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Abstract. The temporal variance of soil moisture, vegetation and evapotranspiration over land has been recog-

nized to be strongly connected to the temporal variance of precipitation. However, the feedbacks and couplings

between these variables are still not well understood and quantified. Furthermore, soil moisture and vegetation

processes are associated with a memory and therefore they may have important implications for predictability.

In this study we apply a generalized linear method, specifically designed to assess the reciprocal forcing be-

tween connected fields, to the latest available observational data sets of global precipitation, evapotranspiration,

vegetation and soil moisture content. For the first time a long global observational data set is used to investigate

the spatial and temporal land variability and to characterize the relationships and feedbacks between land and

precipitation.

The variables considered show a significant coupling among each other. The analysis of the response of pre-

cipitation to soil moisture evidences a robust coupling between these two variables. In particular, the first two

modes of variability in the precipitation forced by soil moisture appear to have a strong link with volcanic erup-

tions and El Niño–Southern Oscillation (ENSO) cycles, respectively, and these links are modulated by the effects

of evapotranspiration and vegetation. It is suggested that vegetation state and soil moisture provide a biophysical

memory of ENSO and major volcanic eruptions, revealed through delayed feedbacks on rainfall patterns. The

third mode of variability reveals a trend very similar to the trend of the inter-hemispheric contrast in sea surface

temperature (SST) and appears to be connected to greening/browning trends of vegetation over the last three

decades.

1 Introduction

Soil moisture (SM) is an important variable of the climate

system, playing an important role in the feedbacks between

land surface and atmosphere. SM is important in determin-

ing climate variability at a wide range of temporal and

spatial scales and controls hydrologic and energy cycles

(Seneviratne et al., 2010; Dirmeyer, 2011). Soil moisture–

precipitation feedbacks have been investigated at the global

(Koster et al., 2004, 2009) and the regional (Pal and Eltahir,

2003; Hohenegger et al., 2009) scale through numerical sim-

ulations. Recent observational studies have focused on local

land–atmosphere coupling (Santanello et al., 2009). How-

ever, a comprehensive observational study at the global scale

of the SM precipitation (PRE) coupling has never been per-

formed. As shown by several modelling studies, it is over

transition zones between wet and dry climates that a strong

coupling between soil moisture and precipitation can be

clearly identified, and it is over these regions that “soil mois-

ture memory” can most probably contribute to subseasonal
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and longer climate predictions (Koster et al., 2004; Ferranti

and Viterbo, 2006). The term “soil moisture memory” refers

to the property of soil moisture to display persistent anoma-

lies induced by climatic events like El Niño–Southern Oscil-

lation (ENSO) or volcanic eruptions. Since slowly varying

states of the land surface can be predicted weeks to months

in advance, the response of the atmosphere to these land-

surface anomalies can contribute to seasonal prediction. The

large discrepancies among model results evidence the need

of observational analysis of soil moisture–precipitation feed-

backs (Seneviratne et al., 2010). The observational study by

Alessandri and Navarra (2008) clearly identified a link be-

tween rainfall and land-surface–vegetation variability indi-

cating an important delayed feedback of the land surface

to the precipitation pattern. In this regard, a mechanism by

which vegetation may provide delayed memory of El Niño

and La Niña events is identified.

Predictability of climate at seasonal and longer timescales

stems from the interaction of the atmosphere with slowly

varying components of the climate system such as the ocean

and the land surface (Shukla and Kinter, 2006). However,

much of the model improvements so far have been obtained

over ocean, where extensive availability of observations al-

lowed model progresses and reliable application of assimila-

tion techniques (Rosati et al., 1997; Alessandri et al., 2010,

2011). In contrast, forecast performance over land is sub-

stantially weaker compared to the ocean (Wang et al., 2009;

Alessandri et al., 2011). Since most of the applications of

climate predictions would serve economic interests that are

land-based, there is an urgent need to improve climate fore-

casts over land. Long-term improvements in understanding

land–climate interactions and feedbacks over land must come

from the enhancement of the description of the physical pro-

cesses on the basis of dedicated process studies and obser-

vational databases. This can be suitably pursued firstly by

analysing the newest available satellite-derived observational

data sets that can lead to a better understanding and quan-

tification of land-surface–atmosphere feedbacks. The better

knowledge will then help us to conceive improved systems

for the simulation of climate and for the improvement of its

prediction at seasonal and possibly longer timescales. Here

a global array of relevant up-to-date high-quality data sets is

acquired, harmonized and analysed. The comprehensive data

set is analysed to characterize the seasonal-mean interannual

variability in land-surface variables and to improve under-

standing of the relationship and feedbacks between land and

climate. The analysis method is based on the coupled mani-

fold (CM) technique (Navarra and Tribbia, 2005), which was

specifically designed to analyse covariation between fields

considering both the local and remote forcing of one field to

the other. The CM technique has proved to be successful for

the analysis of different climate fields, like precipitation, veg-

etation characteristics, sea surface temperature (SST), and

temperature over land (Alessandri and Navarra, 2008; Cher-

chi et al., 2007; Wang et al., 2011a). Recently, the CM tech-

nique has been also applied to investigate the relationship

between surface temperature and electricity demand in sum-

mer (De Felice et al., 2014). By taking advantage of the new

global array of relevant up-to-date high-quality data sets, the

present work substantially extends the analysis previously

performed by Alessandri and Navarra (2008) and, for the first

time, it includes SM and evapotranspiration (ET) feedbacks

on PRE.

This paper is organized as follows. The observational data

sets are described in Sect. 2. Section 3 describes the analysis

method and gives a brief introduction of the CM technique.

Section 4 presents the results. Summary and discussion of

the main results of this study are given in Sect. 5.

2 The observational data sets

The data sets used for this study are all observationally based

in order to make the analysis as independent as possible

from global circulation model limitations and biases. High-

quality up-to-date observational data sets of precipitation

(PRE, from the Global Precipitation Climatology Project –

GPCP), evapotranspiration (ET, from the University of Mon-

tana), soil moisture (SM, from the European Space Agency

– ESA) and leaf area index (LAI, from Boston University)

have been acquired and prepared. The selection of the data

sets is based mainly on two criteria: (1) the period is cov-

ered as long as possible and (2) with global spatial coverage.

