the version that was used in the IPCC AR5. ORCHIDEE simulates carbon-cycle
processes such as half-hourly photosynthesis, as well as carbon allocation, litter
decomposition, soil carbon dynamics, maintenance and growth respiration, and
phenology at the daily time step. ORCHIDEE has been widely used for
investigating terrestrial carbon-cycle dynamics and their responses to climate
variations. In the phenology module of ORCHIDEE, a certain amount of heat is
needed for boreal vegetation to initiate leaf unfolding in spring. This heat
requirement is estimated by growing degree days (GDD)31, which is negatively
correlated with chilling days during the dormancy period. As shown in
Supplementary Fig. 19, ORCHIDEE generally captured the spatial and temporal
characteristics of satellite-based spring phenology over the boreal region32.

We ran the ORCHIDEE model until the carbon pools reached equilibrium after
about 1000 years. We used a resolution of 0.5◦, with 1901 climate data and the 1860
atmospheric CO2 concentration of 286.05 ppm. The model was then run to 1978
with a transient climate and the corresponding observed atmospheric CO2

concentration during that period. Note that because there are no climate data
during 1860–1900, the transient 1901–1910 climate was recycled for 1860–1900.
The historical climate forcing used in ORCHIDEE was from the CRU–NCEP data
set16. For years 1979–2012, we performed four different simulations (S1, S2, S3 and
S4). In simulation S1, only historical temperature was changed. In simulation S2,
only historical temperature and precipitation were changed. In simulation S3,
atmospheric CO2 and all historical climatic factors were changed. In simulation S4,
only historical temperature fromMay to October was changed through simply
treating November–April as the dormancy period.

Air–sea CO2 fluxes. A biogeochemical model PlankTOM5 combined with a global
ocean general circulation model NEMO (NEMO-PlankTOM5) were used to
simulate the physical, chemical and biological processes that affect the surface
ocean CO2 concentration and thus the air–sea CO2 exchange33,34. The PlankTOM5
model was forced by inputs of ions and compounds from river, sediment and
dust35,36. The NEMOmodel was driven by daily wind and precipitation from the
NCEP reanalysis37. Further details are given by ref. 33.

Atmospheric transport model.We used LMDZ4, a 3D atmospheric tracer
transport model from the Laboratoire de Météorologie Dynamique4, nudged with
horizontal winds from the ECMWF reanalysis, to transform NEP from
ORCHIDEE into a point estimate of CO2 concentration at Barrow station. To
separate the effects of transport and terrestrial carbon fluxes on the SZC and SCC
signal, we performed several transport simulations with year-to-year varying winds
(see Table 1). The first one (referred to as CFTT simulation) used periodical NEP
of 1979 from ORCHIDEE simulation S3. The second one (referred to as TFTT
simulation) used the year-to-year varying NEP fluxes calculated during the period
1979–2012 by simulation S3. The third simulation is similar to TFTT, but used
year-to-year varying NEP fluxes for only north of 50◦ N (TFTT-B). The
contribution of year-to-year varying fluxes to the variability in SZC and SCC is
assessed by the difference in simulated atmospheric CO2 between the first and the
second simulations, which we refer to as the TFCT simulation. The difference
between TFTT-B and CFTT is used to give the contribution of boreal fluxes to the
variability in SZC and SCC (referred to as TFCT-B). Two daily NEP outputs from
ORCHIDEE (S1 and S2) over the period 1979–2012 were fed into the transport
model to derive their respective daily CO2 concentrations at Barrow station. To
further separate the relative roles of NPP and HR, we also performed two
additional transport simulations using daily NEP calculated from year-to-year
varying NPP and periodical HR of 1979 based on the S3 simulation, and from
year-to-year varying HR and periodical NPP of 1979 based on the S3 simulation.
Using a similar method of estimation as used in the TFCT-B simulation, we
calculated the contribution of temperature change (referred to as TFCT-T
simulation), both temperature and precipitation changes (referred to as TFCT-TP
simulation), year-to-year varying NPP fluxes (referred to as TFCT-NPP
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simulation), and year-to-year varying HR fluxes (referred to as TFCT-HR
simulation) over land north of 50◦ N (see Table 1). Additionally, we performed a
transport simulation TFTT-D using the same strategy as TFTT-T, but NEP derived
from simulation S4 (only historical temperature fromMay to October was changed
in the ORCHIDEE simulation). The difference between transport simulations
TFTT-T and TFTT-D (denoted as TFCT-D) is then used to estimate the
contribution of changes in temperature during the dormancy period
(November–April) to the SZC and SCC signal. It should be noted that air–sea CO2

fluxes in all above simulations were constant. To understand the potential ocean
contribution, we added another transport simulation (CFTT-Ocean), which is
similar to CFTT but transports year-to-year varying air–sea carbon flux from
ocean models. The effect of air–sea flux changes is then evaluated from the
difference of the two simulations (CFTT-Ocean minus CFTT).

