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Abstract

The capabilities of the MODerate resolution Imaging Spectroradiometer (MODIS) present some exciting possibilities for

improved and timely monitoring of crop production. A quantitative index is introduced in this paper to study the relationship

between remotely sensed leaf area index (LAI) and crop production. The Climate-Variability Impact Index (CVII), defined as the

monthly contribution to anomalies in annual growth, quantifies the percentage of the climatological production either gained or lost

due to climatic variability during a given month. By examining the integrated CVII over the growing season, this LAI-based index

can provide both fine-scale and aggregated information on vegetation productivity for various crop types. Once the relationship

between the CVII and crop production is developed based on the historical record, a trained statistical model can be applied to

produce homogeneous production forecasts (in which the model is trained and tested for a particular region), as well as

heterogeneous forecasts (in which the model is trained in a particular region and applied to a different region). Both the

homogeneous and the heterogeneous model predictions are consistent with United States Department of Agriculture (USDA)/FAO

estimates at regional scales. Finally, by determining the estimated production as a function of the growing-season months it is

possible to determine when in the phenological cycle the predictive value of the CVII plateaus and which months within the

phenological cycle provide the greatest predictive capacity. Overall, the high temporal and spatial resolution of the satellite LAI

products makes the CVII a useful tool in near real-time crop monitoring and production estimation.
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1. Introduction

Crop monitoring and early yield assessment are

important for agriculture planning and policy making at

regional and national scales. Numerous crop growth

simulation models are generated using crop state

variables and climate variables at the crop/soil/atmo-

sphere interfaces to get the pre-harvest information on

crop yields (e.g. Monteith, 1977). However, most of

these models are limited to specific regions/periods due
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to significant spatial–temporal variations of those

variables. Furthermore, the limited network of stations

and incomplete climate data make crop monitoring and

yield assessment a daunting task (Kogan, 1997). In

addition, the meteorological data may miss important

variability in vegetation production, which highlights

the need for quantification of vegetation changes

directly when monitoring climate impacts upon

vegetation (Zhang et al., 2004). In this sense, remotely

sensed metrics of vegetation activity have the following

advantages: a unique vantage point, synoptic view,

cost effectiveness, and a regular, repetitive view of

nearly the entire Earth’s surface (Johnson et al., 1993),

thereby making them potentially better suited for crop

monitoring and yield estimation than conventional
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weather data. For instance, it has been shown that the

application of remotely sensed data can provide more

accurate crop acreage estimates at national/continental

scales (Sharman et al., 1992). Furthermore, numerous

field measurements and theoretical studies have

demonstrated the utility of remotely sensed data in

studies on crop growth and production (Moulin et al.,

1998). These two applications suggest the feasibility of

large-scale operational crop monitoring and yield

estimation.

Empirical relationships between the remotely sensed

data and crop production estimates have been developed

for monitoring and forecasting purposes since the early

1980s. For instance, Colwell et al. (1977) found a strong

correlation between winter wheat grain yield and

Landsat spectral data. However, these relationships did

not hold when extended in space and time (Barnett and

Thompson, 1983). Later, various other vegetation

indices generated from Landsat data, such as the ratio

of the reflectance at near infrared to red and the

normalized difference vegetation index (NDVI) were

used in yield estimation of sugarcane (e.g. Rudorff and

Batista, 1990), wheat (e.g. Lobell et al., 2003), and rice

(e.g. Patel et al., 1985). The Landsat series have a spatial

resolution of 30 m and can provide reflectance data

from different spectral bands. However, these high-

resolution data require enormous processing effort, and

may not be applicable for surveys of large-area general

crop conditions (Barnett and Thompson, 1983).

Vegetation indices derived from data from the

Advanced Very High Resolution Radiometer (AVHRR)

were also used for crop prediction, environmental

monitoring, and drought monitoring/assessment (e.g.

Kogan, 1990, 1995; White et al., 1997). For example,

Rasmussen (1992) found that millet yields in northern

Burkina Faso are linearly correlated with the AVHRR

NDVI integrated over the reproductive period. Simi-

larly, Hochheim and Barber (1998) found that the

accumulated AVHRR NDVI provided the most con-

sistent estimates of spring wheat yield in western

Canada. The Vegetation Condition Index (VCI) derived

from AVHRR data is widely applied in real-time

drought monitoring and is shown to provide quantitative

estimation of drought density, duration, and effect on

vegetation (Kogan, 1990, 1995). The VCI can separate

the short-term weather signals in the NDVI data from

the long-term ecological signals. According to Dome-

nikiotis et al. (2004), the empirical relationship between

VCI and cotton yield in Greece are sensitive to crop

condition well before the harvest and provide an

indication of the final yield. Unfortunately, the AVHRR

data are not ideally suited for vegetation monitoring
applications because of the lack of precise calibration,

poor quality of geometric registration, and difficulties in

cloud screening (e.g. Goward et al., 1991; Sellers et al.,

1994).

