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ABSTRACT

The Common Land Model (CLM), which results from a 3-yr joint effort among seven land modeling groups,
has been coupled with the National Center for Atmospheric Research (NCAR) Community Climate Model
(CCM3). Two 15-yr simulations of CCM3 coupled with CLM and the NCAR Land Surface Model (LSM),
respectively, are used to document the relative impact of CLM versus LSM on land surface climate. It is found
that CLM significantly reduces the summer cold bias of surface air temperature in LSM, which is associated
with higher sensible heat fluxes and lower latent heat fluxes in CLM, and the winter warm bias over seasonally
snow-covered regions, especially in Eurasia. CLM also significantly improves the simulation of the annual cycle
of runoff in LSM. In addition, CLM simulates the snow mass better than LSM during the snow accumulation
stage. These improvements are primarily caused by the improved parameterizations in runoff, snow, and other
processes (e.g., turbulence) in CLM. The new land boundary data (e.g., leaf-area index, fractional vegetation
cover, albedo) also contribute to the improvement in surface air temperature simulation over some regions.
Overall, CLM has little impact on precipitation and surface net radiative fluxes.

1. Introduction

The land component of climate models represents
many important processes that control the transfers of
water and energy to the atmosphere. Its importance for
weather forecasting and climate has been increasingly
recognized in the past two decades (Betts et al. 1996;
Koster et al. 2000, and references therein). For this rea-
son, the original bucket-type land surface model (e.g.,
Manabe 1969) has been replaced by more physically
based representations of the global soil–vegetation–at-
mosphere transfer system (e.g., Sellers et al. 1997). This
paper reports results of our project to couple a recently
developed state-of-the-art land surface model; that is,
the Common Land Model version 1 (CLM; Dai et al.
2002, manuscript submitted to Bull. Amer. Meteor.
Soc.), with the National Center for Atmospheric Re-
search (NCAR) Community Climate Model (CCM3).

The CLM project represents a multi-institution mul-
tidisciplinary effort that brings together a broader range

Corresponding author address: Dr. Xubin Zeng, Dept. of Atmo-
spheric Sciences, The University of Arizona, P.O. Box 210081, Tuc-
son, AZ 85721.
E-mail: xubin@atmo.arizona.edu.

of expertise than can be accomplished within any one
research group. The history, progress, and future plan
of the CLM project are discussed in Dai et al. (2002,
manuscript submitted to Bull. Amer. Meteor. Soc.). The
original motivation for CLM came from the desire to
have a truly community-developed land surface model
as the land component of the NCAR Community Cli-
mate System Model (CCSM). In other words, CLM is
intended as an improved biophysics package to replace
the NCAR Land Surface Model (LSM; Bonan 1996).
Since the initial CLM code was completed in October
1998, the FORTRAN program has gone through four
iterations for improvement of the coding standard. After
finishing the initial CLM test in February 1999, CLM
has also gone through four phases of vigorous beta tests.
Very comprehensive observational data have been used:
a variety of multiyear point observational data over dif-
ferent regions of the world, regional data over the U.S.
Red–Arkansas River basin, and global data from the
Global Soil Wetness Project. These data include all data
in the project for the Intercomparison of Land Param-
eterization Schemes. CLM has also been tested in the
multiagency Land Data Assimilation System over the
continental United States. Results from these extensive
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tests will be published elsewhere by CLM participants.
Here we focus on the coupling of CLM with the NCAR
CCM3.

Section 2 briefly describes CLM, LSM, and CCM3,
while section 3 discusses our land boundary data, which
are derived based on recent satellite remote sensing data,
global field survey data, and literature survey. Section
4 evaluates the results from the CCM3–CLM and com-
pares them with those from CCM3–LSM, while section
5 gives some conclusions.

2. Model description

The Common Land Model has one vegetation layer
with a realistic photosynthesis-conductance model
based on Bonan (1996). It has 10 unevenly spaced ver-
tical soil layers with the bottom layer at 3.43-m depth.
A thin top layer of 1.75 cm is specified to realistically
simulate surface soil fluxes and subsequently the diurnal
cycle of surface soil temperature. CLM also contains
up to five snow layers (depending on the total snow
depth) with water flow within snow considered. Model
state variables include snow and soil temperature, ice
lens mass and liquid mass in each layer, leaf tempera-
ture, canopy water storage, nondimensional snow age,
snow-layer number, and snow-layer thickness.

