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Widespread decline of Congo rainforest greenness in
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Tropical forests are global epicentres of biodiversity and important
modulators of climate change1, and are mainly constrained by rain-
fall patterns1–3. The severe short-term droughts that occurred recently
in Amazonia have drawn attention to the vulnerability of tropical
forests to climatic disturbances4–9. The central African rainforests, the
second-largest on Earth, have experienced a long-term drying trend10,11

whose impacts on vegetation dynamics remain mostly unknown
because in situ observations are very limited. The Congolese forest,
with its drier conditions and higher percentage of semi-evergreen
trees12,13, may be more tolerant to short-term rainfall reduction
than are wetter tropical forests11, but for a long-term drought there
may be critical thresholds of water availability below which higher-
biomass, closed-canopy forests transition to more open, lower-biomass
forests1,2,14. Here we present observational evidence for a widespread
decline in forest greenness over the past decade based on analyses of
satellite data (optical, thermal, microwave and gravity) from several
independent sensors over the Congo basin. This decline in vegeta-
tion greenness, particularly in the northern Congolese forest, is gen-
erally consistent with decreases in rainfall, terrestrial water storage,
water content in aboveground woody and leaf biomass, and the can-
opy backscatter anomaly caused by changes in structure and moisture
in upper forest layers. It is also consistent with increases in photo-
synthetically active radiation and land surface temperature. These
multiple lines of evidence indicate that this large-scale vegetation
browning, or loss of photosynthetic capacity, may be partially attrib-
utable to the long-term drying trend. Our results suggest that a con-
tinued gradual decline of photosynthetic capacity and moisture content
driven by the persistent drying trend could alter the composition
and structure of the Congolese forest to favour the spread of drought-
tolerant species1,2,14.

The impact of changes in precipitation patterns, such as short-term
and long-term droughts, on tropical rainforests is poorly understood
and currently under debate4–11. Systematic monitoring of the forests is
essential to understanding their response to climate change, and remote
sensing remains the only viable way of synoptically and repeatedly mon-
itoring vast remote regions such as the Congo basin10,11. This study uses
Enhanced Vegetation Index (EVI)15 data derived from a satellite-borne
sensor, MODerate resolution Imaging Spectroradiometer (MODIS),
for the period 2000–2012. EVI correlates well with leaf area index, canopy
photosynthetic activity and primary productivity16–18. We focus our study
on intact forested regions in the Congo basin (5uN–6u S, 14u E–31uE)
during April–May–June, which represents the first of two rain and peak
growing seasons and exhibits the highest percentage of forested area
with high-quality EVI data (Extended Data Fig. 1). EVI lags the bimo-
dal seasonal cycle of rainfall by about one month and has a smoother

seasonal variation than rainfall, consistent with observed phenological
(leaf area index) responses of tropical trees to increasing soil moisture19.

We also use three gauge-measured and satellite-derived rainfall data
sets20–22 and other satellite products: terrestrial water storage (TWS)23,24,
aerosol optical thickness (AOT), cloud optical thickness (COT), photo-
synthetically active radiation (PAR) and land surface temperature (LST)
as climate drivers; and vegetation optical depth (VOD)25 and canopy
backscatter anomaly (CBA)11 (together with EVI) as vegetation variables
(see Methods). VOD represents water content in aboveground woody
and leaf biomass and is sensitive to long-term climate changes25. CBA
reflects the changes in structure and moisture in upper forest layers and
thus can help identify large-scale tree mortality8,11. TWS quantifies large-
scale and low-frequency total ground, surface and vegetation water stor-
age anomalies23,24. Unlike EVI, the microwave products CBA and VOD
are least affected by atmospheric and weather conditions11,25. Most of
the data are independent and thus allow a multi-factor analysis.

Although differing in data source, duration, spatial resolution and pro-
cessing, the three rainfall data sets show strong and similar interannual
variations during April–May–June over the study region, with the stron-
gest negative anomalies falling in the last decade of the long-term 1950
to 2012 mean (Fig. 1a). The regional-mean rainfall declined significantly
by 20.32 6 0.10 mm per day per decade (7.2 6 2.2%, P 5 0.002) or by
20.56 mm per day (12.6%) between the last and first decades for the
period 1985–2012. The drying trend (Fig. 1b and c) is widespread across
the study region, with 25%–62% of forested area showing a significant
negative trend (P , 0.05).

The spatial patterns of EVI trends are shown in Fig. 2, together with
the corresponding trends in rainfall, TWS and CBA for the period
2000–2012. Because most of the satellite data sets are only 10–13 years
long, linear regressions are used to quantify simply whether there is a
trend within each data record; such a trend, however, cannot be extra-
polated linearly over longer periods. Although the time series is short,
EVI declined over 92% of the study area from 2000 to 2012 and in 97%
of the area from 2003 to 2012, with 39% and 54% of the area showing
a significant negative trend (P , 0.1), respectively, indicating that the
EVI decrease became broader in space and stronger over time. The two
rainfall data show similar large-scale declines from 2000 to 2012. TWS
declined over most of the study area, particularly over the northern Congo.
CBA also declined over 85% of the area from 2001 to 2009. Overall
about 12%–28% of the forested area exhibited a significant negative
trend (P , 0.1) for rainfall, TWS and CBA.