The radiometric and geometric properties of the

MODerate resolution Imaging Spectroradiometer

(MODIS) provide a significantly improved basis for

vegetation monitoring and yield predictions with

remotely sensed data (Justice et al., 1998; Running

et al., 1994; Zhang et al., 2003). Also, given the

improved atmospheric correction and cloud screening

and the high temporal and spatial resolution of the

various MODIS vegetation products (e.g. leaf area

index), this sensor seems well suited for near real-time

crop monitoring. In general, the daily MODIS products

are released 1–2 days after the image is taken. For the 8-

day or monthly composite products, a 1–2 weeks

processing period is required. Once the data have been

archived, they can be downloaded from Earth Obser-

ving System data gateway (http://edcimswww.cr.usgs.-

gov/pub/imswelcome/). Avaluable metric of vegetation

production derived from this sensor are the satellite-

based estimates of leaf area index (LAI). Leaf area

responds rapidly to abiotic and biotic influences and the

variability of LAI can integrate various conditions

affecting plant growth and development (Holben et al.,

1980). As such, integrated LAI over the growing season

is highly correlated with crop yield because both the

magnitude and duration of photosynthetic activity is

considered (e.g. Tucker et al., 1980). For instance,

previous studies have shown that potential yield is a

function of leaf area at the beginning of the reproductive

state, and final yield is related to the duration of green

LAI assuming the absence of significant stresses during

the heading/filling stages (see Hatfield, 1983).

We have previously demonstrated that a Climate-

Variability Impact Index (CVII) derived from the

MODIS LAI product quantifies the percentage of the

climatological annual production either gained or lost

due to climatic variability and has a potential application

in crop monitoring and yield estimations (Zhang et al.,

2004). As a continuation of this effort, in this paper we

will analyze the relationships between the LAI-based

CVII and crop yield for various crop types and locations.

With estimates from FAO and USDA, regression models

will be trained on past data, and then be applied to

predict future yield for a given study region. Finally, we

will also evaluate the phenological cycle to determine

which months within the growing season provide the

greatest predictive capacity, which in turn may allow for

more accurate model estimation and early famine

prediction prior to the end of the growing season.

http://edcimswww.cr.usgs.gov/pub/imswelcome/
http://edcimswww.cr.usgs.gov/pub/imswelcome/
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2. Data

2.1. MODIS IGBP land-cover map

The MODIS land-cover classification product iden-

tifies 17 classes of land cover in the International

Geosphere–Biosphere Programme (IGBP) global vege-

tation classification scheme (Friedl et al., 2002). This

scheme includes 11 classes of natural vegetation, 3

classes of developed land, permanent snow or ice, barren

or sparsely vegetated land, and water. The latest version

of the IGBP land-cover map is used to distinguish

croplands from the other biomes in this research.

2.2. MODIS LAI

The retrieval technique of theMODIS LAI algorithm

is as follows. For each land pixel, given red and near-

infrared reflectance values, along with the sun and

sensor-view angles and a biome-type designation, the

algorithm uses model-generated look-up tables to

identify likely LAI values corresponding to the input

parameters. This radiative transfer-based look-up is

done for a suite of canopy structures and soil patterns

that represent a range of expected natural conditions for

the given biome type. The mean value of the LAI values

found within this uncertainty range is taken as the final

LAI retrieval value. In certain situations, if the

algorithm fails to localize a solution either because

of biome misclassification/mixtures, high uncertainties

in input reflectance data or algorithm limitations, a

backup algorithm is utilized to produce LAI values

based upon the empirical relationship between NDVI

and LAI (Myneni et al., 1997).

The latest version of MODIS global LAI from

February 2000 to December 2004 was taken to

characterize the crop activity in this study. The 8-day

LAI products are distributed to the public from the Earth

Observing System (EOS) Data Gateway Distributed

Active Archive Center. The 8-day products also provide

quality control variables for each LAI value that

indicate its reliability. The monthly global product was

composited across the 8-day products using only the

LAI values with reliable quality. The monthly global

products at 1-km resolution with Sinusoidal (SIN)

projection are available at Boston University (Yang

et al., 2005). In this paper, monthly LAI at 1-km

resolution are used to generate our Climate-Variability

Impact Index. As these will be compared with estimates

of crop production reported at county/state-levels, the

vegetation-based CVII fields were aggregated over the

corresponding counties/states using the county bound-
aries 2001 map from the National Atlas of the United

States (http://nationalatlas.gov).

2.3. AVHRR LAI

AVHRR LAI is used as a substitute for the MODIS

LAI to examine the temporal characteristics of

vegetation activity over longer time periods. The

AVHRR LAI is derived from the Global Inventory

Modeling and Mapping Studies (GIMMS) NDVI

produced by NASA GIMMS group (Tucker et al., in

press). Monthly LAI from 1981 to 2002 at 0.258 were
derived based on the empirical relationship between

NDVI and LAI for different biomes. Literature works

show that this empirical relationship might be different

for the same biome at different locations (Asrar et al.,

1992; Gutman, 1991; Price, 1993). To eliminate this

effect, models are generated for each pixel to calculate

GIMMS LAI from GIMMS NDVI. The MODIS LAI

and GIMMS NDVI overlapped from March 2000 to

December 2002, which provides a basis for generating a

piecewise linear relationship between these two

products. Once the coefficients of the linear model

are calculated, the whole range of GIMMSNDVI can be

converted into GIMMS LAI, which is consistent with

the MODIS products. Our preliminary results indicate a

good agreement between GIMMS LAI and MODIS

LAI at quarter degree resolution with less than 5%

relative difference for each main biome (results not

shown).