Radiative transfer through a canopy is based on a
simplified two-stream approach under the constraint that
canopy albedo approaches the prescribed albedo for bare
soil (or thick canopy) as leaf-area index (LAI) ap-
proaches zero [or infinity (i.e., 2 or higher values, de-
pending on the solar zenith angle)]. Soil and snow al-
bedos are both based on Dickinson et al. (1993). Soil
albedo depends on soil color type for each grid box and
soil moisture in the top soil layer. Snow fraction depends
on snow depth and surface (bare soil or canopy) rough-
ness length, while snow albedo depends on solar zenith
angle and snow age, which considers the effects of grain
growth, meltwater, and dirt and soot.

The turbulence scheme in CLM considers turbulence
above, within, and below canopy. It also includes the
consistent treatment of the laminar layer over canopy
and bare soil (Zeng and Dickinson 1998), and includes
an improved treatment of turbulence under free con-
vective conditions (Zeng et al. 1998a).

Leaf temperature is computed based on the energy
balance between net radiative flux and latent and sen-
sible heat fluxes (Dickinson et al. 1993). Soil and snow
temperatures are predicted using a heat diffusion equa-
tion in 10 soil layers and up to five snow layers. The
volumetric heat capacity of soil (or snow) considers the
contributions of solids, water, and ice in soil (or water
and ice in snow). The soil (or snow) thermal conduc-
tivity depends on soil water and ice (or snow density).
Lake temperature is computed based on the six-layer
lake model of Bonan (1996).

Surface evapotranspiration consists of evaporation of
precipitation intercepted by stems and leaves, canopy

transpiration as controlled by photosynthesis, and bare
soil evaporation. For sunlit and shaded leaves, the pho-
tosynthesis-conductance submodel separately computes
the leaf assimilation rate as the minimum among three
rates that are limited by the efficiency of the photosyn-
thetic enzyme system, the amount of photosynthetically
active radiation captured by the leaf chlorophyll, and
the capacity of leaf to export or utilize the products of
photosynthesis, respectively (Bonan 1996). The canopy
conductance is the combination of those over sublit and
shaded leaves.

Model runoff includes surface runoff and base flow,
both of which are computed over saturated and unsat-
urated areas separately. The fraction of saturated area
depends on topographic features and the nondimen-
sional mean water table depth.

Water and ice in soil and snow and those intercepted
by canopy are predicted based on mass conservation
equations. The hydralic conductivity and soil matrix po-
tential are parameterized following Clapp and Horn-
berger (1978) and Cosby et al. (1984). Water flow in
both unfrozen and frozen soils is considered. Snow wa-
ter that is over the water-holding capacity of snow can
percolate into the underlying snow or soil layer. Snow
compaction considers the contributions from snow
metamorphism, overburden, and melt (Jordan 1991).

Because the NCAR Land Surface Model has been
fully documented in Bonan (1996), much less detail is
given here. LSM contains one vegetation layer, six soil
layers, and one snow layer. Its photosynthesis-conduc-
tance model and its coupling strategy with CCM3 are
largely followed by CLM. Its surface hydrology sub-
model considers the fractional coverage of convective
precipitation as well as the spatial distribution of pre-
cipitation throughfall and soil water in precipitation re-
gions. While CLM has a more detailed treatment of
snow through its multilayer snow parameterization,
LSM has a more detailed treatment of surface hydrology
(particularly runoff ). The complexity level of other land
surface processes is similar between LSM and CLM.

Because CLM has been developed primarily based
on the Biosphere–Atmosphere Transfer Scheme (Dick-
inson et al. 1993), LSM, and the snow model of Dai
and Zeng (1996), results from Biosphere–Atmosphere
Transfer Scheme (BATS) coupled with CCM3 will also
be briefly compared in this paper. BATS contains one
vegetation layer, three soil layers, and one snow layer.
Overall, BATS is the simplest land model among the
three considered here.

The NCAR Community Climate Model version 3 is
a spectral atmospheric model with T42 truncation (or
about 2.88 horizontal resolution) and 18 levels in the
vertical. It employs comprehensive parameterizations of
deep convection, shallow and nonprecipitating convec-
tion, shortwave and longwave radiation, and atmospher-
ic boundary layer turbulence. Observed monthly sea
surface temperature and sea ice are prescribed. Addi-
tional model details are provided in Kiehl et al. (1998).
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TABLE 1. The IGBP land cover classification.