The observed monthly PRE data set is described in Adler et

al. (2003). ET values are satellite-based estimates from the

Global Inventory Modeling and Mapping Studies (GIMMS)

and MODIS (Zhang et al., 2010). The SM data set (Liu et

al., 2011, 2012) is the most complete record of this variable,

based on active and passive microwave satellite sensors. The

LAI data set (Zhu et al., 2013) is a long-term global data

set resulting from the application of a neural network algo-

rithm to the NDVI3g product from GIMMS satellite data.

All land-surface data sets (SM, ET, LAI) are satellite prod-

ucts independent on the PRE data set, which is based on rain

gauges. Despite that both ET and LAI products have been ac-

quired by using the AVHRR sensor, the data sets have been

produced by independent research groups which used com-

pletely different methodologies. The LAI product has been

generated by applying a neural network algorithm on the

NDVI satellite product, while the ET data set has been pro-

duced by using a modified Penman–Monteith approach in-

cluding eddy covariance and meteorological data from the

FLUXNET tower network. The time period, depending from

the availability of the data sets, is 24 years (1983–2006) for

ET and 29 years (1982–2010) for the other variables. Origi-

nal data sets come with various sampling frequencies, rang-

ing from daily to monthly. See Table 1 for a summary of the

characteristics of the retrieved data sets.

The data have been preprocessed and prepared for the sub-

sequent analysis (Table 1). The preprocessing included space
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Table 1. Evapotranspiration (ET), leaf area index (LAI), soil moisture (SM), and precipitation (PRE) data set characteristics.

ET LAI SM PRE

Type satellite satellite satellite gridded from rain gauges

Version – 1.0 0.1 2.2

Producer University of Montana Boston University ESA GPCP

Spatial resolution (original) 1◦× 1◦ 8 km× 8 km 0.25◦× 0.25◦ 2.5◦× 2.5◦

Spatial resolution (after preprocessing) 1◦× 1◦ 0.5◦× 0.5◦ 0.5◦× 0.5◦ 2.5◦× 2.5◦

Temporal frequency (original) monthly 15-days daily monthly

Temporal frequency (after preprocessing) seasonal seasonal seasonal seasonal

Units W m−2 m2 m−2 m3 m−3 mm d−1

Period 1983–2006 1982–2010 1979–2010 1979–2010

Reference Zhang et al. (2010) Zhu et al. (2013) Liu et al. (2011, 2012) Adler et al. (2003)

and time averaging, analysis of the spatial coverage and gap

filling in order to minimize the effect of undefined values

(hereinafter NaN). The gap-filling procedure is described in

Sect. 3. ET and PRE data sets are observational products

merged with model information and so do not contain NaNs.

Instead, LAI and SM are affected by data gaps and present

significant seasonal variation in the spatial coverage. Fig-

ure 1a reports the seasonal cycle of the percentage of NaN

values for LAI (full line) and SM (dashed line). Both vari-

ables show better spatial coverage during the summer season

(June, July, August, September). On the other hand, mostly

because satellite-based estimates of LAI and SM are unreli-

able in the presence of snow cover (Zeng et al., 2013), the

coverage reduces substantially during the winter season. The

SM data set derives from blending passive and active mi-

crowave satellite retrievals. Figure 1b shows the percentage

of SM missing data for each grid point. All grid points with a

percentage of missing number larger than 30 % (white areas

in Fig. 1b) have not been considered in the analysis. Over re-

gions characterized by particularly dense vegetation and high

canopies, both satellite products are unable to provide reli-

able estimates (Liu et al., 2012). Conversely, non-vegetated

areas are associated with NaN values in the LAI data set.

In order to evaluate the effect of major volcanic eruptions

on land–atmosphere coupling, we used the stratospheric

aerosol optical depth (AOD) at 550 nm, available from the

NASA GISS data set (Sato et al., 1993). To evaluate the effect

of ENSO, we compute the NINO3 index based on the Hadley

Centre Global Sea Ice Coverage and Sea Surface Tempera-

ture (HadISST 1.1, 1870–present; Rayner et al., 2003) data

set.

3 The analysis method

The CM technique (Navarra and Tribbia, 2005) seeks linear

relations between two atmospheric fields Z and S (which in

general are assumed to be rectangular matrices) of the kind

Z= Zfor+Zfree = A S+Zfree, (1)

S= Sfor+Sfree = B Z+Sfree. (2)

The subscript “for” indicates the component of the field

forced by the other variable (hereinafter forced manifold),

while “free” indicates the free manifold. The free manifold

contains the effects of nonlinearities. The linear operators A

and B express the link between Z and S. A expresses the ef-

fect of S on Z, while B represents the effect of Z on S. In

general, A and B are different. A and B are found by solving

the Procrustes minimization problem:

A= Z S′
(
S S′

)−1
, (3)

B= S Z′
(
Z Z′

)−1
. (4)

Following Navarra and Tribbia (2005), the technique is ap-

plied to the principal components of Z and S; therefore the

coefficients of the linear operators A and B express the re-

lations between the modes of the two variables. Canonical

correlation analysis (CCA) scaling (data scaled by the covari-

ance matrices) is applied to the principal components (PCs)

of the variables before solving the Procrustes problem:

Ẑ=
(
Z Z′

)−1/2
, (5)

Ŝ=
(
S S′

)−1/2
, (6)

where Ẑ and Ŝ are the CCA-scaled variables. Please refer

to Navarra and Tribbia (2005) for further details of the CM

technique.

As explained in Cherchi et al. (2007), after applying the

CCA scaling, the elements of A and B are correlation coeffi-

cients and can be tested (with a significance test based on the

Student t distribution) to reject the null hypothesis of being

equal to zero. To improve the robustness of the analysis, each

element of the A and B matrices has been verified to be dif-

ferent from zero at the 1 % significance level, following the

method proposed by Cherchi et al. (2007).