2.4. GIMMS NPP

In this research, we also use model-generated

estimates of Net Primary Production (NPP) from

Nemani et al. (2003) as a predictor of crop production.

This NPP is a monthly product from 1982 to 1999 at a

spatial resolution of half degree. This global NPP

product was generated as follows. GIMMS NDVI were

first used to create LAI and FPAR with a 3D radiative

transfer model and a land-cover map as described in

Myneni et al. (1997). Then, NPP was estimated from a

production efficiency model (PEM) using the following

three components: the satellite-derived vegetation

properties, daily climate data, and a biome specific

look-up table of various model constants and variables.

Further details can be found in Nemani et al. (2003).

2.5. Crop production

Crop production data from several sources are used

in this research. We focus upon total production, as

http://nationalatlas.gov/
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opposed to yield, for instance, because although the two

are highly correlated with each other, total production is

typically the parameter of interest for crop monitoring

and yield prediction. In this paper, we will explicitly

refer to ‘‘production’’ when discussing quantitative

results, however for simple qualitative statements we

sometimes retain the generic term ‘‘yield’’ as synon-

ymous for ‘‘production’’.

The country-level crop production from 1982 to

2000 in European countries is from FAOSTAT 2004

data set. The county-, district-, and state-level

production data in United States are from the National

Agricultural Statistics Service (NASS) at United States

Department of Agriculture (USDA) (http://www.nas-

s.usda.gov:81/ipedb/). USDA provides two indepen-

dent sets of county crop data: one is a census of

agriculture, which is released every 5 years; the other

one is annual county crop data, which is based on

reports from samples. We used the annual crop

estimates in this study. Due to the processing effort

required for the fine resolution remotely sensed data,

we studied two crops (corn and spring wheat) in twoUS

states (Illinois and North Dakota) at county- and

district-scales. At coarser scales, we expanded the

regions to include Illinois (IL), Minnesota (MN),

Michigan (MI), Iowa (IA), Indiana (IN), andWisconsin

(WI) for corn; to North Dakota (ND), Montana (MT),

Minnesota (MN), and South Dakota (SD) for spring

wheat; to Kansas (KS), Oklahoma (OK), Colorado

(CO), and Nebraska (NE) for winter wheat. The

county- and district-level data of Illinois and North

Dakota are from 2000 to 2004; the state-level data are

from 1982 to 1999.

3. Correlation between CVII and production at

different scales

We previously developed an index, the Climate

Impact Index (CII), to identify regions that are

particularly susceptible to vegetation loss due to

climatic variability during the growing season (Zhang

et al., 2004). In addition to its use as a diagnostic tool to

quantify the difference between ecosystems, given the

high spatial and temporal resolutions this index can also

capture the temporal variations in each ecosystem. In

this paper, a similarly derived Climate-Variability

Impact Index will be used for real-time crop monitor-

ing, yield estimations, and climatic impact diagnosis.

For a given pixel p, let L( p, m, y) be the LAI in month m

and year y, L0ð p;mÞ be the climatological LAI in month

m, and
P

L0ð pÞ be the climatological annual LAI. The
index CVII( p, m, y) in month m and year y is then

calculated as:

CVIIð p;m; yÞ ¼ 100� Lð p;m; yÞ � L0ð p;mÞP
L0ð pÞ (1)

where

L0ð p;mÞ ¼ 1

Ny

X
y

Lð p;m; yÞ ðNy; the number of yearsÞ
X

L0ð pÞ ¼
X
m

L0ð p;mÞ:

Here, the CVII quantifies the percentage of the

climatological annual grid-point production either

gained or lost due to climatic variability in a given

month. Preliminary results show that the CVII can

successfully identify vegetation loss of up to 30–50% of

the total annual production in impacted regions during

historic drought events (Zhang et al., 2004). In the

following, we examine the relationships between CVII

and crop production at local, regional, and national

scales.

3.1. CVII versus production at local scale

At the local scale, we used the 1-km resolution

MODIS LAI data, from 2000 to 2004, to generate the

Climate-Variability Impact Index. Data from 2000 to

2003 are examined in this section and the 2004 LAI data

are saved for the evaluation of prediction schemes in

Section 4. The MODIS IGBP land-cover map at 1-km

resolution was used to select cropland pixels. We chose

two states, Illinois and North Dakota, as representative

states to examine the relationship between CVII and

production at local scales. Illinois contains 102 counties,

which are grouped into 9 crop-reporting districts (CRD).

