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[1] MODIS-based leaf area index (LAI) and normalized difference vegetation index
(NDVI) are used to examine detailed information regarding actual growing season and
total annual production for various regions. Overall, MODIS LAI has larger variability
and demonstrates more information regarding the evolution and structure of the seasonal
vegetation characteristics. In contrast, the NDVI saturates around 0.7 and tends to
overestimate the growing season in regions where it is already long. Next, a climatic
impact index (CII) is derived to provide additional information regarding the potential
sensitivity of vegetation to changes in climatic variables by accounting for the length of
growing season. By normalizing the growth rate to the biome-average growth rate, this
index can identify fractional loss of annual production, as opposed to the absolute loss
which may be strongly weighted by the overall growth rate for different ecosystems. Our
index provides a quantitative framework for assessing the importance of the length of the
growing season in determining climatic vulnerability. In the last part of the paper, we
use the long time series AVHRR products as a substitute for the MODIS products and test
the temporal characteristics of the CII. Major drought events are well-captured by the CII,
suggesting potential use as a monitoring and evaluation tool. Furthermore, the strong
positive correlation between the CII and the vegetation condition index (VCI) suggests
that the CII can quantitatively identify the effects of climatic variability upon vegetation
activity. INDEX TERMS: 1620 Global Change: Climate dynamics (3309); 1640 Global Change: Remote

sensing; 1812 Hydrology: Drought; 3322 Meteorology and Atmospheric Dynamics: Land/atmosphere

interactions; KEYWORDS: MODIS, leaf area index, growing season, climate variability, vegetation monitoring
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1. Introduction

[2] Global vegetation is strongly affected by drought,
especially when it is persistent. To compare droughts
spatially and temporally, a standardized index of drought
is needed, but disagreements about defining drought have so
far made this difficult.
[3] Drought indices have previously been derived from

precipitation, expressed as the duration or intensity of
droughts [Wilhite and Glantz, 1985]. On the basis of only
precipitation, these indices work well only for specific
regions, however the definition of droughts is highly

variable globally [Heim, 2002]. Palmer [1965] combined
temperature and precipitation to develop a set of indices that
can measure both the short- and long-term moisture con-
ditions. The Palmer indices are widely used in the United
States [Hu and Willson, 2000]. However, they are limited to
semiarid and arid climates, where local precipitation is the
primary source of moisture [Guttman, 1991; Guttman et al.,
1992; Hayes et al, 1999].McKee et al. [1993] developed the
standardized precipitation index (SPI) that can identify
drought or wet events at a given temporal scale for any
station that has historic rainfall data. The SPI compares
droughts in different regions better than the Palmer indices
do [Guttman, 1997]. However, the SPI is based on knowl-
edge of the climatology of the study region, and one
assumption of the SPI is that all locations have the same
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frequency of severe and extreme drought [Hayes et al.,
1999].
[4] Another type of drought index, which examines the

impact of drought upon vegetation directly, is computed
from the normalized difference vegetation index (NDVI)
data provided by the advanced very high resolution
radiometer (AVHRR) satellite [Kogan, 1990, 1995; Peters
et al., 2002]. The vegetation condition index (VCI) can
detect drought density, duration, and effect on vegetation
[Kogan, 1990, 1995]. It is widely applied in real-time
drought monitoring over the world, and is a potential
universal index. Peters et al. [2002] developed a stan-
dardized vegetation index (SVI) for drought monitoring.
Their results demonstrate that the SVI can provide a near-
real-time indicator of vegetation conditions. One limitation
of these NDVI-based drought indices is that NDVI is
usually saturated at densely vegetated regions [Carlson
and Ripley, 1997; Paltridge and Barber, 1988], which will
decrease the quality of the indices during high-growth
periods.
[5] In addition to NDVI, the leaf area index (LAI) is a

potential source for generating a universal drought index.
The LAI is defined as the one-sided green-leaf area per unit
ground area in broadleaf canopies and as the projected
needleleaf area in coniferous canopies [Myneni et al.,
2002]. The LAI is a valuable criterion of vegetation pro-
duction and is used as a key parameter in most ecosystem
productivity models and global models of climate, hydrol-
ogy, biogeochemistry and ecology [Sellers et al., 1997].
Furthermore, by definition, the LAI represents the growth
mass itself and is directly related to energy and mass
exchanges.
[6] Presently, both the NDVI and LAI have a strong

legacy using AVHRR measurements. Unfortunately, the
AVHRR data is not ideally suited for vegetation monitoring