The CM has two main advantages compared to other meth-

ods. The first one is that, when applied to a couple of cli-

mate fields (i.e. PRE and SM), CM is able to separate one

field (i.e. PRE) into two components: the first component

(forced) is the portion of PRE variability that is connected

to the SM variability, whereas the second (free) is the part

www.earth-syst-dynam.net/7/251/2016/ Earth Syst. Dynam., 7, 251–266, 2016



254 F. Catalano et al.: Observationally based analysis of land–atmosphere coupling

Figure 1. (a) Global mean missing values in the time series (in %): LAI (full) and SM (dashed). (b) Map of the percentage of SM missing

data for each grid point. All grid points with a percentage of missing number larger than 30 % (white areas in b) have not been considered in

the analysis.

of PRE that is independent of SM. Therefore, the CM tech-

nique enables finding robust relations between fields in the

presence of strong background noise. The second advantage

is that the CM technique is able to detect both local and re-

mote effects of the forcing variable. This is not possible with

other methods such as SVD (singular value decomposition;

Bretherton et al., 1992).

In the present analysis the CM technique has been ap-

plied to the seasonal-mean inter-annual anomalies. The

climatological seasonal cycle has been removed and

the data have been stratified using the seasons: JFM

(January–February–March), AMJ (April–May–June), JAS

(July–August–September) and OND (October–November-

December). The JFM, AMJ, JAS, and OND stratification is

used by Alessandri and Navarra (2008) in their CM study of

vegetation and rainfall, which we will use to compare our

results. The trends are kept for their relevance as possible in-

dicators of climate change.

The LAI and SM data sets contain missing values, whose

number and position significantly vary with time. The appli-

cation of the CM algorithms requires that the number and

position of the missing values is constant with time. Hence,

if an NaN is present in a given grid point at any time, then

it requires that grid point to be marked as NaN, thus losing

a great amount of information. In order to retain as much in-

formation as possible from the data, we decided to replace

the missing values with climatological values provided that

their total number, considering a particular grid point, does

not exceed a given threshold. We selected different thresh-

olds for SM and LAI in order to obtain as similar as possible

spatial coverage of the two variables. The chosen threshold

is 10 for LAI and 30 % for SM. The results are robust with

respect to a± 10 % change in the threshold values. As shown

in Fig. 1b, the areas more affected by the replacement of SM

missing values (30 % of values replaced by climatology) are

northeastern Europe, the east coast of central South America,

eastern China and the Korean Peninsula. Since the replace-

ment of missing values with climatology reduces time vari-

ability, the coupling in these regions may be underestimated

as a consequence. We note that these gap-filled regions do

not correspond to transition zones between wet and dry cli-

mates (Koster et al., 2000). Therefore, they are not expected
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Table 2. Ratios of the global-scale forced and free variance with

respect to the total variance resulting from the application of the

CM technique between PRE and SM, ET and LAI.

Forced Free

SM 0.17 0.83

PRE 0.19 0.81

ET 0.14 0.86

PRE 0.18 0.82

LAI 0.14 0.86

PRE 0.17 0.83

to display a strong coupling between SM and PRE, nor sig-

nificantly affect the main results of present study.

Since the main interest of the work is on the land surface,

the ocean values are masked out from the PRE data set. A

preliminary analysis (not shown) revealed that their inclusion

resulted in a more difficult interpretation of the empirical or-

thogonal function (EOF) patterns (Bretherton et al., 1992),

due to the interaction of phenomena on different space and

timescales which are not connected to land variables.

4 Results

The CM technique has been applied to analyse the recipro-

cal forcing between PRE and the observed surface variables

(SM, ET, LAI). The global-scale reciprocally forced tempo-

ral variances between PRE and the land-surface variables is

reported in Table 2. In all, 19 % of the PRE variability is

forced by SM. On the other hand, 17 % of the SM variance

appears to be forced by PRE. In total, 18 % of the variability

in PRE is forced by ET and 14 % of the variance of ET is

forced by PRE. Considering the coupling between PRE and

LAI, 17 % of the variance of PRE appears to be forced by

LAI and 14 % of the variability in LAI is forced by PRE. All

the variance ratios in Table 2 are significant at the 1 % level.

The chance of coincidentally getting as high or higher ratios

has been tested by means of a Monte Carlo bootstrap method

(1000 repetitions).

Since SM is the most important land-surface parameter

affecting seasonal to interannual variability/predictability of

precipitation (Koster et al., 2000; Zhang et al., 2008), the

coupling between SM and PRE will be analysed in detail in

the following.

4.1 Reciprocal forcing between PRE and SM

seasonal-mean anomalies

Figure 2 shows the ratio of the forced/total variance over

land. The ratio of SM variance forced by PRE is in panel

a, while panel b shows the ratio of PRE variability which

is accounted for by the SM variability. For each grid point,

the null hypothesis of coincidentally getting as high or higher

variance ratios has been tested using a Monte Carlo bootstrap

method (1000 repetitions). The regions where the ratio values

are not significantly different from zero at the 1 % level are

dotted. The observed SM variability appears to be intensely

forced by PRE over the Sahel and central eastern Africa,

southern Africa, the Middle East, the semi-arid region of cen-

tral western Asia, the Indian subcontinent, Argentina, eastern

Brazil and Australia. Note that, due to the limitations of the

satellite estimates discussed in Sect. 2, large areas in Russia

and the Amazon Basin are not covered in the SM data set.

The larger observed effects on PRE due to SM inter-annual

variability (Fig. 2b) occur in eastern Brazil, La Plata Basin,

the Sahel, Asian boreal forests, the Middle East, Pakistan,

Indonesia, and northern and eastern Australia. Most of these

regions correspond to transition zones between dry and wet

climates, where evaporation is highly sensitive to soil mois-

ture (Koster et al., 2000). Here we refer to the transition re-

gions between very dry and very humid environments, as in-

dividuated by Koster et al. (2000).