The principal crop in Illinois is corn, which is

approximately 50% of all crops by area. Since we do

not have a detailed land use map for each crop, corn is

used as the representative crop in Illinois when we study

the relationship between crop production and the LAI-

based CVII. North Dakota contains 53 counties and 9

crop-reporting districts. The principal crop in North

Dakota is spring wheat, which composes approximately

40% of all crops by area. For this reason, variability of

spring wheat is studied using North Dakota data.

Crop production estimates are given at county- and

CRD-levels by the United States Department of

Agriculture. Accordingly, we aggregated LAI over

the same regions by overlapping the LAI map with the

county map and then calculated the Climate-Variability

Impact Index for each county/CRD. Previous studies

http://www.nass.usda.gov:81/ipedb/
http://www.nass.usda.gov:81/ipedb/
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have found that LAI integrated over the growing season

is highly correlated with crop yield because both the

magnitude and duration of photosynthetic activity is

considered (e.g. Tucker et al., 1980). Thus, in this

research, the LAI-based CVII is summed over the

growing season. The usual growing period of corn in

Illinois is from April (planting time) to early October

(harvesting time). The corresponding times for spring

wheat in North Dakota are April and late September.

Accordingly, the CVII is summed over the growing

season using the following equation:

CVIIð p; yÞ ¼ 100�
X
m

�
Lð p;m; yÞ � L0ð p;mÞP

L0ð p;mÞ

�

(2)

At the same time, survey-based crop production esti-

mates (Y) are normalized by the 2000–2003 mean (Ȳ).

Y 0 ¼ 100� Y

Ȳ
(3)

Our results demonstrate strong positive correlation

between the crop production and the CVII (Fig. 1). At

county- and CRD-levels, 50% of the variance in crop

production can be explained by the CVII. In general, a

positive CVII indicates more vegetative production than

the climatological average and vice versa. In addition,

significant decreases in crop production during 2002,

associated with a large-scale drought (e.g. LeComte and

Cutlip, 2003) are successfully captured by the CVII.

However, the relationship between the CVII and the

production variation is not unique. Counties/CRDs with

near-zero CVII can have a range of crop production.

Overall, however, the CVII does capture a large fraction
Fig. 1. Correlation between production (corn in Illinois and spring wheat

county-level (right panel) and crop-reporting districts (CRD)-level (left panel

normalized as the percent of the 2000–2003 mean.
of the variance in production, which indicates that the

CVII can be used as a possible tool for monitoring

climate impacts upon vegetation.

3.2. CVII versus production at regional scale

The United States was affected by a significant

drought in 1988 and 1989. The drought in 1988 was a

result of a dry winter followed by a dry spring, which

resulted in yield declines of more than 30% in certain

areas (Karrenbrock, 1989). A 30% reduction in winter

wheat yield was noted in Kansas and Nebraska due to

the drought occurred in the early growing season of

1989 (Kogan, 1995). Here, we chose three affected

areas to investigate the relationship between CVII and

production at regional scales (i.e. aggregated over

counties) during these drought periods. In the first

region (IL, MN, MI, IA, IN, and WI), more than 50% of

the crop is corn (by area). In the second region (ND,

MT, MN, and SD), spring wheat is one of the principal

crops (25% by area), while in the third region (KS, OK,

CO, and NE), winter wheat is the principal crop (35%

by area).

Because MODIS was not yet launched during this

drought period, GIMMS LAI data were used to generate

the cumulative CVII in the middle of the growing

season, which is from June to August for corn and

spring wheat states, and from April to June for winter

wheat states. Fig. 2 shows strong positive correlation

between the CVII and production anomaly in all three

regions. In general, more than 60% of the variance in

crop production can be explained by the variation of

CVII. In addition, the corn production decreased over
in North Dakota) and Climate-Variability Impact Index (CVII) at the

). The CVII is summed over the growing season and crop production is
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Fig. 2. Correlation between production and Climate-Variability Impact Index (CVII) at state-levels for corn (A), spring wheat (B), winter wheat (C),

and corn and spring wheat together (D). GIMMS LAI is used as a substitute to generate the CVII. The CVII is accumulated over the growing season

and crop production is normalized as the percent of the mean.
30% and the spring wheat decreased over 40% in 1988,

and the winter wheat decreased up to 30% in 1989. As

before, these results suggest that CVII may be

potentially useful in a large-scale monitoring capacity

as well as at finer scales. It is also interesting to note that

the relationship in corn states is similar to that in spring

wheat states. If the data from these two crops are

combined, the explained variance as well as the

coefficients change only slightly (Fig. 2D), suggesting

that the CVII–production relationship of corn and

spring wheat are almost identical at regional scales.

However, this is not universal as the winter wheat in fact

does have a different CVII–production relationship.