applications because of the lack of precise calibration, poor
quality of geometric registration, and difficulties in cloud
screening [e.g., Goward et al., 1991; Sellers et al., 1994].
Unlike the AVHRR, the radiometric and geometric proper-
ties of the Moderate Resolution Imaging Spectroradiometer
(MODIS) provide a substantially improved basis for such
studies [Justice et al., 1998; Running et al., 1994; Zhang et
al., 2003]. Given the high temporal and spatial resolution of
the MODIS NDVI and LAI, and their improved atmospheric
correction and cloud screening, they are qualified for
analyzing vegetation activity such as seasonal and annual
growth.
[7] In this paper, we quantify the climatological charac-

teristics of the MODIS LAI and NDVI data sets. From
these, we develop a climatic impact index (CII), which can
provide additional information regarding the sensitivity of
certain regions to changes in climatic variables, such as
droughts. Data for this research is introduced in section 2.
The characteristic and evaluation of the NDVI and LAI are
presented in section 3, followed by some comparisons of
their results. The CII is discussed in section 4. The temporal
characteristics of the CII are shown in section 5 using the
long time series of AVHRR data, together with some
discussion and concluding remarks.

2. Data

2.1. MODIS IGBP Land Cover Map

[8] The MODIS land cover classification product iden-
tifies 17 classes of land cover in the International Geo-
sphere-Biosphere Programme (IGBP) global vegetation
classification scheme [Friedl et al., 2002]. This scheme
includes 11 classes of natural vegetation, 3 classes of
developed land, permanent snow or ice, barren or sparsely
vegetated land, and water (Figure 1). The latest version of

Figure 1. Global MODIS IGBP land cover map (only with major classes). See color version of this
figure in the HTML.
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the IGBP land cover map at 16-km resolution is used to
help identify how climatic variations affect biomes.

2.2. MODIS LAI

[9] The retrieval technique of the MODIS LAI algorithm
is as follows. For each land pixel, given red and near-
infrared reflectance values, along with the Sun and sensor
angles and a biome-type designation, the MODIS LAI
algorithm uses a model-generated lookup table to identify
likely LAI values corresponding to the input parameters
given above. This radiative transfer–based lookup is done
for a suite of canopy structures and soil patterns that
represent a range of expected natural conditions for the
given biome type. The mean value of the LAI values found
within this uncertainty range is taken as the final LAI
retrieval value. In certain situations, if the algorithm fails
to localize a solution either because of biome misclassifi-
cation/mixtures, high uncertainties in input reflectance data
or algorithm limitations, a backup algorithm is utilized to
produce LAI values based upon the empirical relation
between NDVI and LAI [Myneni et al., 1997].
[10] For this analysis, the latest version of MODIS global

LAI from February 2000 through December 2003 at 16-km
resolution was taken to characterize the global vegetation
activity, such as seasonal and annual production. This
monthly data set was generated using Collection 4 MODIS
LAI/FPAR 8-day products which are distributed to the
public from the Earth Resources Observation System
(EROS) Data Center Distributed Active Archive Center
(EDC DAAC). The 8-day products also provide quality
control variables for each LAI value that indicate its
reliability. To generate the monthly global data set, only
the LAIs with reliable quality are composited over each
month and then averaged to coarser spatial resolution. The
monthly global products at 1- and 4-km resolution with
sinusoidal (SIN) projection are available at Boston Univer-
sity (W. Yang et al., Analysis of global MODIS leaf area
index and fraction absorbed PAR time series data from
February 2000 to December 2003, submitted to Journal
Geophysical Research, 2004) (hereinafter referred to as
Yang et al., submitted manuscript, 2004). In this paper,
the 4-km data are averaged over four by four pixels to
generate the 16-km MODIS global LAI. For convenience,
we will refer to this product as simply ‘‘LAI’’; other
LAI products derived from different data sources will be
identified by their relevant data source. This will also be the
case for the MODIS NDVI data (see below).

2.3. MODIS NDVI

[11] The MODIS NDVI is a normalized ratio of the near-
infrared (841–876 nm) and red (620–670 nm) reflectance.
MODIS NDVI is currently being produced at 16-day
intervals at various spatial resolutions [Huete et al., 1994,
1997]. The products are generated from the level 2 daily
surface reflectance products which are corrected for molec-
ular scattering, ozone absorption, and aerosols [Vermote et
al., 2002]. The 1-km NDVI is aggregated from 250- and
500-m NDVI products.
[12] In this study, we used global MODIS NDVI from

March 2000 through September 2003 at 2-km resolution
(75% are the latest version). The MODIS LAI and NDVI
are reported at different spatial and temporal resolutions. To

make these two products comparable, the NDVI is aggre-
gated into 16-km resolution sets and then reprojected on the
sinusoidal (SIN) projection. The difference and correlation
between NDVI and LAI are discussed in section 3.