By using the CM technique (described in Sect. 3), the

seasonal-mean PRE anomalies are separated into forced and

free components, where forced and free refer to the influ-

ence of the SM variation. The variance explained by each

mode of the PRE forced field is reported in Table 3. The EOF

analysis shows that the first three components of the variabil-

ity in the forced PRE field together account for 48 % of to-

tal variance. The first two PCs do not display trends, while

the third PC is dominated by a clear trend, as will be dis-

cussed later. The first mode of variability in the forced PRE

field explains 26 % of the total variance. The corresponding

PC displays two significant peaks at years 1983 and 1992

(Fig. 3a). The PC is significantly correlated (maximum corre-

lation coefficient equal to 0.56 at lag 0) with the stratospheric

AOD. AOD peaks in correspondence to the two major erup-

tions of the period: 1983 (El Chichón) and 1992 (Pinatubo).

The peaks in the AOD time series correspond to those of the

forced PRE PC1, suggesting that this mode of variability is

related to changes in the solar radiation at the ground, con-

firming that absorption and reflection of solar radiation by

aerosol are particularly effective in reducing the hydrologi-

cal cycle. The fast response of the precipitation anomalies to

the radiation change induced by large tropical volcanic erup-

tions is in agreement with the results of the lag-correlation

analysis by Gu and Adler (2011), who found 0 time lag be-

tween stratospheric aerosol signal and PRE. The lagged cor-

relations of PC1 and AOD (Fig. 3b) show that significant (at

the 5 % level) correlations endure up to about 2 years after

the aerosol peak (i.e. behind the autocorrelation period of

AOD itself; Fig. 3b dashed line). This result indicates that

SM may provide a memory of the major volcanic eruptions

for PRE. Table 4 shows the variance explained by each EOF

mode of the whole original PRE field (that is, forced+ free

components). The link between PRE and volcanic eruption

signal is also evident in the first mode of variability in the

total rainfall field, as confirmed by the correlation of the cor-
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Figure 2. Ratio of the forced variance to the total variance. (a) The fraction of SM variance forced by PRE. (b) The fraction of PRE variance

forced by the SM. Dots are placed over areas covered by the forced variable data set but where variance ratio values did not pass a significance

test at the 1 % level.

Table 3. PRE variability forced by the SM decomposed through

EOF analysis. Each line displays the EOF explained variance (col-

umn 2) and the corresponding PC correlation with relevant climatic

indices (column 3). AOD is the stratospheric aerosol optical depth.

NINO3 index is defined as the average of the sea surface temper-

ature in the tropical Pacific region (5◦ S–5◦ N, 210–270◦ E). Here

the maximum PC correlation is reported considering lagged corre-

lations in the range −16 to +16. Only the correlation coefficients

significant at the 1 % level are reported.

Variance explained Correlation with climate indices

PC 1 0.26 0.56 (AOD) at lag 0

(significant in the range −4/+7)

PC 2 0.14 0.60 (NINO3) at lag 2

(significant in the range 0/+5)

PC 3 0.08 –

PC > 4 < 0.07 –

responding PC (explaining 10 % of total PRE variance) with

AOD (Table 4).

Figure 3c shows the spatial pattern of the first EOF of the

PRE anomalies forced by the SM. A clear negative signal is

present over areas characterized by a wet climate (Amazon

Basin, India and Indonesia). In these regions the stratospheric

aerosol emitted during the volcanic eruptions has the effect

of reducing the intensity of the hydrological cycle (Alessan-

Table 4. Total rainfall variability decomposed through EOF anal-

ysis. Each line displays the EOF explained variance (column 2)

and the corresponding PC correlation with relevant climatic indices

(column 3). Here the maximum PC correlation is reported consid-

ering lagged correlations in the range −16 to +16. Only the corre-

lation coefficients significant at the 1 % level are reported.

Variance explained Correlation with climate indices

PC 1 0.10 0.41 (AOD) at lag 0

(significant in the range −2/+2)

PC 2 0.05 0.43 (NINO3) at lag 2

(significant in the range +1/+4)

PC > 3 < 0.04 –

dri et al., 2012) with a consequent reduction of SM, PRE

and continental discharge (Trenberth and Dai, 2007). In par-

ticular, according to Joseph and Zeng (2011) and Iles et al.

(2013), the negative signal over the monsoon regions may

indicate a suppression of the monsoon linked to the effects

of the aerosol released during major eruptions. Further, dif-

ferent from our results and other observational (Trenberth

and Dai, 2007) and modelling (Joseph and Zeng, 2011) stud-

ies, the HadCM3 results of Iles et al. (2013) showed a wet-

ting signal over India during the summer season (although

not significant in the observational data set they used). On

Earth Syst. Dynam., 7, 251–266, 2016 www.earth-syst-dynam.net/7/251/2016/
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Figure 3. (a) First normalized PC of the PRE anomalies forced by the SM (full line and filled circles), after cutoff low-pass filtering at 2

year−1 frequency. Dashed line (and cross marks) stands for the normalized stratospheric aerosol optical depth (AOD). Lines stand for 5-year

exponential moving average, while marks represent each single season. (b) Lagged correlations between AOD and PC1 of the forced PRE.

The dashed curve is the autocorrelation function of the AOD. Marks indicate significance at the 5 % level. (c) First EOF of the forced PRE.

Arbitrary units.

the other hand, over transition zones (US Great Plains, Ar-

gentina, Middle East) the dimming effect may result in re-

duced evapotranspiration during the hot/dry season, which

drives an increase in SM (Wild et al., 2009). During the

following cool/wet season, the enhanced SM can induce a

lagged increase in the portion of PRE forced by SM. That can

explain the increased PRE over transition areas. On the other

hand, the reduction of PRE over the southern Asia monsoon

region and the enhancement of PRE over the semi-arid ar-

eas of central western Asia is consistent with the monsoon–

desert mechanism (Rodwell and Hoskins, 1996; Cherchi et

al., 2014): the reduction of radiation caused by the strato-

spheric aerosol drives a reduction of convection over mon-

soon regions and a consequent reduction of PRE over south-

ern Asia therefore abating Rossby wave-induced subsidence

over the Middle East and the eastern Mediterranean (Cherchi

et al., 2014).