Analysis. Spring vegetation activity is closely linked to the temperatures in the
preceding months. All variables are first detrended in the statistical correlation
analysis since we focus on the interannual relationship between spring carbon
uptake and temperature. Then we determined the length of the preseason whose
average temperature had the largest influence on SZC and SCC by calculating the
partial correlation coefficients of SZC and SCC with temperature during the 0, 1, 2,
3 . . .7 months before June (SZC over the period of 1979–2012 at Barrow is around
DOY 180). We found that the average temperature fromMarch to June (ST) was
most strongly negatively correlated with SZC (highest positive interannual
correlation with SCC) at Barrow for 1979–2012; we therefore used the average
temperature during these months (Supplementary Fig. 3). Then we calculated the
partial correlation coefficient of SZC and SCC with ST for the earliest 17 years
(1979–1995) and the more recent 17 years (1996–2012), through randomly
selecting 14 years among the corresponding period. A two-sample t-test was
conducted to determine whether there is a statistically significant difference in RSZC

(or RSCC) between the first (1979–1995) and second (1996–2012) half-study period.
Using a similar method, for each randomly selected period (for example, 14 of 17
years during the first half-study period (1979–1995)), we also defined preseason
(the period before June for which the negative interannual correlation between
SZC and temperature (positive interannual correlation for SCC) was highest) to
further assess the robustness of the inferred decline of RSZC and RSCC over the past
three decades (Supplementary Fig. 9).

We performed partial correlation analyses between SZC (SCC) and ST (RSZC

and RSCC) after statistically controlling for interannual variation in precipitation
and cloud cover during the period fromMarch to June. The partial correlation
coefficient RSZC (RSCC) is computed as the interannual correlation between the
residuals calculated after regressing SZC (SCC) on precipitation and cloud cover
and those after regressing ST on precipitation and cloud cover. The interannual
sensitivity of SZC (γSZC) to ST variation was computed as the slope of the regression
of ST in a multiple linear regression of SZC against temperature, precipitation and
cloud cover during the period fromMarch to June. We apply the same approach to
calculate interannual sensitivity of SCC (γSCC) to ST variation. Temperature,
precipitation and cloud cover were computed as the spatial average over the
vegetated land area north of 50◦ N. We also used climate variables computed as the
spatial average weighted by the sensitivities (surface flux sensitivity from LMDZ
and potential emission sensitivity from FLEXPART) over the vegetated land area
within the multi-year mean spring footprint area. The vegetated land area is
defined as grid points where the average of annual mean NDVI over the period of
1982–2011 is larger than 0.1. All variables were linearly detrended over the study
period before the partial correlation and regression statistical analyses were
performed. Similar results were also derived from analyses without detrending
variables (Supplementary Fig. 20).

To investigate whether a different magnitude of variation in spring carbon
uptake and temperature during the two time periods would change our results, we
calculated the standard deviation (sd) of SZC/SCC/ST for both periods. As shown
in Supplementary Fig. 21a, the sd of SZC during the first period is even lower than
that during the last period. For SCC and ST, the sd during the first 17 years is
higher than that during the last 17 years (Supplementary Fig. 21b,c). We should be
extremely careful in interpreting this result, since the observed large variability of
SCC and ST in the first 17 years is heavily influenced by the year 1990 with a high
anomaly (Supplementary Fig. 2). If the year 1990 was excluded, the sd of SCC and
ST in the first 17 years are even smaller than those in the last 17 years
(Supplementary Fig. 21b,c). Nevertheless, the significant partial correlation
between SZC and ST for the first 17 years is still observed when the year 1990 is
removed (Supplementary Fig. 21d, RSZC=−0.76±0.13, P=0.001). The same
analysis using SCC instead of SZC yields similar results (Supplementary Fig. 21e,
RSCC=0.52±0.24, P=0.054). Therefore, the different magnitude of variation in
ST, SZC and SCC between the two periods should not be regarded as an
influencing factor in explaining the recent decline in RSZC and RSCC.

To investigate the effect of frost events after early spring leaf-out on the
interannual correlation between spring carbon uptake and temperature, we

calculated frost days for each grid cell north of 50◦ N. The frost days were defined
as the sum of days when daily minimum air temperature was below 0◦ from the
start of the growing season (SOS) to the summer solstice. Here we determined SOS
by taking the ensemble mean of the results from four SOS estimation methods32,38
(HANTS-Maximum, Polyfit-Maximum, double logistic and piecewise logistic)
applied to satellite NDVI data.

Data availability. The atmospheric CO2 concentration data that support the
findings of this study are available in National Oceanic and Atmospheric
Administration (NOAA), Earth System Research Laboratory (ESRL), Global
Monitoring Division (GMD): Boulder, Colorado, USA22 (ftp://aftp.cmdl.noaa.gov/
data/trace_gases/co2/in-situ/surface/brw/co2_brw_surface-insitu_1_ccgg_
DailyData.txt). Climate data used for calculating temperature sensitivity were
obtained from three publicly available sources—Climate Research Unit
(http://catalogue.ceda.ac.uk/uuid/4a6d071383976a5fb24b5b42e28cf28f), Climatic
Research Unit–National Centers for Environmental Prediction (https://www.
earthsystemgrid.org/browse/viewActivity.html?activityId=ff9d6ffb-f0b9-11e2-
aa24-00c0f03d5b7c) andWatch Forcing Data methodology applied to ERA-Interim
data (http://www.eu-watch.org/gfx_content/documents/README-WFDEI.pdf).
The ORCHIDEE-LMDZ simulation results are available from the corresponding
author upon request.
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