Nevertheless, the result is encouraging in that it

suggests that for certain crop types this relationship

may be more homogenous than would have been

expected. In Section 4, we test whether there is also a

geographic and/or temporal dependence of the relation-

ship by performing independent tests with data outside

of the training set.
3.3. CVII versus production at national scale

At the national scale, we chose four European

countries (England, Ireland, Germany, and France) to

study the relationship between the CVII and crop

production. One of the principal crops in these countries

is wheat, which has the largest harvest area. The normal

growing period of wheat in these countries is from

October to August of the following year. We calculated

the integrated AVHRR-based CVII and production

anomaly for each country from 1982 to 2000. Fig. 3

demonstrates that the LAI-based CVII is positively

related to crop production at the national scale.

Although the coefficients are significant at the 99%

confidence level, the correlation is not as high as at the

local- and state-levels, which suggests a weakening of

the relationship between CVII and crop production with

decreasing resolution. At the country-level, it is likely

not accurate to use one crop type to represent all

vegetation activity because countries contain a more
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Fig. 3. Correlation between wheat production and Climate-Variability Impact Index (CVII) in England (A), Ireland (B), France (C), and Germany

(D). GIMMS LAI (1982–2000) is used as a substitute to generate the CVII. The CVII is accumulated over the growing season and wheat production

is normalized as the percent of the mean.
diverse mix of crop types with a large range in the rates

of physiological development and growth phases by

date. As a result, the satellite signals contain large

variations in the composite of crop anomalies, which is

not comparable with yield information for a single crop.

Furthermore, when we calculate the CVII and produc-

tion anomaly over a large area, the fluctuations tend to

be reduced because the positive variations in a particular

sub-region will cancel negative variations in another

sub-region, which will further weaken the relationship.

Yet, another factor may be the quality of the AVHRR

data series itself. The 1982–2000 data series was

assembled from data from four different satellites:

NOAA-7 (1982–1984), NOAA-9 (1985–1988), NOAA-

11 (1989–1994), and NOAA-14 (1995–2000). The

NASA GIMMS group implemented corrections for

residual sensor degradation and sensor intercalibration

differences (Vermote and Kaufman, 1995; Los, 1998)

and stratospheric aerosols (Vermote et al., 1997) in

developing this data set. Nevertheless, some residual
noise persisted, and as a result CVII variability during

this period may be partially related to non-vegetation

factors.

Overall, however, the results in this section highlight

that the Climate-Variability Impact Index, derived from

both the MODIS and AVHRR LAI, can provide both

fine-scale and aggregated spatial information on

vegetation productivity and may serve as a diagnostic

tool for yield estimation and monitoring.

4. Prediction of production with CVII

The previous section detailed the positive correlation

between the CVII and crop production anomaly at

different locations. This section examines how the

relationship between these two variables can provide

additional information to generate predictions of crop

production from the LAI-based CVII.

Using the monthly 1-km MODIS LAI and produc-

tion estimates from USDA, we fit linear models for the
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Table 1

Linear model between crop production (dependent) and Climate-

Variability Impact Index (independent) at district-level

Unstandardized

coefficients

Standardized

coefficients

t Significance

B S.E. Beta

Model 1

Constant 1.011 0.016 63.238 <0.001

CVII 0.023 0.003 0.723 8.747 <0.001

Model 2

Constant 1.005 0.022 46.622 <0.001

CVII 0.017 0.005 0.467 3.077 <0.001

The first model is generated from 72 samples from Illinois and North

Dakota using both corn and spring wheat. The second model is

generated from 36 corn samples from Illinois.
CVII and production anomaly from 2000 to 2003. The

first model uses 72 samples calculated at the CRD-level

from Illinois (corn) and North Dakota (spring wheat).

The second model uses 36 samples calculated from

Illinois CRDs only. The production anomaly is the

dependent variable and the accumulated CVII over the

growing season is the independent variable. We only

model corn production here because we only have

access to the 2004 production of corn from Illinois and

not the 2004 production of spring wheat from North

Dakota. At the same time in one of the models we

include spring wheat data from North Dakota to see

whether predictor coefficients generated from different

crops significantly affects the estimation ability of the

model. From Table 1, we note that the two models are

similar and the coefficients are significantly different
Fig. 4. Correlation between corn production from model predictions and U

squares). The empty squares are model predictions vs. USDA estimates in 20

and Heidke Skill Score (HSS) are calculated using the equations in Section 4.

samples in both Illinois (corn) and North Dakota (spring wheat). Right panel

Illinois (corn only).
than zero ( p < 0.001). Using these models, the corn

production of 2004 is predicted for the nine crop-

reporting districts in Illinois (Fig. 4). Using the

following equation, we calculated the correlation to

test how closely the model predictions are related with

the USDA estimates:

r ¼
P

ðxi � x̄Þðyi � ȳÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP
ðxi � x̄Þ2

P
ðyi � ȳÞ2

q (4)

Here, xi is the model prediction of CRD i, yi the

USDA estimates of CRD i, and x̄ and ȳ are the mean of

model prediction and USDA estimates, respectively.