The second PC of PRE forced by SM, explaining 14 %

of total variance, is dominated by a large-scale oscillation

(Fig. 4a). The corresponding principal component (full line)

displays an high correlation coefficient of 0.60 with the

NINO3 index (average of the SST in the tropical Pacific re-

gion 5◦ S–5◦ N, 210–270◦ E; dashed line) at lag 2 (significant

at the 1 % level), indicating that EOF2 represents the portion

of the rainfall forced by SM that is related to the ENSO (Phi-

lander, 1989) variability. The second mode of forced PRE

response due to SM variability appears to be lagged by one

to several seasons with respect to the ENSO phase (Fig. 4b),

with the strongest correlations with the NINO3 index two

seasons after the maximum El Niño or La Niña intensity and

significant correlations enduring until the lag 5 season (i.e.

behind the autocorrelation period of ENSO itself; Fig. 5b

dashed line). The results indicate that the effects related to

ENSO in the SM may induce a delayed forcing on PRE.

Therefore, SM appears to provide a biophysical memory

of ENSO on the global precipitation pattern. The signal of

ENSO can also be evidenced in the second mode of variabil-

ity in the total rainfall field as indicated by the correlation of

the corresponding PC (explaining 5 % of total PRE variance)

with NINO3 (Table 4). Again, the lag at which maximum

correlation is attained is the same (lag 2) as in the forced

field, but the correlation coefficient is 0.60 for the forced field

and 0.43 for the total PRE field.

The spatial pattern of the second EOF of the PRE anoma-

lies forced by SM (Fig. 4c) displays the signature of the

tripole pattern over South America typical of ENSO tele-

connections (Ropelewski and Halpert, 1989). Similarly, neg-

ative PRE anomalies are shown over Brazil, southern Africa,

northern India and Indochina, displaying the land-surface

feedback to the reduced rainfall related to the positive phase

of ENSO there (Trenberth et al., 1998). On the other hand,

positive precipitation anomalies characterize the west and

east coasts of North America, central America, the dry and

semi-arid region of northern Venezuela, La Plata Basin, the

Horn of Africa, the Sahel, Europe, central and eastern Asia,

southern India and the east coast of Australia. Most previ-
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Figure 4. (a) Second normalized PC of the PRE anomalies forced by the SM (full line and filled circles). Dashed line (and cross marks)

stands for the normalized NINO3 index. Lines stand for three-season running means, while marks represent each single season. (b) Lagged

correlations between NINO3 index and PC1 of forced PRE. The dashed curve is the autocorrelation function of the NINO3 index. Marks

indicate significance at the 5 % level. (c) Second EOF of the forced PRE. Arbitrary units.

ous research showed reduced precipitation over India dur-

ing ENSO years (Ropelewski and Halpert, 1989; Trenberth

et al., 1998). The positive anomalies of PRE forced by SM

over southern India related to the positive phase of ENSO

evidence an interesting negative feedback of the land surface

on the effect of ENSO on the rainfall over India.

The third PC of the PRE forced by the SM, explaining

8 % of forced variance, displays a trend (Fig. 5a) correspond-

ing to a clear signal of increasing precipitation over the Sa-

hel, southeastern Europe, central Asia, northeastern Asia, the

Great Plains of North America, and Nordeste (Brazil) and

the northern part of South America (Fig. 5b). The trend of

increasing precipitation is particularly strong over the Sahel,

where, according to Hagos and Cook (2008), it can be related

to a warming of the northern tropical Atlantic Ocean which,

through a modification of the associated cyclonic circulation,

enhances moisture transport over the region. In contrast, a

decrease in precipitation is evident over most of the South-

ern Hemisphere (SH), northwestern Russia, eastern Russia,

northern India, China and the western US, showing a north–

south polarity of the precipitation trend. The above trend pat-

tern strongly resembles the trend pattern of global rainfall an-

nual mean anomalies described by Munemoto and Tachibana

(2012, hereinafter MT12). The authors associated this north–

south polarity with a relatively larger warming of the North-

ern Hemisphere (NH) compared to the SH that characterized

the last three decades, starting from the early 1980s. MT12

found that the trend of the SST corresponds to an increase

in the specific humidity in the NH with respect to SH that

enhances (reduces) precipitation in the NH (SH). Although

the focus of MT12 is on the Sahel region, the authors de-

fined a global index, the north–south SST (NS-SST) polarity

index, which successfully captures the global signal of the

precipitation trend. The NS-SST index is defined as the area-

averaged NH SST annual mean anomalies minus the SH SST

anomalies. The NS-SST index (computed from HadISST),

normalized by its standard deviation, and its trend are plot-

ted in Fig. 5a. Note that here the NS-SST index is com-

puted from the seasonal mean anomalies instead of the an-

nual mean anomalies used in MT12; nonetheless, the trend is

not affected.

4.2 Mediation effects of ET and LAI on the coupling

between PRE and SM

To investigate how the coupling between rainfall and soil

moisture is mediated by evapotranspiration and vegetation

we further applied the CM technique between the component

of PRE forced by SM and ET (LAI), obtaining the compo-

nent of PRE forced by SM which is also forced by ET (LAI).

As summarized in Table 5, 20 % of the inter-annual variabil-

ity in the PRE anomalies forced by the SM is estimated to

be globally forced by the ET variation. It is important to note

here that 19 %× 20 %= 3.8 % represents only the ET forc-
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Figure 5. (a) Third normalized PC of the PRE anomalies forced by the SM (full line and filled circles). Dashed line (and cross marks) stands

for the normalized NS-SST index. Lines stand for three-season running means, while marks represent each single season. Coloured lines

represent the trends (red for the PC, blue for the NS-SST index). (b) Third EOF of the forced PRE. Arbitrary units.

Table 5. Ratios of the global-scale forced and free variance with

respect to the total variance resulting from the application of the

CM technique between PRE forced by SM and ET as well as LAI.