Natural vegetation
1
2
3
4
5
6
7
8
9

10
11

Evergreen needleleaf forests
Evergreen broadleaf forests
Deciduous needleleaf forests
Deciduous broadleaf forests
Mixed forests
Closed shrublands
Open shrublands
Woody savannas
Savannas
Grasslands
Permanent wetlands

Developed and mosaic lands
12
13
14

Croplands
Urban and builtup lands
Cropland/natural vegetation mosaic

Nonvegetation lands
15
16
17

Snow and ice
Barren
Water bodies

The output of CLM (LSM or BATS) to the atmo-
spheric model (CCM3) at every time step includes sur-
face albedos (direct beam and diffuse for visible and
near-infrared wave bands), upward longwave radiation,
sensible and latent heat fluxes, and surface wind stress.
The input from CCM3 to CLM (LSM or BATS) at every
time step includes incident solar radiation (direct beam
and diffuse for visible and near-infrared wave bands),
incident longwave radiation, convective and large-scale
precipitation, lowest model-level temperature, horizon-
tal wind components, specific humidity, pressure, and
height above surface. All three land models are coupled
to CCM3 explicitly. In other words, equations in the
land and atmospheric models are solved separately. We
maintain LSM’s explicit scheme, since we or others have
not noticed any serious problems. Further, the explicit
scheme maintains the modular structure of CLM, which
is important for its potentially wide applications in re-
gional and global models.

3. Comprehensive land data

a. Fractional vegetation cover and leaf-area index

Both fractional vegetation cover (sy ) and green leaf-
area index are needed in land models to determine sur-
face energy, water, and trace gas exchanges. Although
many climate models have included a seasonal variation
of LAI, the limited information available from the sat-
ellite normalized difference vegetation index (NDVI)
product precludes deriving seasonal variations of both
sy and LAI. Hence, Gutman and Ignatov (1998) pre-
scribed a fixed value for LAI. Alternatively, Sellers et
al. (1996) and other authors assumed that spatial and
seasonal variations of NDVI were all given by variations
of LAI. Any of the four possible assumptions (i.e.,
whether fractional vegetation and/or LAI vary season-
ally or are kept constant) could be used in a climate
model, but Zeng et al. (2000) argued that fixing frac-
tional vegetation and allowing LAI to vary is a realistic
assumption from a modeling viewpoint and can be sup-
ported by current observational data. In this context,
fractional vegetation is viewed as determined by types
of vegetation and long-term edaphic and climatic con-
trols, whereas LAI, as provided by model simulations
(e.g., Dickinson et al. 1998) or remote sensing (e.g.,
Myneni et al. 1997), includes all the seasonality of can-
opies, ranging from near-zero values in the more ex-
treme cases of annual or harvested vegetation to full
canopy values of 5–10. Therefore, the global 1-km sy

data from Zeng et al. (2000) and the global 8-km LAI
data from Myneni et al. (1997) are used here for CLM.

The global 1-km sy data were derived from the Ad-
vanced Very High Resolution Radiometer (AVHRR)
NDVI data for 1 yr (April 1992–March 1993). Recently,
we have also used the method of Zeng et al. (2000) to
derive the global 8-km sy for each year from 1982 to
2000 based on the AVHRR Land Pathfinder dataset

(James and Kalluri 1994). Results averaged over the 19-
yr period are found to be consistent with the 1-km data.
The monthly LAI data (Myneni et al. 1997) were derived
from July 1981 to June 1991 based on the global 8-km
Land Pathfinder NDVI dataset (James and Kalluri
1994). The multiyear averaged monthly LAI data are
used in our study. Leaf-area index here refers to the
total one-sided area of all green canopy elements over
unit ground area. Loveland et al. (1999) provide global
1-km land cover data for six different land cover clas-
sification schemes. For this study, we adopt the Inter-
national Geosphere–Biosphere Program (IGBP) land
cover classification (see Table 1), which will be pro-
vided as a standard product by the MODIS land team
of the National Aeronautics and Space Administration
(NASA) Earth Observing System (EOS) project.

While the 17 IGBP types are used in the derivation
of sy , six alternative biomes defined based on vegetation
structure are used in the derivation of LAI. Therefore,
the sy and LAI data are not necessarily consistent in
each pixel. Furthermore, some of the LAI data in winter
months need to be adjusted due to the poor quality of
the NDVI data. In contrast, sy data are derived based
on the maximum NDVI in each pixel and hence are not
affected by the poor quality of winter NDVI data. There-
fore, for global modeling studies, the fractional vege-
tation cover is individually determined for each model
grid box, while a mean seasonal variation of LAI is used
for each IGBP land cover type within each 108 latitude
zone.