2.4. Climate Data

[13] We used the Climate Prediction Center (CPC) merged
analysis of precipitation (CMAP) to identify global patterns
of ecologically significant water surplus and deficit. The
CMAP data are monthly precipitation (mm/d), from 1979 to
2002 at 2.5� spatial resolution. The data are produced by
merging gauge observations, precipitation estimates from
five different satellite-based algorithms, and output from
numerical model predictions [Xie and Arkin, 1997]. For this
work, the CMAP will be used to generate long time series of
SPI and demonstrate the relationship between rainfall and
vegetation activity in general.

2.5. AVHRR LAI and NDVI

[14] AVHRR LAI is used as a substitute for the MODIS
LAI to examine the temporal characteristics of vegetation
activity for longer time periods. The AVHRR LAI is derived
from AVHRR NDVI using radiative transfer models
[Myneni et al., 1997]. As mentioned, it is the AVHRR
NDVI that is used to generate the Vegetation Condition
Index [Kogan, 1990 and 1995]. The relationship between
CII and VCI is discussed in section 5.
[15] Two sets of AVHRR data, Pathfinder and GIMMS,

are used in this paper. The AVHRR Pathfinder NDVI and
LAI are monthly data from 1982 to 2000 at 16-km resolu-
tion, produced by Boston University. The Pathfinder data
are reported at Goode’s projection, which is different from
MODIS data. To make these two products comparable, the
Pathfinder data are reprojected on the sinusoidal (SIN)
projection. AVHRR Global Inventory Modeling and Map-
ping Studies (GIMMS) NDVI is monthly data from 1981 to
2002 at 0.25� resolution, produced by NASA GIMMS
group. Several important improvements are made in the
following steps: maximum value composition bimonthly;
correction for residual sensor degradation and sensor
intercalibration differences [Vermote and Kaufman, 1995;
Los, 1998]; correction of stratospheric aerosols [Vermote et
al., 1997]; correction of cloud cover; and correction for
solar zenith angle and viewing angle effects [Rosborough et
al., 1994].

3. Characteristic of MODIS LAI and NDVI

[16] The principal mode of vegetation variability is gen-
erally associated with intra-annual seasonality. The season-
ality of leaf mass or vegetation production can be
quantitatively described as a function of time, such as
symmetrical sine curve [Waggoner, 1974] or Gaussian
distribution [Lieth, 1970]. To examine the seasonality in
the remote sensing products, let X( p, m, y) be the vegetation
index (LAI or NDVI) of pixel p at month m year y. The
multiyear average vegetation index of month m is defined as

X p;mð Þ ¼ 1

Ny

X2003

y¼2000

X p;m; yð Þ; ð1Þ

where Ny is the number of years (Ny = 3 or 4). Because
vegetation growth varies greatly between different ecosys-
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tems, spatial aggregation in land cover classes is necessary.
For a given land cover type l, let Nl be the total number of
the pixels for that land cover type, then the biome-specific,
spatial-average climatological index X(l, m) is calculated as

X l;mð Þ ¼ 1

Nl

X

p

X p;mð Þ: ð2Þ

[17] Since the purpose of this study is to find an index
that can demonstrate vegetation sensitivity to climate vari-
ability, we are not interested in some land cover classes,

such as permanent wetlands, and developed lands. These
classes are excluded in the following analysis. Furthermore,
to alleviate the opposite seasonality of the two hemispheres,
grid points in the southern high latitudes (>23�S) are shifted
in time by 6 months. The climatological MODIS LAI and
NDVI for the major land cover classes are shown in Figure 2.
Most classes have a significant growing peak during the
summer, with the exception of evergreen broadleaf forest;
its vegetation index remains high (approximately 5.0 for
LAI and 0.7 for NDVI) for the whole year. Other forests
have Gaussian distributions centered in hemispheric summer
with a maximum LAI/NDVI around 5/0.7 and a minimum

Figure 2. Climatological monthly MODIS vegetation index for major land cover classes defined by
International Geosphere Biosphere Programme (left y axis shows LAI, and right y axis shows NDVI).
The x axis represents the calendar month. For Southern Hemisphere, high-latitude dates (>23�S) are
shifted by 6 months to account for the shift in hemispheric seasons.
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LAI/NDVI around 1/0.3. The decrease of evergreen needle-
leaf forest in winter is not surprising when considering the
snow cover, which hides the actual vegetation growth [e.g.,
Tian et al., 2004]. The maximum LAI/NDVI in arid and
semiarid ecosystems (shrublands, savannas, grasslands) is
about 2/0.4, much less than the forests. In sum, the MODIS
LAI/NDVI can quantify spatial differences between produc-
tivity of ecosystems as well as seasonal variations in each
ecosystem. However, the variations in NDVI are much
smaller than LAI, especially over high-growth regions when
the NDVI saturates around 0.7. In particular, the NDVI in
forest regions tends to plateau during the summer, while the
LAI shows more variability.
[18] AVHRR NDVI has been applied to examine the