Figure 3 shows interannual variations of climate and vegetation vari-
ables at regional level for the period 2000–2012. EVI declined signifi-
cantly by 20.021 6 0.007 per decade (P 5 0.016; 2000–2012) and 20.038
6 0.009 (P 5 0.002; 2003–2012). Rainfall, TWS, CBA and VOD also
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decreased but most trends are insignificant because of strong inter-
annual variability and short data records. However, the rainfall tended
towards more negative anomalies over time and reached its lowest levels

in the last few years. EVI demonstrates similar changes and so does TWS.
Similar decreases are also seen for these variables in differences between
the last and first three years. Most year-to-year correlations between
EVI and other variables in April–May–June (no lag) are statistically sig-
nificant: EVI–rainfall (R 5 0.46–0.48, P 5 0.097–0.114), EVI–TWS (R 5

0.68–0.88, P 5 0.001–0.032) and EVI–CBA (R 5 0.66, P 5 0.037). VOD
correlates weakly with EVI (R 5 0.34, P 5 0.312) from 2000 to 2010,
but its longer time series shows minima in the last few years (Fig. 4a).
The low-frequency nature of TWS changes corresponds well to that of
EVI variations and thus EVI correlates well with TWS also at the pixel
scale (Extended Data Fig. 2).

The amount of radiation for plant growth and transpiration is deter-
mined by atmospheric conditions (clouds and aerosols) and latitude.
COT showed a significant and widespread decreasing trend for the per-
iod 2000–2012, whereas AOT changed little, except in 2004 because
of two volcanic eruptions (Extended Data Fig. 3). Consequently, PAR
increased by 17.0 6 3.0% (P 5 0.049) from 2003 to 2012 and this increase
is stronger over the southern Congo than the northern Congo (Extended
Data Fig. 4). Increasing PAR can enhance radiation-limited canopy
photosynthesis17,18 and evapotranspiration as long as the system remains
energy-limited. Beyond the point where soil moisture becomes limit-
ing, it will no longer increase transpiration and may actually enhance
water stress for plant growth over the southern Congo where rainfall
reduction is weaker than in the northern Congo. Consequently, LST
increased over the majority of pixels during 2003–2012, particularly
in the northern Congo, where strong drying trends are observed (Ex-
tended Data Fig. 4).

We also analysed the newly developed VOD data25 for the period
1988–2010 in view of the short EVI record. The regional mean April–
May–June VOD decreased steadily from 1988 to 2002, recovered slightly
between 2003 and 2006, and reached the lowest levels thereafter (Fig. 4a),
mirroring the low-frequency signal of rainfall variations. It decreased
significantly, 20.003 6 0.001 (20.3 6 0.1%) per decade (P 5 0.002)
or by 20.003 (20.3%) between the last and first decades. The mag-
nitude of VOD trend is small owing to its large spatial variability, and
in particular, VOD represents mostly above-ground woody biomass water
content26. At the pixel level, VOD decreased significantly (P , 0.1) over
38% of the study area with a larger magnitude (Fig. 4b). The annual
mean VOD shows similar trends and variability (Extended Data Fig. 5).
We note that VOD may be underestimated over open water areas25. How-
ever, the decline in rainfall would result in less standing open water spa-
tially and temporally and thus larger increases in VOD values rather than
the observed decreasing trend (Supplementary Information section A).

The lack of a strong spatial coupling between rainfall and EVI/VOD
changes (Figs 1b and c, 2a–d and 4b) is not surprising given the large
spatiotemporal variability of rainfall10, the complex lagged relationships
between rainfall and vegetation phenology and photosynthetic activity1–3,
and the different responses of various plant species to drought27. Deep
roots in some forests allow trees to access ground water and delay the
inception of moisture stress. Although EVI and VOD provide comple-
mentary information on vegetation dynamics, EVI is more responsive
to changes in canopy cover/greenness and short-term precipitation var-
iations whereas VOD is more sensitive to changes in woody vegetation
and long-term precipitation variation26. Consequently there are lagged
correlations between EVI/VOD in April–May–June and mean rainfall
in earlier months: April–May–June EVI correlated significantly (R 5 0.69,
P 5 0.009) with March–April–May rainfall and April–May–June VOD
correlated significantly (R 5 0.49, P 5 0.017) with rainfall during December–
January–February–March–April–May (Figs 3b and 4a). The TWS–
rainfall correlations are similarly weak, because TWS in wet tropical
regions represents surface and groundwater changes rather than small-
scale and short-term rainfall anomalies23,24. In particular, the moisture
available in the root zone for plant photosynthesis is determined not
only by the sum of rainfall but also by runoff and evapotranspiration24.
Over the Congo, TWS decreased most in low elevation valleys, not over
the areas where rainfall decreased most (Fig. 2c-e), because local upland
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Figure 1 | April–May–June rainfall anomalies and linear trends per decade.
a, Regional mean anomalies from three data sets (GPCC, 1950–2012; GPCP,
1979–2012; and TRMM, 1998–2012). The linear trend (6one standard
deviation) and its significance level P for the period 1985–2012, the decadal
difference (2003–2012 minus 1985–1994 averages) for GPCC and GPCP, and
the 3-year difference (2009–2012 minus 1998–2001 averages) for TRMM are
shown. The correlation coefficient R between GPCC and TRMM and between
GPCC and GPCP are also shown. b, c, Spatial patterns of linear trends in GPCC
(b) and GPCP (c) for the period 1985–2012 when the rainfall data showed a
gradually decreasing trend. In b and c, pixels with plus symbol have a linear
trend that is statistically significant at P , 0.05. The percentages of pixels with
trends at P , 0.05 and P , 0.1 over the study region are listed, as are the
percentages of pixels with negative trends.
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Figure 2 | Spatial patterns of linear trends per decade in April–May–June
for the period 2000–2012. Pixels with plus symbols have a linear trend that is
statistically significant (P , 0.1). The percentages of pixels with trends at
P , 0.05 and P , 0.1 and the percentages of pixels with negative trends over the
study region are shown. a, b, EVI. c, d, TRMM and GPCC rainfall. e, Ensemble