Forced Free

PRE forced by SM 0.20 0.80

(forced by ET)

PRE forced by SM 0.23 0.77

(forced by LAI)

ing on PRE mediated by SM and not the whole ET forcing

on PRE, which is actually 18 % (Table 2). At the same time,

23 % of the variance of PRE forced by SM is evaluated to

be also forced by LAI; therefore, the LAI forcing on PRE

mediated by SM corresponds to 17 %× 23 %= 3.9 %.

Figure 6a shows the ratio of the variance of PRE forced

by the SM which is also forced by the ET with respect to the

total forced rainfall variance. Figure 6b shows the same plot

but for the LAI. The “hotspots” in Fig. 6a are similar to those

found in Fig. 2b over the Sahel, the Horn of Africa, eastern

Europe, Asian boreal forests, central Asia, the west coast of

the US, eastern Brazil and La Plata Basin. This indicates that

in all these regions the link between PRE and SM is at least in

part mediated by ET. Not surprisingly, the same regions also

display a link with vegetation (Fig. 6b). Furthermore, vegeta-

tion appears to significantly affect rainfall variability over the

semi-arid regions that are not dependent on ET such as cen-

tral western Asia, southeastern Africa, southeastern Asia and

western Australia, suggesting that in these regions the SM

forcing on PRE is mediated by vegetation state (e.g. stress of

vegetation will affect PRE there).

To analyse how the response of PRE forced by SM to cli-

mate events and the rainfall trend are mediated by ET (LAI),

we applied the CM technique between each of the physical

fields corresponding to the first three modes of variability in

PRE forced by the SM and ET (LAI). Here we take the physi-

cal fields corresponding to the first three modes of variability

in PRE forced by SM and further decompose them to extract

the parts of each mode that are forced individually by ET

and LAI. This analysis allows for solving how ET and LAI

contribute to each component of PRE forced by SM, which

has been identified to be linked to external climate forcing

(volcanic eruptions, ENSO and trend). Overall, considering

the global land, 21 % of the variance displayed by the first

mode (linked to volcanic eruptions) of PRE forced by the

SM is forced by the ET and 27 % by LAI (Table 6). As for

the second mode (connected to ENSO), 38 % of the variance
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Figure 6. Ratio of the forced variance to the total variance. (a) The fraction of PRE variance forced by the SM which is also forced by the

ET. (b) The fraction of PRE variance forced by the SM which is also forced by the LAI. Dots are placed over areas where variance ratio

values did not pass a significance test at the 1 % level.

is forced by ET and 36 % by LAI. Concerning the third mode

(displaying a trend), 31 % of the variance is forced by ET

and 29 % is forced by LAI. Rainfall variability forced by the

ET and LAI decomposed through EOF analysis is reported

in Table 7. Interestingly, the third PC of the PRE forced by

the ET (explaining 7 % of the forced variance) is correlated

with AOD, with a maximum correlation coefficient of 0.41

at lag 6. Analogously, the second PC of the PRE anomalies

forced by the LAI (explaining 10 % of the forced variance)

is correlated with AOD, with a maximum correlation coeffi-

cient of 0.41 at lag 3, suggesting that both ET and vegetation

contribute to providing memory of volcanic eruptions, mod-

ulating at longer scales the effect of the SM forcing on PRE.

The first PC of PRE forced by ET (explaining 30 % of the

forced variance) is found to be significantly correlated with

the NINO3 index, with a correlation coefficient of 0.52 at

lag 0. The first PC of PRE forced by LAI (explaining 27 %

of the forced variance) also has a maximum correlation coef-

ficient of 0.67 at lag 0 with the NINO3 index, indicating that

vegetation acts as the mediator at longer scales of the signal

between SM and PRE. This result is consistent with the rela-

tionship found by Alessandri and Navarra (2008) between

precipitation forced by vegetation (NDVI) and ENSO and

with the delayed vegetation response to ENSO signal found

by Zeng et al. (2005). All the above correlation coefficients

passed a significance test at the 1 % level.

Table 6. Ratios of the global-scale forced variance over the total

variance resulting from the application of the CM technique be-

tween the first three modes of PRE forced by SM and the total fields

of ET and LAI.

ET LAI

PRE forced by SM mode 1 0.21 0.27

PRE forced by SM mode 2 0.38 0.36

PRE forced by SM mode 3 0.31 0.29

To determine the regions where the mediating effects of

ET and LAI have the larger influence on the coupling with re-

spect to the stratospheric volcanic eruptions, the first mode of

variability in PRE forced by the SM has been correlated with

the total components of PRE forced by the ET and LAI. The

correlation coefficients are shown in Fig. 7a for PRE forced

by the ET and Fig. 7b for PRE forced by the LAI. Only the

regions where correlations passed a significance test at the

5 % level are shaded. Black upward (white downward) trian-

gles denote areas with positive (negative) values of the first

EOF of the PRE anomalies forced by the SM (Fig. 3c). The

correlations are positive almost everywhere (i.e. the effects

of both ET and LAI tend to amplify the response of rainfall

to large volcanic eruptions) and the patterns are very simi-

lar for ET and LAI, indicating that the feedback of ET may

Earth Syst. Dynam., 7, 251–266, 2016 www.earth-syst-dynam.net/7/251/2016/



F. Catalano et al.: Observationally based analysis of land–atmosphere coupling 261

Figure 7. Point-by-point correlation of the first mode of variability in PRE forced by SM with (a) the total fields of PRE forced by ET and

(b) the PRE forced by LAI. Data have been filtered using a cutoff low-pass filter at 1 year−1 frequency. Only areas where correlations passed

a significance test at the 5 % level are shown. Black upward (white downward) triangles denote areas with positive > 0.01 (negative <−0.01)

values of the first EOF of the PRE anomalies forced by the SM (Fig. 3c).

Table 7. Rainfall variability forced by the ET and LAI decomposed

through EOF analysis. Each line displays the EOF explained vari-

ance (column 2) and the corresponding PC correlation with rele-

vant climatic indices (column 3). Here the maximum PC correla-

tion is reported considering lagged correlations in the range −16 to

+16. Only the correlation coefficients significant at 1 % level are

reported.