growing season of different ecosystems already, using
specific NDVI thresholds [e.g., White et al., 1997] or
backward looking moving averages [Reed et al., 1994]. In
this paper, we use threshold values based upon the maxi-
mum and minimum monthly MODIS vegetation index for
each land cover type to define the growing seasons. Let T(l )
be the threshold of land cover l. Any monthly grid point
index larger than the biome-specific T(l ) indicates the grid
point for that month is part of the growing season. As
shown in Figure 2, the evergreen broadleaf forest has high
indices throughout the year. Its growing season is set to
12 months and starts in January. For all other land cover
types, we define the threshold itself as:

T lð Þ ¼ Xmax l;mð Þ � Xmin l;mð Þð Þ=10þ Xmin l;mð Þ ð3Þ

[19] It should be noted that in northern hemisphere, snow
coverage will affect the vegetation signals, especially the
minimum LAI/NDVI during winter. This will lower the
biome-average threshold and extend the length of
the growing season, which is more common in high-latitude
forests. According to Yang et al. (submitted manuscript,
2004), about 30% of the high-latitude LAI (> 40�N) is
affected by this snow effect during the winter. In order to
alleviate the effects of snow, we have modified our meth-
odology so that we only use the minimum LAI from
nonsnow cover periods to calculate the growing season
for high-latitude forests.
[20] Occasionally, the climatological LAI/NDVI profiles

for a given pixel may show a bimodal curve, which
indicates more than one growing season separated by
months when the LAI/NDVI is smaller than the threshold.

Figure 3 shows all pixels with more than one growing
season. They are concentrated along the Eastern Africa
coast, east China coast, and the Himalayas. The eastern
China signals are highly affected by crop cycles, where
double or triple cropping is common and the winter wheat is
usually harvested around June [Frolking et al., 2002]. This
agrees with LAI signatures in which there is a decrease in
June in all four years. Most continental pixels (97% from
LAI; 96% from NDVI) have only one growing season. To
make the later analysis easier, for the small fraction of pixels
with more than one growing season, those with two grow-
ing seasons separated by only one month are joined into one
growing season (to erase the effects from crop cycling).
Otherwise, we chose the longer one or, if the growing
season lengths are equal, we choose the one which includes
the maximum growth month.
[21] Figure 4 shows the length of the growing season (i.e.,

the period for which the LAI/NDVI value is above the
respective threshold for that biome type) and the start month
of the growing season for each grid point (the month at
which the LAI/NDVI value first goes above the threshold
for that biome type). On a continental scale, Europe and
South America have long growing seasons, up to 12 months,
most of which start from November, December, or January.
In Western Europe (mainly in France) some of the 12-month
signal is due to the presence of evergreen forests. In
addition, the croplands also have long growing seasons
due to crop rotations. Winter crops such as winter rye are
sown during late September or early October and germinate
within a month [Chmielewski, 2003]. Although the anthesis
of winter crops may start in spring at some regions, aerial
biomass shows additional growth during the winter [David
et al., 2003], which will affect the satellite signals during
this time and extends the growing season compared with
similar biome regions. In contrast, north Africa has short
growing seasons on average. In addition, from the Sahel to
the central evergreen forests, the length of the growing
season increases from one to 12 months, while the start of
the growing season changes from August to January. Little
or no vegetation activity is found in the Sahara desert,
central southwest Asia (CSWA), center Australia, and
Tibet.
[22] The NDVI and LAI estimates mainly agree with each

other at continental scales. However, difference maps
between the growing season lengths indicate that the NDVI
tends to overestimate the growing season length in crop-

Figure 3. Pixels with more than one growing season generated from 16-km MODIS vegetation index.
(left) MODIS LAI and (right) MODIS NDVI.
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lands and forests (not shown). In addition, difference maps
of the start month indicate these regions also show earlier
start dates in the NDVI data (not shown). In general these
regions correspond to those with long growing seasons,
suggesting that the estimate of the growing season in these
regions starts earlier and lasts longer when using the NDVI
results. Both Figure 2 and previous studies [e.g., Gitelson,
2004] suggest that because NDVI approaches saturation

asymptotically under conditions of moderate-to-high above-
ground biomass, the saturation during the growing season
will artificially lower the maximum value and hence the
threshold in equation 3. As a result, the growing season
estimated from NDVI extends longer and starts earlier. On
the other hand, the larger variance in LAI can identify the
variability during dense-growth periods and generate more
accurate information on growing season.