Due to the data limitation, only nine CRDs are used

in this prediction. This sample is biased as all the

observations have positive anomalies. Since the

expected sample mean is the population mean, we

use the population mean (which by definition is one) as

a substitute of the sample mean. The result represents

how well the predictions and the estimates are fitted to

the unity line.

In addition, we calculated the Heidke Skill Score

(HSS; Wilks, 1995) to evaluate the relative accuracy of

the model forecasts with respect to a random model:

HSS ¼ C � E

N � E
(5)

Here, C is the number of correct forecasts, N is the

total number of forecasts, and E is the number of

forecasts expected to be correct by chance (which is N/2

in this case). For this case, we choose one (i.e.

climatology) as the threshold to calculate the HSS. By
SDA estimates at nine Illinois crop-reporting districts in 2004 (filled

00–2003 (the training period for the prediction model). Correlation (R)

Left panel is the result of linear model one, which is generated from 72

is the result of linear model two, which is generated from 36 samples in
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Table 2

Linear model between winter wheat production (dependent) and

Climate-Variability Impact Index (independent)

Model Unstandardized

coefficients

Standardized

coefficients

t Significance

B S.E. Beta

Constant 0.977 0.027 35.676 <0.001

CVII 0.016 0.003 0.775 5.751 <0.001
definition, HSS represents the percentage improvement

over a random forecast (Wilks, 1995). For a perfect

forecast, HSS equals 1; for a totally random forecast,

HSS equals 0. For this evaluation, a random forecast

would be correct 50% of the time. Hence, HSS = 0.5

represents a hit rate of 75%.

In general, both models predict positive corn

production anomalies at all CRDs, which is consistent

with the USDA estimates (hence the HSS equals 1). In

addition, both models and USDA estimates show that

the 2004 production is the largest anomaly for each

district (not shown). However, the model predictions

still tend to underestimate the USDA values. Overall

though, the correlation values demonstrate that the

model predictions and the USDA estimates are well

fitted to the unity line. The similar predictions from the

two models again demonstrate that the CVII relation-

ships with corn and spring wheat production are very

similar at regional scales.

While only nine Illinois districts could be used in this

study due to limited availability of USDA estimates, our

predictions are consistent with the USDA estimates and

suggest that the LAI-based CVII is a good predictor for

the crop production. At the same time, some of the data

limitations will be eliminated once more crop estimates

become available in the future; at that point more robust

tests of the predictive capabilities of the CVII will be

possible.

We have demonstrated that the linear model

generated from one study area can be used to predict

the future crop production at the same location. Now we

discuss whether a model generated from one location

can be applied to predict crop production in another
Fig. 5. Correlation between winter wheat production from model predictio

France, and Germany). The linear model generated from US winter wheat st

European countries. Correlation (R) and Heidke Skill Score (HSS) are calcul

1985 to 1990. Right panel is the prediction from 1982 to 2000.
location. Using the linear model generated from the

winter wheat states in the United States, we calculate

winter wheat production in the European countries.

According to the results in Section 3.2, the dependent

variable for the training data is the production anomaly

for each winter wheat state from 1985 to 1990, and the

independent variable is the cumulative CVII from April

to June derived from AVHRR LAI. From Table 2, the

coefficient is significantly different than zero

( p < 0.001). Using this model, the wheat production

from 1985 to 1990 is predicted for the four European

countries (France, Germany, England, and Ireland). We

also use the same model to predict the winter wheat

production for a longer time period, from 1982 to 2000.

To evaluate the model predictions, we use the previous

equations to calculate the correlation and HSS. In

general, the heterogeneous predictions are consistent

with the FAO estimates (Fig. 5). The model predictions

and FAO estimates are closely related to the unity line

for both the short- and long-time periods. In addition,

the HSS shows the model performance represents a 50–

60% improvement over a random model.
ns and FAO estimates at four European countries (England, Ireland,

ates from 1985 to 1990 is applied to calculate the wheat production in

ated using the equations in Section 4. Left panel is the prediction from
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It should be noted that the estimated production

calculated from this model is the anomaly from the

mean, not the absolute production. The climatological

mean is needed to obtain the actual production.

However, even without this information, this model

can potentially provide near real-time, global coverage

of the percentage of the climatological crop production

either gained or lost due to climate variations during the

growing season.

5. Operational tool for agriculture monitoring

The previous sections demonstrated the correlation

between LAI-based CVII and crop production for

various regions. The following examines how the

satellite data may be able to provide an operational tool

for crop growth monitoring. To study the relation

between monthly CVII and growing-season production,

we examine the timing of the relationship between CVII

and crop production. Here, we construct a statistical

model for production: Y ¼ aþ biCVIIi þ m, in which

CVIIi is the Climate-Variability Impact Index in month

i, Y the production anomaly during the study year, a and

bi are the regression coefficients, and m is a regression

residual. This linear equation is examined four times

with different regression selection procedures. In the

ideal model, the monthly CVII time-series are

iteratively added into the model following a forward

selection procedure; in the cumulative model, the

CVII is progressively accumulated into one predictor

for each month; in the chronological model, the CVII

series for each month is added to the model
Fig. 6. Evolution of the R-square of four models as a function of the number o

and North Dakota at crop-reporting district-level. Only significant predictor

from the chronological (solid line), fixed-coefficient (dash line), and cumula

are significantly different from zero. The random R-square increase (dash-dot

coefficient models are statistically significant (at 5% level).
chronologically and the regressions coefficients can

change with the addition of each new predictor; in the

fixed-coefficient model, the CVII time-series are added

in the model chronologically however the regression

coefficients calculated from the pre-existing predictor

variables are fixed.