Variance explained Correlation with climate indices

PRE forced by ET

PC 1 0.30 0.52 (NINO3) at lag 0

(significant in the range −2/+2)

PC 2 0.13 –

PC 3 0.07 0.41 (AOD) at lag 6

(significant in the range +3/+10)

PC > 4 < 0.05 –

PRE forced by LAI

PC 1 0.27 0.67 (NINO3) at lag 0

(significant in the range −2/+2)

PC 2 0.10 0.41 (AOD) at lag 3

(significant in the range 0/+5)

PC 3 0.09 –

PC > 4 < 0.06 –

be linked to the stress of vegetation resulting from the effect

of volcanic eruptions on radiative forcing. Large values (up

to 0.6) are seen over the central US, northwestern Brazil, La

Plata Basin, western central Asia, the Horn of Africa, south-

ern Africa, the Asian monsoon region, Indonesia and Aus-

tralia. Over these regions, evapotranspiration and vegetation

activity are radiation limited (Seneviratne et al., 2010). Nev-

ertheless, while over some regions (southern part of North

America, La Plata Basin, the Middle East, western central

Asia and the Horn of Africa) ET and LAI contribute to an in-

crease in rainfall, over other regions (northern South Amer-

ica, southern Africa, Indian monsoon region, Australia) they

contribute to rainfall reduction. As discussed in Sect. 4.1,

over most of the SH (apart from La Plata Basin and the Horn

of Africa) and the Asian monsoon region there is a reduc-

tion of precipitation that can be associated with the dimming

effect and the consequent reduction of the hydrological cy-

cle. In humid regions the rainfall reduction can stress vege-

tation and may reduce its growth, with effects lasting up to

1 year (Wang et al., 2011b). On the other hand, over most of

the arid and semi-arid regions (Middle East, western central

Asia), the reduced evapotranspiration during past seasons in-

duced by the dimming effect may increase SM and therefore
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Figure 8. Point-by-point correlation of the second mode of variability in PRE forced by SM with (a) the total fields of PRE forced by ET and

(b) the PRE forced by LAI. Data have been filtered using a cutoff low-pass filter at 1 year−1 frequency. Only areas where correlations passed

a significance test at the 5 % level are shown. Black upward (white downward) triangles denote areas with positive > 0.01 (negative <−0.01)

values of the second EOF of the PRE anomalies forced by the SM (Fig. 4c).

attenuate the stress on vegetation. This, in turn, has a positive

effect on precipitation.

The point-by-point correlation coefficient between the sec-

ond mode of variability (related to ENSO) in PRE forced by

the SM and the total field of PRE forced by the ET is shown

in Fig. 8a. The correlation between the second mode of PRE

forced by the SM and the total field of PRE forced by the

LAI is shown in Fig. 8b. The sign of the feedback between

PRE and SM is indicated by the second EOF of PRE forced

by the SM overlaid on the plot. Large positive correlations

up to 0.6 are found globally over most of the land areas. ET

has a positive feedback on the increase in precipitation over

the west coast of the US, the dry and semi-arid region of

northern Venezuela, La Plata Basin, the Sahel, northern Eu-

rope, India, central and eastern Asia, and the southeastern

coast of Australia. Still, a positive feedback is present over

Brazil, southern Africa and Indochina, but in this case ET

leads to further reduction of PRE. A negative feedback of ET

is seen over Mexico. In this region the positive ENSO phase

induces wet and cool conditions (Trenberth et al., 1998) as-

sociated with an increase in PRE forced by SM that is con-

trasted by a reduction of ET. As for vegetation, it contributes

to rainfall enhancement over east and west coasts of the US,

La Plata Basin, northern Europe, the Horn of Africa, the

semi-arid region of western central Asia and eastern Asia.

Conversely, vegetation mediates precipitation reduction over

Brazil, southern Africa and Indochina.

Figure 9 shows the point-by-point correlation coefficient

between the third mode of variability in PRE forced by the

SM (displaying a linear trend; see Fig. 5) and the total fields

of PRE forced by the ET (Fig. 9a) and PRE forced by the LAI

(Fig. 9b) with the third EOF of PRE forced by the SM over-

laid on it. The feedback of ET on this mode of variability in

PRE is not significant over most of the NH. A positive effect

of ET is seen over the semi-arid regions of the SH, but while

ET mediates an increase in rainfall over the Sahel, it leads

to further reduction of PRE (Fig. 9a) over Bolivia and Aus-

tralia. On the other hand, ET has a negative feedback over the

humid region of Tanzania where it contrasts the reduction of

PRE. The pattern of the feedback of LAI (Fig. 9b) is very dif-

ferent from that of ET. Overall, the vegetation has a positive

feedback on the rainfall anomaly pattern forced by the SM.

In particular, large correlations up to 0.6 are seen over the Sa-

hel, the east coast of the US, western South America, eastern

Europe, tropical southern Africa, western central Asia, Asian

boreal forests, central and eastern Asia, the Indian monsoon

region and eastern Australia. The strong signal over the Sa-

hel is in agreement with Zeng et al. (1999) and Kucharski
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Figure 9. Point-by-point correlation of the third mode of variability in PRE forced by SM on the total field of (a) PRE forced by ET and (b)

PRE forced by LAI. (c) Magnitude of the LAI change over 1982–2010, quantified using a linear model under the assumption of monotonic

change. Data have been filtered using a cutoff low-pass filter at 1 year−1 frequency. Only areas where correlations (a–b) and trend (c) passed

a significance test at the 5 % level are shown. Black upward (white downward) triangles denote areas with positive > 0.01 (negative <−0.01)

values of the third EOF of the PRE anomalies forced by the SM (Fig. 5b).

et al. (2013), who found that vegetation feedback amplifies

rainfall response to the SST variations on the decadal scale.