Figure 5. The total annual growth calculated as the sum of the 12-month MODIS vegetation index for
each grid point at 16-km resolution. (left) LAI and (right) NDVI. See color version of this figure in the
HTML.

Figure 4. The length of the growing season in months and the start month of the growing season,
generated from the MODIS products for each grid point at 16-km resolution. (a) Length of the growing
season from MODIS LAI; (b) length of the growing season from MODIS NDVI; (c) start of the growing
season from MODIS LAI; (d) start of the growing season from MODIS NDVI. See color version of this
figure at back of this issue.
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[23] The annual vegetation growth is represented by the
12-month cumulative vegetation index (Figure 5). In both
data products, evergreen broadleaf forests in South America
and Africa have the maximum vegetation growth, while
deserts in Sahara, CSWA, and Tibet have the minimum
growth. The high latitudes in Asia have a north-south
gradient of growth from 40N to 80N with a maximum
growth band around 60N. From north Africa to south
Africa, the growth increases from a minimum near the
Sahara and reaches a maximum in the central forests, then
descends back gradually again. Interestingly, the region
between the Sahara desert and the central forest in Africa
has an overall annual production similar to the west center
of Europe, but the growing season in Africa is much shorter
than the west center of Europe (see Figure 4); this result
suggests that Africa has much higher productivity during its
growing season and therefore may be more vulnerable to
climatic variability during the peak growing months. This
sensitivity will be quantified below.
[24] In general, though, at a continental and global scale,

both the MODIS LAI and NDVI can identify the vegetation
activity for different ecosystems. These MODIS products
provide detailed information such as total annual production
and actual growing season for any given location. However,
the MODIS LAI has larger variability and can provide more
specific information regarding the evolution and structure of
the seasonal vegetation characteristics at a given grid point.
On the other hand, the NDVI saturates around 0.7. It
therefore tends to overestimate the growing season in
regions where it is already long, especially those with
croplands; in addition, it tends to overestimate the total
growth in areas with minimal production, and to underes-
timate the growth in productive regions.

4. Characteristics and Evaluation of the Climatic
Impact Index

[25] The previous section detailed the seasonal and
annual growth for various regions based upon remotely
sensed data from MODIS. This section examines how the
relation between these values can provide additional infor-
mation regarding the sensitivity of certain regions to poten-
tial changes in climatic variables. To do this, we derive a
Climatic Impact Index (CII) for each pixel. For a given pixel
p, let M( p) be the length of the growing season and M(l ) be

the average length of growing season for that land cover.
The index CII( p) is then calculated as

CII pð Þ ¼

P12

m¼1

X p;mð Þ=M pð Þ

P12

m¼1

X l;mð Þ=M lð Þ
: ð4Þ

[26] As a dimensionless number, the CII is the normalized
growth rate in the growing season for each pixel, with the
numerator representing the growth rate for that pixel and the
denominator representing the average growth rate for its
respective land cover type. By normalizing the growth rate
with the biome-average growth rate, this index can identify
the fractional amount of annual growth produced during the
growing season, as opposed to the absolute amount which
may be strongly weighted by the overall growth rate for
different biome types. A CII around one indicates the
growth rate of that pixel is similar to the average growth
rate for its biome type. A CII larger than one suggests more
than the biome-average growth is concentrated in the
growing season. For these pixels, a one month loss of
growth in the growing season will result in greater overall
loss in the annual growth compared with pixels of similar
biome type, suggesting grid points with higher CII values
may be more vulnerable to climatic variability during the
growing season. Because the time period of MODIS prod-
ucts is too short to generate a climatological profile, we are
using the biome-type spatial average as a substitute for the
grid point time average. As more temporal MODIS products
become available in the future, it will be possible to use the
grid point time average as opposed to the biome-type spatial
average to calculate the CII (see below).
[27] Figure 6 shows the grid point CII values as derived

from the LAI and NDVI data. Over most of the globe, the
index is below 1.5, indicating average growth rates relative
to the given biome types on a broad scale. However, there
are interesting geographic variations. Europe and South
America are the least sensitive continents. In contrast,
regions surrounding the deserts in Sahara, CSWA, and Tibet
tend to have extremely high CII values. Because NDVI
values saturate at high productivity, the CII generated from
NDVI generally shows smaller values when compared with
those from LAI due to the fact that the growing season is