mean TWS from three data processing centres. f, CBA. (EVI and CBA are
unitless.) The CBA for 2000 was not used because the data during the period
2001–2009 in general show a decreasing trend (Fig. 3d). TWS from the three
data processing centres shows similar large-scale patterns of linear trends
(Extended Data Fig. 2).
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Figure 3 | Regional mean
anomalies in EVI, rainfall, TWS,
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d, EVI, VOD and CBA in
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runoff is the main source of the Congo wetland water28. Furthermore,
the effects of long-term drought on vegetation are more complex than
short-term drought11 and different satellite products measure different
properties of vegetation and moisture11,25 at different spatiotemporal res-
olutions, which make it difficult to infer a strong coupling between
vegetation and moisture parameters at pixel level. Nevertheless, the com-
bined areas with a decreasing trend in rainfall and TWS indicate a wide-
spread and increasing water deficit, which agrees consistently with the
large-scale EVI decreases.

Most of the EVI decline reflects real changes in vegetation charac-
teristics rather than data errors7, residual atmospheric artefacts due to
aerosol and cloud contaminations6, sun-view angle effects, sensor degra-
dation, deforestation, and natural fires (Extended Data Figs 6–9 and Sup-
plementary Information sections B–E). The persistent browning of the
Congolese forests might reflect a slow adjustment to the long-term dry-
ing trend, rather than a response to episodic events such as the Amazon
droughts. It is generally consistent with the gradual temporal changes
in moisture, vegetation and radiation parameters observed from several
independent satellite products. In particular, VOD and CBA, together
with high-resolution satellite images from Landsat (Extended Data Fig. 10
and Supplementary Information section D), only show small and grad-
ual changes in canopy structure instead of large-scale tree mortality as
in the Amazon8. The large decline in EVI and VOD in recent years is
also paralleled by an acceleration of climate drivers such as PAR, rainfall

and TWS changes. Furthermore, the persistent decrease in COT and
strong increase in PAR support the observed decrease in rainfall, warm-
ing of the forested landscape and the increase in evapotranspiration
demand over the Congo.

Water deficit stress will be manifested in trees as less turgid leaves,
and if the stress is beyond some threshold, the trees may drop their leaves.
This behaviour can be detected as a decline in EVI. A slow decline of EVI
over time implies loss of photosynthetic capacity. Such a temporary loss
due to short-term drought may have minimal effects on vegetation be-
cause the trees may leaf out as soon as rainfall recovers. However, under
the stress of an increased severity of water deficit, the gradual loss of
photosynthetic capacity and water content over a long period may alter
forest species composition and structure1,2,14 and thus affect biodiver-
sity and carbon storage1,29. Drier conditions may favour deciduous trees
at the expense of evergreen trees2,14. For example, over a 20-year period
of exposure to a drying trend, the Ghanaian forest species shifted from
wetter-forest-affiliated vegetation to deciduous and drier-forest canopy
species14. Detection and attribution of such impacts require long-term
ground observations and drought manipulative experiments (as for the
Amazon forests30); these, however, are not available for Congolese for-
ests, and should be a research priority.

METHODS SUMMARY
We analyse gridded data from ground observations and different satellite sensors
over the Congo (see Methods for details): (1) MODIS products of EVI15 (monthly,
2000–2012), LST (monthly, 2003–2012), and land cover (yearly, 2001–2012) at 0.05u
resolution, and AOT and COT at 1u resolution (monthly, 2000–2012); (2) monthly
rainfall from GPCC20 (1u, 1950–2012), GPCP21 (2.5u, 1979–2012) and TRMM22 (0.25u,
1998–2012); (3) monthly TWS23 and PAR (1u, 2003–2012); and (4) monthly data
of VOD25 (0.25u, 1988–2010) and CBA11 (0.04u, 2000–2009). We focused only on
the intact Congolese forest pixels (5uN–6u S, 14uE–31uE) during April–May–June
using a high-quality EVI mask based on EVI quality assurance information. For each
year, monthly high-quality 0.05u EVI anomalies were aggregated into one single
seasonal (April–May–June) image at 0.25u resolution. The other variables were sim-
ilarly averaged into seasonal anomalies and then re-projected into the study region
at 0.25u resolution. Regional and spatial aggregations were applied only to the masked
high-quality EVI pixels. Two methods were used to quantify the temporal changes
at both the pixel level and the regional level: first, a mean value difference between
two individual periods; and second, a linear trend estimated using ordinary least
squares over a certain time period. For the first method, the two periods are defined
as the last and first three years if the data record is less than 20 years long, and the
last and first decades otherwise. For the second method, the Student’s t-statistic
was calculated to quantify the probability P of whether the trend is statistically sig-
nificantly different from zero or simply due to random noise. Both methods should
provide consistent results if there is a persistent trend in the data. A linear correla-
tion and its significance level (P value) were calculated between two time series to
quantify their association. The acronyms and abbreviations are listed in Supplemen-
tary Information Supplementary Table 4.