5.1. Ideal model

To construct this model, the monthly CVII value

most highly correlated with the dependent variable is

the first variable to enter the model. If this regression is

significant, we start to add the next variable with the

largest partial F statistic unless the largest partial F is

not statistically significant (Kleinbaum et al., 1998).

Once we identify all the important predictors, we can

determine which months of the growing season

contribute the most independent information concern-

ing the overall variation of crop production. As such, if

1 month’s CVII value is well correlated with overall

production anomalies but is also well correlated with

other values of the CVII, it may not serve as an

important predictor in that it provides redundant

information already contained in previous predictors.

In addition, the important predictors might be different

for various crop types and study areas. For example, the

most predictivemonths in Illinois andNorthDakota are

June, August, and September. As a result, although this

model does not contain any redundant predictor, it is

not a feasible monitoring tool for cross-crop or cross-

region comparisons. However, the ideal model explains

60% of the variance in crop production (Fig. 6), which
f predictors. Left panel shows the result from the ideal model in Illinois

months are shown—see text for details. Right panel shows the results

tive (dot line) models. Filled markers indicate the monthly coefficients

line) is used as a reference to determine whether the chronological/fix-
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provides the best correlation between the CVII and

subsequent production using the fewest number of

predictors.

5.2. Cumulative model

In the cumulative model, the CVII is progressively

accumulated into one predictor month by month over

the growing season. At any point in the growing season,

the cumulative CVII represents the variations in the

total growth up to that point.

Y ¼ aþ bðnÞ
Xn
1

CVIIn þ m (6)

Note that the regression coefficient, b, is a function of

the number of months, n, and hencewill change over the

course of the growing season. Previous studies reported

a closer relation when cumulative rather than instanta-

neous vegetation indices are used because the accumu-

lation represents the duration of photosynthetic activity

(e.g. Tucker et al., 1980; Pinter et al., 1981). In this

research, we used monthly MODIS LAI products to fit

the linear model between cumulative CVII and crop

production in Illinois and North Dakota. The cumula-

tive model explains 50% of the variance in the crop

production at the end of the growing season (Fig. 6). As

more LAI data are added to the cumulative CVII, the

explained variance does not monotonically increase

until after June. This agrees with previous works that

indicate the performance of the integrated metric is only

optimal over a specific integration period (Atzberger,

1997).

5.3. Chronological model

In the chronological model, the CVII series for each

month of the growing season is added to the model

chronologically. As more independent variables are

added, the coefficients of the pre-existing independent

variables will change. In general, the larger the number

of independent variables in the model, the more the

variance of the dependent variable is explained by

chance. In this manuscript, we used a random model to

check the statistical significance of the chronological

models. The random R-square tells us how much of the

variance in the dependent variable can be explained by

the same number of random independents. At the same

time, while the overall model may explain more

variance than a random one with the same number of

predictors, some of the coefficients for the predictor

variables may not be statistically significant, indicating
they do not provide any additional information. To

identify the important predictors, a partial F statistic is

calculated to test whether the addition of one particular

predictor variable adds significantly to the prediction of

Y achieved using the pre-existing predictor variables.

Fig. 6 indicates that the chronological model

generated from monthly MODIS products can explain

about 70% of the variance of crop production in Illinois

and North Dakota at the CRD-level. In particular, CVIIs

for August and September are statistically significant

predictors, indicating the ideal prediction comes at the

end of the growing season. However, the explained

variance rises above 0.5 three months into the season,

indicating significant predictability even during the

course of the growing season.

5.4. Fixed-coefficient model

Similar to the third model, for this model the CVIIs

are added in the model chronologically. However, the

coefficients of the pre-existing independent variables

are fixed when more variables are added. To do this, the

additional predictor variable is regressed with the

residual of Y instead of Y. Similarly, we used a partial F

test to find the important predictors.

From Fig. 6, the fixed-coefficient models explain less

variance in the crop production compared to the

chronological one. Models derived from GIMMS

LAI data for other regions provide similar results

(see Fig. 7). However, as more remotely sensed data

become available in the growing season, it is easier to

add the latest CVII into the fixed model because the

coefficients of the pre-existing CVIIs do not have to be

recalculated as in the chronological model. Thus, the

fixed model may serve as a better operational tool for

crop monitoring compared with the chronological

model while still explaining about as much variance

during the latter part of the season.