Figure 6. The climate impact index for each grid point at 16-km resolution (left) from LAI and (right)
from NDVI. Solid boxes in Figure 6 (left) are sample regions chosen for Figure 7, and dashed boxes are
sample regions chosen for Figure 10. See color version of this figure in the HTML.
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artificially longer and the total growth itself is artificially
lower. Despite these differences, though, both products
indicate that in the extremely sensitive regions like the
Sahel, the total annual growth is highly concentrated in a
relatively short growing season. In this case, 1 month loss of
growth due to climatic variability during the growing season
will result in a large overall loss in annual growth. In
contrast, in the less sensitive regions like Europe, the total
annual growth is evenly distributed in a longer growing
season. One month loss of growth during the growing
season in Europe may result in less loss in annual growth
because of possible compensation in later months.
[28] These differences can be demonstrated by calculating

the normalized spatial-average vegetation index for various
regions (Figure 7). To eliminate the effect of timing of the
growing seasons on the spatial average, we shifted the
maximum growth months for each grid point to July, thereby
centering the seasonal cycle upon July. We then calculated
the area-average growth for each month. This allows us to
focus on the average widths of the curves. If the area-average
seasonal cycle is calculated according to the calendar year,
the area-average curves in regions with strong spatial gra-
dients in start dates tend to be artificially broader. Because of
the shift in the seasonal cycle, the numbers along the x axis
are no longer the real month, but instead indicate the number
of months from the maximum growing peak. In addition, to
better compare regions with different overall growth rates,
the monthly vegetation indices (NDVI and LAI) are next
normalized by the total annual production so that the y axis
represents the fraction of the total annual growth.
[29] Samples are chosen from extremely sensitive regions

like the Sahel, moderately sensitive regions like the United
States and east China, and normal or nonsensitive regions
like central Europe (solid boxes in Figure 6). All normalized
spatial-average LAI/NDVI follow Gaussian distributions.
However, Africa is represented by the curve with the largest
amplitude and the smallest width, producing a narrow,
peaked evolution. Europe’s curve has the smallest amplitude
and the broadest width. From the LAI curve, it can be seen
that a 1-month loss of growth during the peak of the

growing season would result in more than a 20% loss in
the overall annual growth in Africa while resulting in less
than a 15% loss in the overall annual growth in Europe; for
longer climatic failures, two consecutive months of lost
growth during the growing season would produce approx-
imately a 35%–40% loss in the overall annual growth in
Africa while producing only a 20%–25% loss in Europe.
Although the results of NDVI have similar sequences as
those of LAI, the variations of NDVI are much smaller
because of the saturation. Overall, we see here that the CII
metric, which isolates regions with intense growth over
short periods, can effectively highlight those regions which
may be more vulnerable to climatic variability during the
growing seasons, when variability will have a larger impact
upon total growth than during other times of year.
[30] To see whether the CII is related to interannual LAI

variability at given locations, we use long time series
GIMMS LAI as a substitute for MODIS LAI and compare
the grid point CII values with the underlying variance of
annual and growing season vegetation activity (Figure 8). In
general, for both the annual LAI and the growing season
LAI, the larger the variance in vegetation growth, the higher
the CII is. In addition, regions in Africa, on average, have
the largest CII and LAI variance, in agreement with the
maps shown earlier. However, the relationship between CII
and interannual variance is not one to one. For instance, grid
points with the same variance in annual (or growing season)
LAI can have very different CII values. However, even in
these cases, the CII can provide an additional level of
information by targeting those regions in which the vege-
tation variability is highly concentrated within a short set of
growing season months and therefore may be more closely
tied to climate variability over a particular time period.

5. Summary and Discussion

5.1. Summary

[31] The MODIS NDVI and LAI can quantify spatial
differences between productivity of ecosystems as well as
seasonal variations within ecosystems. By examining the

Figure 7. Normalized climatological sequence for 50 � 50 samples chosen from Africa, east Asia,
Europe, and North America. Refer to the solid boxes in Figure 6 for the detailed locations. (left) LAI and
(right) NDVI. The y axis is the percentage of the annual production. By shifting all the maximum growth
months to July, the x axis represents the number of months (x - 7) apart from the maximum growth peak.
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growing season and annual production, MODIS vegetation
indices can provide detailed information on vegetation
activity globally. At continental scales, the MODIS NDVI
and LAI agree with each other with regard to growing
season characteristics: Europe and South America have long
growing season, up to 12 months; north Africa has a much
shorter growing season. However, the LAI has better quality
than the NDVI data, especially for high-growth regions. The
saturation of NDVI in these regions artificially lowerers the
threshold resulting in an overestimation of the growing
season length and an earlier start date.
[32] Using derived characteristics of intraseasonal vege-