Online Content Any additional Methods, Extended Data display items and Source
Data are available in the online version of the paper; references unique to these
sections appear only in the online paper.
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Figure 4 | VOD anomalies and linear trends per decade in April–May–June
for the period 1988–2010. a, Regional mean VOD anomaly in April–May–
June and its relationship with rainfall from GPCC in April–May–June (no lag)
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METHODS
Data. This research analyses a variety of climate and vegetation data from ground
observations and several independent satellite sensors (optical, thermal, passive and
active microwave and gravity) over the Congo basin. We use (1) rainfall, terrestrial
water storage (TWS), aerosol optical thickness (AOT), cloud optical thickness
(COT), photosynthetically active radiation (PAR) and land surface temperature
(LST) as climate drivers; and (2) enhanced vegetation index (EVI), normalized dif-
ference vegetation index (NDVI), vegetation optical depth (VOD) and canopy back-
scatter anomaly (CBA) as vegetation variables. Unlike optical and thermal remote
sensing products (for example, NDVI, EVI and LST), microwave retrievals (for exam-
ple, VOD and CBA) are not affected by atmospheric cloud cover and aerosol con-
ditions. The low energy of microwave emission does, however, require a larger
footprint, resulting in a relatively coarser spatial resolution of the microwave data
than the optical and thermal data used in this study. The gravity sensors from the
Gravity Recovery and Climate Experiment (GRACE) map the Earth’s gravity fields
by making accurate measurements of the distance between the two satellites and
thus provide information about the distribution and flow of water mass within the
Earth and its surroundings.
MODIS data. We use the globally validated Collection 5 MODerate resolution
Imaging Spectroradiometer (MODIS) products of EVI15 and NDVI15 (monthly,
2000–2012), LST31 (monthly, 2003–2012) and land cover and percentage vegeta-
tion cover32,33 (yearly, 2001–2012) at 0.05u spatial resolution, and AOT34,35 and COT34,36

at 1u resolution (monthly, 2000–2012). The NDVI and EVI (MOD13C2), LST
(MYD11C3), and land cover (MCD12C1) data were obtained from https://lpdaac.
usgs.gov/get_data. The AOT and COT data (MOD08M3) were obtained from http://
ladsweb.nascom.nasa.gov/data/search.html.

The MODIS EVI data (MOD13C2) are used primarily because EVI is more sen-
sitive to dense forests than other vegetation indices such as NDVI and has been used
widely in recent studies on tropical rainforests4–7. The MODIS EVI algorithm15 uses
the MODIS surface reflectance data in the blue, red and near-infrared spectral bands
(which are corrected for molecular scattering, ozone absorption and aerosols) as its
input. The blue band removes residual atmospheric contamination caused by smoke
and sub-pixel thin clouds. A feedback adjustment is used to minimize canopy back-
ground variations and to enhance its sensitivity from sparse vegetation to very dense
forests15,17. When properly filtered to remove atmospheric aerosol and cloud effects,
the MODIS EVI data do not saturate, even over dense forests, and correlate well
with leaf area, leaf biomass, canopy chlorophyll content, canopy photosynthetic
activity and primary productivity16–18. The gridded EVI data sets include pixel-level
quality assurance flags together with statistics of the EVI quality and input data.
MOD13C2 represents the best retrievals possible from cloud-free high-quality spa-
tial composites of the gridded 16-day 1-km EVI product (MOD13A2) at local solar
time ,10:30 for the period 2000–2012 from the Terra satellite. It incorporates a
quality assurance filter scheme that removes lower-quality and cloud-contaminated
pixels during spatial aggregation. The accuracy of the MODIS EVI has been assessed
over a widely distributed set of locations and time periods via validation efforts, with
an error of 60.01 (ref. 7). The MODIS NDVI, which was calculated and processed
similarly to the EVI by the same MODIS algorithm15, is used to assess the sun-view
angle effects (see Supplementary Information).

The MODIS daytime LST31 (MYD11C3) at local solar time ,13:30 for the period
2003–2012 from the Aqua satellite is used to quantify LST variations related to changes
in vegetation and other land surface properties. Satellite-derived LST measures the
temperature of the Earth’s surface thermal emission. It is closely related to vegeta-
tion density/type and hence has been used to monitor deforestation and land cover
change37,38. The MODIS LST has four measurements from the Terra and Aqua
satellites. Here we choose the daytime Aqua observations because the LST contrast
between vegetation and non-vegetation is expected to be strongest at ,13:30 than
the other three MODIS measurements. However, it may have larger uncertainties
than the other three measurements because clouds are more often seen over land
during the afternoon than in the morning.