5.5. Application of models for yield prediction

To evaluate how these models work on crop

predictions of out-of-sample production, we used two

sets of remotely sensed data, LAI and NPP, to generate

the chronological and fixed-coefficient models based on

corn production in five states, Minnesota, Michigan,

Iowa, Indiana, and Wisconsin. Then, we apply the

models to estimate the corn production in Illinois from

1982 to 1999. To get a robust evaluation, longer time

period GIMMS products are used as a substitute

because a 5-year cover of MODIS products cannot

provide enough statistical information.
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Fig. 7. The evolution of R-square of the chronological (squares) and fixed-coefficient (diamonds) models using GIMMS LAI (A) and NPP (B). The

models are generated from five corn states, MN, MI, IA, IN, and WI, using the data from 1982 to 1999. Filled markers indicate the monthly

coefficients are significantly different from zero. The USDA estimates of corn production in Illinois from 1982 to 1999 are then compared with the

LAI model predictions (C) and NPP model predictions (D).

Fig. 8. Relationship betweenmonthly GIMMSLAI and GIMMSNPP

from 1982 to 1999 in Illinois and Minnesota.
As expected, the fixed-coefficient models explain

less variance in the corn production compared to the

chronological one (Fig. 7A and B). In addition, models

generated from NPP explain less variance in corn

production than those from LAI data. The model

predictions in Illinois are highly correlated with the

USDA estimates (R > 0.8) from 1982 to 1999 for both

the chronological model and the fixed-coefficient

model. Although the Net Primary Production contains

information about both vegetation properties and

climate variations, the models generated from the

NPP data are not as good as the models from the LAI

data, at least for this case of corn yield prediction. We

then compared the relationship between the monthly

NPP and LAI from 1982 to 1999 in Illinois and

Minnesota. Fig. 8 shows that NPP saturates as the LAI

becomes larger. Thus, the NPP tends to plateau during
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the summer and contributes less to the variance in

yields, while the LAI itself shows larger variability and

can provide more specific information regarding the

variations in vegetation productivity.

6. Conclusions

In this paper, the Climate-Variability Impact Index,

defined as the monthly contribution to anomalies in

annual growth, quantifies the percentage of climatolo-

gical production either gained or lost due to climatic

variability in a given month, with positive CVII values

indicating production greater than the climatological

average. Both fine-scale and aggregated information on

vegetation productivity for various crop types can be

obtained by examining the integrated CVII over the

growing season. In general, about 60% of the variance

in crop production could be explained by variations in

CVII. The CVII is best correlated with crop production

at regional scales when the variation of the crop

production is large enough, e.g. there is homogenous

behavior over a relatively large study area. At local

(county-wide and smaller) scales, individual fluctua-

tions in the remotely sensed data introduce excessive

noise into the aggregate field; at much coarser

resolution (state-wide and larger) the linear relationship

again weakens due to regional differences in seasonal

climate variations between disparate locations.

Once the relationship between the CVII and crop

production is developed based on the historical record,

the model can be applied to produce homogeneous yield

forecasts (in which the model is trained and tested for a

particular region), and heterogeneous yield forecasts (in

which the model is trained in a particular region and

applied to a different region). We used correlation and

Heidke Skill Scores to evaluate how well the model

performs on out-of-sample predictions. Results suggest

that the CVII-based empirical model provides sig-

nificant predictability for both the sign and magnitude

of production variations over the training regions.

Furthermore, the model derived using data from the

United States also provides predictability for crop

production in several European counties, which

suggests that the single-crop CVII–production relation-

ship may be quasi-independent of location. In addition,

for certain crop types such as corn and spring wheat, the

CVII–production relationship appears to be crop-

independent as well (although this does not hold for

winter wheat, for instance). Both of these results are

encouraging because they suggest that the model may

be applicable for regions even when historical produc-

tion data are not available. As a result, the CVII-based
model can provide near real-time, global coverage of

the percent change in the climatological crop yield

(either gained or lost) in both types of forecast

scenarios.

Lastly, the predictive value of the CVII is assessed by

comparing the estimated production as a function of

growing-season months. Several models were devel-

oped towards this goal. The ideal model, which contains

no redundant predictors and provides the best correla-

tion between CVII and production, is not a good

monitoring tool for cross-crop or cross-region compar-

isons because the important predictors differ with crop

types and study areas. The cumulative and chronolo-

gical models could be potential tools for crop

monitoring/forecast at various locations; here, we show

that the chronological model provides satisfactory

predictions before the end of the growing season,

however both models require a matrix of coefficients

that change with each subsequent CVII value added

during the course of the growing season. A fixed-

coefficient model, in which the coefficients from

previous months remain constant as additional data is

included in the model, serves well for operational crop

monitoring. The results presented here also indicate that

NPP is not as good a predictor as LAI, at least for corn

production prediction in Illinois. One possible reason of

this might be the saturation of the NPP during the high

growth period. Overall, the high temporal and spatial

resolution as well as the availability of the timely access

to the needed MODIS products makes CVII a useful

tool in near real-time crop growth monitoring.
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