LAI mediates rainfall enhancement over the Sahel, the east

coast of the US, Europe, the semi-arid region of western cen-

tral Asia and the Indian monsoon region. Conversely, veg-

etation contributes to a reduction of PRE over most of the

SH (in particular over South America, southern Africa and

eastern Australia), the west coast of the US and eastern Asia.

Figure 9c shows the linear vegetation trend over the period

1982–2010. Only areas where the trend passed a significance

test at the 5 % level are shown. Significant positive (green-

ing) trend is seen in large parts of the NH (the east coast

of the US, the Sahel, Europe, western central Asia, India and

Asian boreal forests). A negative vegetation trend (browning)

appears over the west coast of the US, western South Amer-

ica, the tropical region of southern Africa and eastern Asia.

The greening/browning trends in Fig. 9c are consistent with

those found by de Jong et al. (2013). A comparison of panels

b and c of Fig. 9 evidences that most of the areas character-

ized by a positive trend of rainfall anomalies are associated

with a greening trend of vegetation, while areas displaying

a decrease in PRE are regions associated with a browning

trend. Therefore, the response of rainfall anomalies forced

by the SM to the inter-hemispheric SST trend appears to be

coupled to a greening/browning trend of vegetation activity.

Furthermore, the third PC of PRE forced by LAI displays a
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trend similar to that of the NS-SST index, analogous to the

third PC of PRE forced by SM, while no trends are found in

the first five PCs of PRE forced by ET.

5 Conclusions

A global array of relevant up-to-date high-quality data sets

(soil moisture, evapotranspiration, leaf area index and pre-

cipitation) is acquired, harmonized and analysed. For the first

time a long comprehensive global observational data set is

used to characterize the land variability as a function of the

space and timescales and to improve understanding of the re-

lationships and feedbacks between land and climate. By ap-

plying the CM technique on the seasonal-mean inter-annual

anomalies, the relationship and the coupling between the ac-

quired surface variables is assessed considering all the sea-

sons.

The analysis shows a considerable degree of reciprocal

forcing and coupling in the land-surface variables consid-

ered. The reciprocal forcing with precipitation is particularly

strong for the soil moisture, with 19 % of the inter-annual

variability in the precipitation over continental areas that are

forced by the SM variation. Conversely, 17 % of the SM vari-

ance is forced by PRE.

The PRE forced by the SM is dominated by a promi-

nent decadal-scale drying, initiated by the perturbation of the

abrupt Mt Pinatubo eruption. In 1991, PC1 of the dominant

forced mode of PRE shows an abrupt decrease and the neg-

ative anomaly continues increasing in the subsequent years

until 1994. It is only after 1995 that the rainfall starts to

slowly recover towards the pre-eruption levels. In 1997, the

signal sums up with that of ENSO. It appears that the persis-

tence of the negative SM anomalies leads to increasing stress

conditions for the vegetation, thus leading to a larger ET re-

sponse at longer time lags after the perturbing event. Our in-

terpretation is that the persistence of the negative SM anoma-

lies provides the memory of the initial perturbing event and

our analysis indicate that, through this mechanism, the ef-

fect of Mt Pinatubo eruption can last for several years and its

memory appears to extend and sum to the following 1997–

1998 El Niño event. The second PC of the PRE forced by

the SM displays a large-scale oscillation correlated to ENSO

variability, with significant correlations enduring behind the

autocorrelation period of ENSO itself and up to more than

1-year lag. This indicates that ENSO effects on SM induce

a delayed forcing on PRE. The third PC of the PRE forced

by the SM is dominated by a trend, positive over most of the

NH and negative over most of the SH. This trend appears to

be related to the inter-hemispheric SST contrast which corre-

sponds to an increase in the specific humidity in the NH with

respect to the SH that enhances (reduces) precipitation and

SM in the NH (SH).

The combined analysis of the PRE modes related to the

external climate forcings (volcanic eruptions, ENSO, SST

trend) and the rainfall forced by ET and LAI evidences the

role of ET and LAI as the mediators between SM forcing

and rainfall. In particular, it appears that both ET and LAI

tend to provide a positive feedback on PRE over most of the

regions, contributing to further enhancing or reducing rain-

fall depending on the regions of the globe, with large differ-

ences between wet, transition and semi-arid climates. Never-

theless, the response to ENSO is characterized by a negative

feedback of ET over regions where the positive ENSO phase

induces wet and cool conditions (i.e. Mexico).

It is important to note that the coupling with SM revealed

by the present analysis has to be considered an underestima-

tion of the real coupling, due to the incomplete cover of the

SM data set. Nevertheless, the present investigation identifies

the regions characterized by a strong coupling and suggests

most possible mechanisms linking the considered variables.

Since SM has been recognized as the most important land-

surface parameter affecting seasonal to interannual variabil-

ity in precipitation (Koster et al., 2000; Zhang et al., 2008),

the present paper focused on the coupling between SM and

PRE. Detailed analysis of the reciprocal forcing between ET

and LAI, LAI and SM, and ET and SM will be the subject

a future paper that will further address the specific coupling

among land-surface variables.

Data availability

Evapotranspiration data set available from the Numerical

Terradynamic Simulation Group (NTSG) of the University

of Montana (http://www.ntsg.umt.edu/project/et).

Leaf area index data set available from the Department of

Earth & Environment of Boston University (http://sites.bu.

edu/cliveg/datacodes/).

Soil moisture data set available from the European Space

Agency (ESA) Climate Change Initiative (CCI) (http://www.

esa-soilmoisture-cci.org/).

Precipitation data set available from the Global Precipi-

tation Climatology Project (GPCP) (http://precip.gsfc.nasa.

gov/).

Aerosol optical depth data set available from the National

Aeronautics and Space Administration (NASA) Goddard In-

stitute for Space Studies (GISS) (http://data.giss.nasa.gov/

modelforce/strataer/).

Sea surface temperature data set available from the

Hadley Centre for Climate Prediction and Research (2006):

Met Office HadISST 1.1 (Global Sea Ice Coverage and

Sea Surface Temperature) (http://catalogue.ceda.ac.uk/uuid/

facafa2ae494597166217a9121a62d3c).
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