The MODIS land cover map32,33 (MCD12C1) is available from 2001 and 2012
and can be used to identify and quantify large-scale changes in vegetation type and
percentage vegetation cover. It provides a suite of land cover types by mapping global
land cover using spectral and temporal information derived from MODIS using a
supervised decision-tree classification method based on a database of high-quality
land cover training sites32.

The MODIS level 3 joint aerosol/water-vapour/cloud products34–36 (MOD08M3)
provide AOT and COT data collected from the Terra satellite for the period 2000–
2012. We used the fields of Optical_Depth_Land_And_Ocean_Mean_Mean, which
contains AOT at 0.55mm for both ocean (best) and land (corrected), and Cloud_
Optical_Thickness_Combined_Mean_Mean, which contains the monthly mean values
of daily mean of combined COT (liquid plus ice), from the MOD08M3 product.
Rainfall data. We use three gridded monthly rainfall data sets from the Global Pre-
cipitation Climatology Centre (GPCC)20 at 1u resolution (1950–2012), the Global

Precipitation Climatology Project (GPCP)21 at 2.5u resolution (1979–2012) and the
Tropical Rainfall Measuring Mission (TRMM) and other satellites22 at 0.25u reso-
lution (1998–2012). The GPCC data provides the GPCC’s most accurate in situ land
surface precipitation analysis product by combining the Full Data V6 Product
(1901–2010), based on quality-controlled data from 67,200 stations worldwide that
feature record durations of ten years or longer, with the V4 monitoring product
(2011–2012), based on quality-controlled data from 7,000 stations. The GPCP ver-
sion 2.2 data provides combined gauge measurements and satellite-derived pre-
cipitation by taking advantages of the strengths of each of several sources into a
final merged product. The 3B43 version 7 TRMM data provides the best-estimate
precipitation rate and root-mean-square precipitation-error estimates by combin-
ing four independent precipitation fields. Despite their differences in data source,
duration, spatial resolution and processing, these three rainfall data sets show similar
and consistent rainfall variability during April–May–June over the study region (Fig. 1).
GPCC and TRMM have higher spatial resolution and thus are mostly used in our
analysis. We use the former (1950–2012) to examine the long-term variability of
rainfall and the latter (2000–2012) to examine spatial patterns of rainfall in the last
13 years. The data sets were obtained from http://www.esrl.noaa.gov/psd/, http://
www.esrl.noaa.gov/psd/data/gridded/data.gpcp.html and http://mirador.gsfc.nasa.
gov/collections/TRMM_3B43__007.shtml, respectively.