tation activity, a Climatic Impact Index is generated from
the MODIS NDVI and LAI, which identifies regions like
the Sahel that are sensitive to climatic change during the
growing season such as droughts. Defined as the normal-
ized growth rate in the growing season, the higher the CII,
the larger the fraction of annual production that is concen-
trated in a growing season month, which indicates that in
these regions overall annual growth is more sensitive to
climatic variability during these short but high-growth
periods. This sensitivity of the overall annual growth to
climate variability during the growing season is captured by
global maps of CII presented here. In addition, this sensi-
tivity can be seen in the normalized spatial average values
of MODIS LAI, which indicate that Africa can lose over
20% of the overall annual growth from a single 1-month
loss of growth during the peak of the growing season. In
contrast, Europe loses less than 15% of its annual growth
from a 1-month loss during the peak growing season.
Similar results are found when using NDVI as the basis
for the CII, however because NDVI values saturate at high
productivity, the CII generated from NDVI tends to under-
estimate the intraseasonal and interannual variability and
hence the vegetation sensitivity.
[33] Because of the limited availability of the MODIS

products, only 4 years of LAI could be used in this study so
only the spatial attributes of CII are addressed in this paper.
These limitations can be eliminated once more temporal
MODIS LAI becomes available in the future. As an

example, we use coarse resolution GIMMS LAI as a
substitute of MODIS LAI and find that the CII in fact does
provide information about the interannual variance in the
vegetation growth for the underlying grid point. Below we
discuss additional utility of the CII given longer time series
data.

5.2. Discussion

[34] In this paper, a quantitative index was introduced to
identify those regions that are particularly susceptible to
vegetation loss due to climatic variability during the grow-
ing season. In addition to its use as a diagnostic tool, given
the high spatial and temporal resolutions, this index can also
be used for real-time monitoring, yield estimations, and
climatic impact diagnosis. To see how the CII can be used
for agricultural monitoring, we used AVHRR Pathfinder
LAI to generate a long series of the CII. For a given pixel p,
let A( p) be the climatological annual LAI at month m and
T(p) be the climatologically annual LAI, then the index
CII(p, m, y) at month m year y is calculated as:

CII p;m; yð Þ ¼ 100� X p;m; yð Þ �M p;mð Þ
A pð Þ ð5Þ

[35] In this formulation, the CII quantifies the percentage
of the climatological annual grid point production either
gained or lost due to climatic variability in one month.
Figure 9 shows that the CII can capture historic drought
events, such as the severe drought in Africa in 1984, which
started in southern Africa and lasted through August,
resulting in the lowest rainfall in 40 years in some areas
[LeComte, 1985]; the national drought in United States in
1988, which was the result of a dry winter in 1987–1988
followed by a dry spring and produced decreased yields in
certain areas of over 30% [Heim, 1988; Johnson et al.,
1993; Kogan, 1995]; and the global drought in 2000, which
brought drought to North and East Africa, the Middle East,
central Asia, and parts of North America [LeComte, 2001].
During these serious drought years, variations in the Cli-
matic Impact Index indicate that there was a loss of up to

Figure 8. Correlation between CII and standard deviation of GIMMS LAI: (left) annual LAI and (right)
growing season LAI. Nonforest vegetation samples are chosen from Africa (7�–12�N, 12�–17�E), east
Asia (32�–37�N, 112�–117�E), Europe (52�–67�N, 17�–22�E), and North America (40�–45�N, 104�–
109�W). CII are calculated from long time series average of GIMMS LAI (from 1982 to 2002). The
corresponding symbol with black edge is the sample average for each region. See color version of this
figure at back of this issue.
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50% of the total annual production in the impacted regions.
Furthermore, the CII can also identify regions with an actual
surplus of vegetation growth. For instance, during 1984,
although the southern portion of the Sahel suffered severe
decreases in vegetation growth, the region just to the south
had large increases in growth, which could feasibly supply
food to adjacent drought-stricken regions. Defined as the
percentage of the annual production, then, the Climatic
Impact Index can be used in real-time to estimate overall
crop loss/gain during a particular month and may serve as a
famine mitigation tool.
[36] To further investigate how the CII can serve as a

possible indicator of climate-induced food loss, the Stan-

dardized Precipitation Index (SPI) is used to quantify the
relationship between vegetation production and climate
variables. The SPI is calculated from the monthly CMAP
precipitation data from 1981 to 2000 at each grid point
[McKee et al., 1993]. Previous studies demonstrate that the
ecosystems in arid and semiarid climate regimes are sensi-
tive to seasonal precipitation anomalies [Nicholson et al.,
1990; Lotsch et al., 2003]. In this paper, the 6-month SPI is
used for the subsequent analysis. For each grid point (which
is at 2.5� � 2.5� resolution) the SPI anomaly is estimated.
The corresponding LAI value L( p, m, y) is found by
averaging all the LAI pixels whose locations are within
the SPI grid cell.