We had previously planned to include the gridded Climatic Research Unit (CRU)
rainfall data39 (CRU_TS_3.21) for the period 1950–2012 in our analysis as well. How-
ever, we found that the data of CRU differed from those of GPCC, GPCP and TRMM
in the last decade over our study region owing to the insufficient ground observa-
tions used in the CRU. Asefi-Najafabady and Saatchi11 also compared the rainfall
quality of CRU and TRMM and found large uncertainties in CRU over the African
forests for the period after 1990 owing to paucity of station data, whereas the TRMM
products have relatively low bias in magnitude and errors in capturing rainfall spatial
patterns.
TWS data. We use the gridded monthly Release 05 (RL05) TWS data from
GRACE23,40,41 at 1u resolution (2003–2012). It has three products, processed by the
University of Texas’ Center for Space Research, NASA’s Jet Propulsion Laboratory
and Germany’s GeoForschungsZentrum, and was obtained from http://grace.jpl.nasa.
gov/data/gracemonthlymassgridsland/. TWS represents the total water storage changes
in wetlands, rivers, ground water, soil moisture and wet biomass in terms of anom-
alies relative to a mean total storage value. It is determined by the balance between
source (precipitation) and sink (runoff, evapotranspiration) terms, and so a change
in either source or sink will change TWS23,24. Although two areas may receive sim-
ilar amounts of precipitation, the resulting storage response may differ owing to dif-
ferences in temperature and the characteristics of land surface properties (for example,
vegetation type/amount, soil depth and porosity, and topography) with which the
water interacts24. Given that a 200-km-wide Gaussian filter was applied to the data,
TWS quantifies a large-scale and low-frequency signal of TWS anomalies. The year-
to-year TWS values from the University of Texas’ Center for Space Research and
NASA’s Jet Propulsion Laboratory are similar but differ slightly from those from
Germany’s GeoForschungsZentrum (Fig. 3c and Extended Data Fig. 2). Our under-
standing and validation of TWS products are insufficient for a precise assessment of
the quality among these three data sets, so here we simply use the ensemble-mean
TWS with equal weights to illustrate the spatial pattern of TWS trends (Fig. 2e).
Nevertheless, the results from the three data sets generally show similar decreasing
trends in spatial patterns (Fig. 2e and Extended Data Fig. 2) and interannual var-
iations at the regional level (Fig. 3b).
Radiation data. We use gridded monthly data of downward PAR at the surface
from Clouds and Earth’s Radiant Energy System (CERES)42 at 1u resolution
(2003–2012). The CERES products contain monthly mean direct and diffuse
surface fluxes (CERES_SYN1deg_Ed3A) of PAR under all-sky and clear-sky con-
ditions, which were obtained from http://ceres.larc.nasa.gov/. The total incident
all-sky PAR was calculated by summarizing direct and diffuse PAR fluxes. The
total incident shortwave radiation shows changes similar to PAR’s but with a larger
magnitude (not shown for brevity).
VOD data. We use gridded monthly VOD data retrieved from the Special Sensor
Microwave Imager (SSM/I) and the Advanced Microwave Scanning Radiometer—
Earth Observing System (AMSR-E)25 at 0.25u resolution. VOD is a radiometric param-
eter retrieved from passive microwave satellite observations which can penetrate
deeper into the canopy than can optical remotely sensed data such as EVI and
is directly proportional to total vegetation water content in all the aboveground
biomass, including both woody and leafy components43–45. Unlike EVI, VOD is
sensitive to water rather than chlorophyll and hence to both photosynthetic and
non-photosynthetic aboveground biomass46,47. The VOD retrievals from the SSM/I
(January 1988–June 2002) and AMSR-E (July 2002–December 2010) sensors25 were
merged to create a single continuous long-term time series by using a cumulative
distribution frequency matching technique48–50. Because of its higher retrieval accu-
racy, the AMSR-E VOD was selected as the reference with which to adjust the SSM/I
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data. We note that the merging process has little influence on the long-term trends,
that is, the trends from their original sources are kept unchanged. A comprehensive
study has demonstrated that this long-term VOD data set is able to monitor global
changes in total aboveground vegetation water content and biomass over various
land cover types from grasslands to tropical forests25. The AMSR-E sensor stopped
working in October 2011, which limits our analysis up to 2010.
CBA data. We also use gridded CBA of the SeaWinds scatterometer data onboard
Quick Scatterometer (QSCAT)11 (2000–2009) at 0.04u resolution. CBA provides a
reliable remote sensing technique to monitor the impact of climate on tropical forests,
especially in detecting large-scale tree mortality and tree leaf abscission. QSCAT is
an active radar sensor operating at microwave frequency (13.4 GHz) and provides
daily (6.00 and 18.00) measurements of the backscatter signal from forest canopies.
QSCAT backscatter measurements over dense tropical forests are sensitive only
to the top canopy structure and moisture and contain little information about the
underlying soil moisture. The global wall-to-wall acquisition of QSCAT data stopped
in November 2009, limiting our analysis up to 2009.
Data processing. The African rainforests span the equatorial region by nearly seven
degrees from north to south, but some forested regions such as in West Africa have
extensive cloud and aerosol contaminations, as can be inferred from optical remote
products such as MODIS NDVI and EVI. We chose our study region and study
period after carefully assessing the EVI data quality (Extended Data Fig. 1). First,
the MODIS land cover classification and percentage forest cover data were used to
define intact forest canopies in the Congo basin. Only forested pixels at 0.05u reso-
lution that have a forest cover exceeding 80% and have no land cover/use change
detected during the period 2001–2012 are considered. Second, the quality assur-
ance flags of each monthly EVI composite were checked to count the total number
of high-quality EVI composites on every pixel at 0.05u resolution for the 13-year
period. A high-quality EVI composite was defined as one without the presence of
clouds (adjacent clouds, mixed clouds and shadows) and aerosol loadings that
typically corrupt EVI (climatology and high aerosols)6. The three-month period of
April–May–June shows the highest percentage of high-quality EVI pixels (or the
least contamination of aerosols and clouds) over the 13-year period and also coin-
cide with the first peak season of EVI and rainfall, so we focus our study period on
April–May–June only. Third, the quality assurance statistics were used to create a
high-quality EVI mask at 0.05u resolution. The masked pixels contain only those
pixels having at least 80% of monthly composites in April–May–June (or at least
31 of the total 39 monthly composites) for the 13-year study period, which repre-
sent at least ten years of high-quality data. Only the masked high-quality pixels are
considered so that the same group of EVI pixels is analysed for the entire study
period. Fourth, for each of the masked pixels, a monthly high-quality EVI anom-
aly time series in April–May–June was first created by removing the monthly high-
quality EVI climatology for the period 2000–2012 and then aggregated into one
single April–May–June high-quality EVI anomaly image for each year. Fifth, the
0.05uApril–May–June high-quality anomaly images were spatially aggregated into
coarser resolution images at 0.25u to enhance the pixel-level signal-to-noise ratio
and also match the spatial resolution of TRMM rainfall. We only consider those
0.25u resolution pixels that (1) have at least five sub-pixels that are masked as high-
quality at 0.05u resolution (to ensure adequate samples for spatial averaging) and
(2) are defined as intact forested pixels in the first step. Some isolated pixels near
the border of enclosed forests were removed from the 0.25umask map to minimize
human impacts. The above steps lead to the choice of our study region over only
the intact forest pixels with high-quality EVIs (5uN–6u S, 14uE–31uE) over the
Congo basin, which in total consists of 1,438 pixels at 0.25u resolution (Extended
Data Fig. 1).

Like the MODIS EVI, the data of rainfall, NDVI, LST, TWS, AOT, COT, PAR,
VOD and CBA at different spatial resolutions were temporally averaged into anom-
alies in April–May–June and other seasons and then re-projected into our study
region at 0.25u resolution. For the data with a spatial resolution coarser than 0.25u,
nearest-neighbour interpolation was used. Regional and spatial aggregations were
applied only over the masked 0.25upixels where the MODIS data has the most high-
quality EVI composites.

The VOD data can provide complementary information on vegetation dynamics
when compared to other satellite products25,26 and especially it can be used to mon-
itor global vegetation biomass change over various land cover types25. However, as
a new product, the VOD has not been validated against ground observations. For
example, we found that there are few strong VOD anomalies with a value exceed-
ing 0.2 or less than 20.2 (or 20% of the absolute regional mean VOD value) at local
scales, which represent 0.04% of all the data, possibly owing to uncertainties and
errors from measurements and retrievals or local fires. Instead of excluding these
values, which would create missing data, we treat them as local-scale noise. We use
empirical orthogonal function (EOF) analysis to isolate the VOD variance assoc-
iated with the smaller scales. The EOF method has been extensively used to ana-
lyse the spatial and temporal variability of geophysical fields by decomposing the

data into a set of spatial patterns of variability (referred to as EOF modes) and cor-
responding time variations (referred to as EOF time series)51,52. Its goal is to express
the signal in terms of a relatively small number of EOFs to describe as much of the
original information as possible. The EOF modes show the spatial structure of the
major factors that can account for the temporal variations, which represent spatial
variability. The EOF time series tells us how the amplitude of each EOF mode varies
with time. The first few EOFs contain the majority of data variance and the highest
spatial coherence and the last few EOFs are noise-dominated and have the least
variance. Therefore, the inversion of the EOF transform using only the first few
EOFs provides a noise-filtered data set. We used the first 12 EOFs to restructure the
VOD data, which explains 90% of the data variance. The restructured VOD looked
almost identical to the original data, except for the smoothing of few strong VOD
anomalies.
Quantification of temporal changes. When choosing methods with which to quan-
tify the temporal changes in EVI and other variables we should consider how rain-
fall changes with time in our study region. Unlike short-term and intense droughts
that have recently occurred in the Amazon forests4–8, the African forests have experi-
enced a long-term and gradual rainfall reduction10,11. The effects of such rainfall
changes on vegetation are more complex than short-term droughts because forest
composition and structure may change over time1,2,14. So we expect to see small and
gradual changes in moisture properties (and, hence, vegetation), instead of large-
scale tree mortality similar to what has occurred in the Amazon8.

Here we use two simple methods to quantify the gradual temporal change in a
variable y(t), which represents EVI or any other variables over time t. The first method
is to calculate the differences in the mean values of y(t) between two individual peri-
ods. The two periods are defined as the last and first three years if the data record is
less than 20 years. Otherwise, we use the last and first decades. The first method is
straightforward and effective if y(t) contains a deterministic trend, but the result-
ing change depends on the chosen time periods if y(t) has strong interannual vari-
ations. The second method is to estimate the linear time trend of y(t) using ordinary
least squares over a certain time period (that is, the estimated change per decade).
Although most of the remotely sensed data are only available for 10–13 years, the
second method can be a good indicator if y(t) shows a persistent trend (either upward
or downward) with time. In particular, it can provide the P value of the Student’s t
statistic that quantifies the probability of whether the estimated trend is statistically
significantly different from zero or simply due to random noise. Nevertheless, both
methods should provide consistent results if there is a persistent trend in the data
as shown in most of the variables in our analysis.

Both methods were used for time series analysis in our study, but the first method
was not used in the spatial pattern analysis because the pixel-level time series is
noisier than the regional mean data. So we express the temporal change mostly as a
linear trend—which is one simple way to quantify the gradual change while redu-
cing year-to-year data noise. We do realize the limitation of estimating a linear trend
for a short time series of 10–13 years for most of the satellite data. Hence, the esti-
mated trend only applies to the study period and thus should not be extrapolated
linearly over longer periods.

There is another method that has been used extensively to detect and quantify
the drought impacts in studies of the Amazon rainforests and has proved to be very
effective5–8. This method calculates the standardized anomaly for one particular
drought year y(t0) as the departure of y(t) from the climatological mean of y(t) and
normalized by the standard deviation of y(t), while the measurement from the par-
ticular drought year y(t0) is excluded from the calculations of mean and standard
deviation. It requires us to identify abnormal years versus normal years, which is
relatively easy in the Amazon given the two historic drought events that occurred
within the last 13 years. However, our study region has not experienced significant
widespread droughts similar to what occurred in the Amazon8, and the drought-
affected areas are smaller in spatial extent than the Amazon and vary by periods11.
Also, the decreasing trend in EVI and other variables often makes it difficult to define
one particular year as an abnormal year because the last few years always have lower
values than the first few years. Consequently, this method is not used in our analysis.
Correlation analysis. The linear correlation coefficient (Pearson’s R) was calcu-
lated between two time series to quantify their concurrent and lagged association.
The significance level of correlation (P value) is estimated using a two-tailed Student’s
t-test. The null hypothesis is that the two variables used to calculate R are inde-
pendent (that is, R 5 0.0).