Figure 9. The temporal climatic impact index, representing the fraction of climatological annual
production either gained or lost for each pixel at a 16-km resolution. (a) August 1984. (b) August and
September 1984. (c) June 1988. (d) June and July 1988. (e) August 2000. (f ) August and September
2000. The climatological annual production is averaged over the AVHRR Pathfinder LAI from 1982 to
2000. See color version of this figure at back of this issue.
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[37] For each sample, the standardized anomaly of annual
LAI is defined by

L0 p; yð Þ ¼

P12

m¼1

L p;m; yð Þ �M pð Þ

s pð Þ ; ð6Þ

where M(p) is the mean of the annual LAI of the grid point
p, and s(p) is the standard deviation of the annual LAI of
that point. The standardized anomaly of growing season SPI
is similar except that the summation of the precipitation
only accounts for months in the growing season. The
relation between the standardized anomaly Pathfinder LAI
and SPI provides an estimate of the proportion of annual
vegetation production as a function of rainfall variability
during the growing season.
[38] While vegetation indices and precipitation do have

moderately high correlations in some areas, the relationship
has a considerable degree of spatial heterogeneity [Schultz
and Halpert, 1993; Lotsch et al., 2003]. This may be seen in
Figure 10, where relationships are very difficult to discern
between the standardized annual Pathfinder LAI and grow-
ing season SPI in north Africa, east Asia, north America,
and Europe (see the dashed boxes in Figure 6). It should be
emphasized that similar results are found between the
annual Pathfinder/GIMMS LAI and growing season CMAP,

between the annual Pathfinder/GIMMS NDVI and growing
season CMAP, and between annual Pathfinder/GIMMS
NDVI and growing season SPI (not shown). Hence,
although the annual vegetation production might climato-
logically be correlated with the climate variables (for
example regions with more precipitation tend to grow
more), our results demonstrate that there is no globally
applicable correlation between vegetation indices (NDVI/
LAI) and precipitation. This further highlights the need for
consideration of both vegetation changes, as captured by
CII, and precipitation deficits when monitoring drought
impacts (as well as for further study of the varying relation-
ships between the two across district level to multinational
scales).
[39] It should be noted, however, that this CII is not the

only possible remotely sensed monitoring tool. As men-
tioned in the introduction, Kogan’s Vegetation Condition
Index is widely used in the United States for drought
monitoring and yield prediction. To evaluate the utility of
the Climatic Impact Index introduced here, we calculate the
VCI and CII at each grid point of the study regions and plot
them against one another (Figure 11). Both the linear and
polynomial functions show strong positive correlation
between long time series of CII and VCI, which suggests
that the CII and VCI provide similar information on
vegetation production monitoring. It is interesting to note,
however, that at the extremes of the VCI (both minimum

Figure 10. The relationship between annual Pathfinder LAI and growing season standardized
precipitation index (SPI) for sample regions from Europe, east Asia, North America, and Africa. Refer to
the dashed boxes in Figure 6 for the detailed locations. The 6-month SPI are computed from the CMAP
data. Both the annual LAI and growing season SPI are standardized with respect to the individual grid
point (see equation (6) for details).
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and maximum), it appears that there are broad ranges in the
CII, suggesting that at these extreme values, the CII adds
information regarding the state of the vegetation not neces-
sarily provided by the VCI alone. However, it is yet to be
determined whether this result serves a practical purpose in
monitoring itself; such impact studies are the subject of
future research.
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Figure 4. The length of the growing season in months and the start month of the growing season,
generated from the MODIS products for each grid point at 16-km resolution. (a) Length of the growing
season from MODIS LAI; (b) length of the growing season from MODIS NDVI; (c) start of the growing
season from MODIS LAI; (d) start of the growing season from MODIS NDVI.

Figure 8. Correlation between CII and standard deviation of GIMMS LAI: (left) annual LAI and (right)
growing season LAI. Nonforest vegetation samples are chosen from Africa (7�–12�N, 12�–17�E), east
Asia (32�–37�N, 112�–117�E), Europe (52�–67�N, 17�–22�E), and North America (40�–45�N, 104�–
109�W). CII are calculated from long time series average of GIMMS LAI (from 1982 to 2002). The
corresponding symbol with black edge is the sample average for each region.
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Figure 9. The temporal climatic impact index, representing the fraction of climatological annual
production either gained or lost for each pixel at a 16-km resolution. (a) August 1984. (b) August and
September 1984. (c) June 1988. (d) June and July 1988. (e) August 2000. (f ) August and September
2000. The climatological annual production is averaged over the AVHRR Pathfinder LAI from 1982 to
2000.
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