The acronyms and abbreviations are listed in Supplementary Table 4.
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Extended Data Figure 1 | Statistics of MODIS data quality and MODIS
high-quality EVI mask. a–d, Seasonal statistics of the total number of high-
quality MODIS EVI composites over forested pixels at 0.05u resolution in
central tropical Africa (7u S–7uN, 5–31 uE) for the period 2000–2012. For each
season, there are up to 39 EVI composites (three composites per year multiplied

by 13 years) for every pixel. e, The climatology of MODIS percentage forest
cover at 0.05u resolution. f, The high-quality MODIS April–May–June EVI
mask at 0.25u resolution over the intact Congo forest (6u S–5uN, 14–31uE) used
in the analysis (see details in Methods).
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Extended Data Figure 2 | Spatial patterns of linear trends in April–May–
June TWS (cm per decade) and correlation coefficients R between TWS and
EVI for the period 2003–2012. a–c, As in Fig. 2e but for TWS from individual
data processing centres (the University of Texas’ Center for Space Research
(CSR), NASA’s Jet Propulsion Laboratory (JPL) and Germany’s
GeoForschungsZentrum (GFZ)). d, The topography of the Congo basin
(http://en.wikipedia.org/wiki/File:Congo_Kinshasa_Topography.png).

e, f, R between April–May–June EVI and ensemble-mean TWS in April–May–
June (AMJ) and January–February–March (JFM). The significance level
of R (its P value) is estimated using a two-tailed Student’s t-test. Pixels with
a plus symbol have a linear trend or an R that is statistically significant at
P , 0.1. The percentages of pixels with trends or R at P , 0.05 and P , 0.1
and the percentages of pixels with negative trends or positive R over the study
region are shown.
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Extended Data Figure 3 | Regional mean anomalies and linear trends per
decade for COT and AOT (unitless) in April–May–June for the period
2000–2012. a, b, As in Fig. 3a. c, d, As in Fig. 2a. The dramatic AOT increase in

2004 is due to volcanic eruptions of the mountains Nyamulagira and
Nyiragongo, which are located on the eastern border of the study region, on
25 May 2004. However, if the year 2004 is excluded, the AOT changes little.
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Extended Data Figure 4 | Regional mean anomalies and linear trends per decade for PAR and LST in April–May–June for the period 2003–2012. a, c, PAR
(W m22); b, d, LST (uC); a, b, as in Fig. 3c; c, d, as in Fig. 2b.

RESEARCH LETTER

Macmillan Publishers Limited. All rights reserved©2014



Extended Data Figure 5 | Annual mean VOD anomalies (unitless; a) and linear trends per decade (b). For the period 1988–2010 (as in Fig. 4).
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Extended Data Figure 6 | Spatial patterns of linear trends per decade in April–May–June for MODIS reflectance in the blue (BLU; a), red (RED; b) and
near-infrared (NIR; c) spectral bands. For the period 2000–2012 (as in Fig. 2a).
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Extended Data Figure 7 | Regional mean anomalies for MODIS EVI and reflectance in the blue (BLU), red (RED) and near-infrared (NIR) spectral bands.
For the period of 2000–2012 (a) (as in Fig. 3a) and 2003–2012 (b) (as in Fig. 3c).
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Extended Data Figure 8 | Simulated surface reflectance values in the
MODIS red (RED; a), near-infrared (NIR; b) and blue (BLU; c) bands using
the 6S radiative transfer code for 25% overestimation or 25%
underestimation of AOT. There are 30 cases (cases 1–10 correspond to a small

AOT load, AOT 5 0.1; cases 11–20 correspond to a medium AOT load,
AOT 5 0.3; cases 21–30 correspond to a large AOT load, AOT 5 0.5) and the
actual reflectance is 0.03, 0.3 and 0.02 in RED, NIR and BLU, respectively (see
details in Supplementary Table 1).
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Extended Data Figure 9 | Regional mean anomalies (unitless) and linear
trends per decade for MODIS EVI and NDVI. For bidirectional reflectance

distribution function (BRDF)-corrected EVI (a, c) calculated from MCD43C4
and for MODIS NDVI (b, d) from MOD13C2 (as in Extended Data Fig. 4).
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Extended Data Figure 10 | Temporal dynamics of vegetation for four
Landsat 7 ETM1 scenes. a, Locations of the Landsat scenes (P176R057,
P177R057, P178R057 and P177R058). b, Mean temporal variations of NDVI
for cloud-free pixels with NDVI $ 0.5 in the first of the image time series.
c, Mean temporal variations of EVI for the same pixels as in b. d, Mean

temporal trajectory of vegetation in the brightness–greenness space of the
Tasseled Cap transformation (see details in Supplementary Information section
D). A decrease in greenness associated with an increase in brightness signifies
forest degradation.
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