Furthermore, the archived LAI data are defined with
respect to unit ground area. For the mosaic treatment
of the subgrid vegetation variation in the global model
(see section 3b), these LAI values are divided by sy to
represent the green leaf-area index with respect to veg-
etated area only (denoted as Lgv). For each 108 latitude
zone and for the land cover types of evergreen need-
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TABLE 2. Roughness length zo and displacement height d discussed in section 3c, parameters a and Ls,min used to compute stem and dead
LAI in Eq. (2), coefficients a and b used to compute root distribution in Eq. (3), and vegetation albedo (As for wavelengths ,0.7 mm and
Al for wavelengths $0.7 mm) under thick canopy conditions as discussed in section 3c.

Type zo (m) d (m) a Ls,min a (m21) b (m21) As At

1
2
3
4
5
6
7
8
9

10
11
12
13
14
16

1.0
2.2
1.0
0.8
0.8
0.1
0.1
0.7
0.1
0.03
0.03
0.06
0.5
0.06
0.05

11
23
11
13
13
0.3
0.3
6.5
0.7
0.3
0.3
0.3
3.0
0.3
0.1

0.5
0.5
0.5
0.5
0.5
0.5
0.5
0.5
0.5
0.5
0.5
0.0
0.0
0.25
0.5

1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
0.1
0.1
0.5
1.0

6.706
7.344
7.066
5.990
4.453
6.326
7.718
7.604
8.235

10.74

5.558
5.558
5.558
4.372

2.175
1.303
1.953
1.955
1.631
1.567
1.262
2.300
1.627
2.608

2.614
2.614
2.614
0.978

0.04
0.04
0.05
0.07
0.06
0.07
0.14
0.06
0.07
0.07
0.06
0.06
0.06
0.06
0.19

0.20
0.20
0.23
0.24
0.24
0.26
0.32
0.21
0.26
0.25
0.18
0.24
0.22
0.22
0.38

leleaf and broadleaf forests (IGBP types 1 and 2, re-
spectively), Lgv values in winter months are adjusted
based on

L 5 max(L , cL ),gv gv gv,max (1)

where c 5 0.7 and 0.8 for the above two land cover
types, respectively, and Lgv,max is the maximum monthly
Lgv.

As an example, Fig. 1 shows the Lgv data for decid-
uous broadleaf forests (IGBP type 4) that exist primarily
over Northern Hemisphere mid- and high latitudes with
a strong seasonal cycle. For instance, Lgv varies from
nearly 0 in winter to 5 in summer over 408–608N. De-
ciduous broadleaf forest also exists over other latitudes
and the annual range of Lgv varies significantly with
latitudes. The month when Lgv reaches its peak value is
also significantly different over different latitude zones.
The use of the same (global mean) LAI seasonal vari-
ation for each vegetation type would ignore the signif-
icant latitudinal dependence of LAI within the same
vegetation type.

In addition to green leaf-area index, the land model
needs stem and dead leaf-area index with respect to
vegetated area (Ls). For each 108 latitude zone and each
land cover type, it is computed from

n n21 n21 nL 5 max{[aL 1 max(L 2 L , 0)], L },s s gv gv s,min (2)

where n denotes the nth month, Ls,min denotes the pre-
scribed minimum value of Ls, and (1 2 a) denotes the
monthly removal rate of dead leaves. Both a and Ls,min

are given in Table 2. Equation (2) differs from that in
Sellers et al. (1996) in two aspects. They assumed a to
be zero (i.e., immediate removal of all dead leaves each
month), while here it is assumed to be 0.5 for most of
the vegetation types (Table 2, i.e., 50% of the dead
leaves are removed each month). In addition, they as-
sumed Ls,min to be 0.08 or 0.05 (representing the stem
area index), while here it is assumed to be 1.0 for most
of the vegetation types (Table 2) (representing the stem

and dead leaf area index). For deciduous broadleaf for-
ests as shown in Fig. 1, the corresponding Ls values are
about 1.0 for most months over most of the latitudinal
zones. Here Ls values only increase north of 308N during
and after September, typically adding as much as 2 at
its peak in October or November (figures not shown).

b. Subgrid mosaic tiles

Most of the land–atmosphere coupled global models
consider only the dominant vegetation type in each grid
box, partly because of a lack of data. The NCAR
CCM3–LSM goes one step further by assigning one of
the 26 biomes to each grid box. Each biome contains
up to three plant functional types (PFTs) with specified
percentage area coverage for each. For instance, the
biome ‘‘tundra’’ is composed of 30% arctic deciduous
shrub, 30% arctic grass, and 40% bare soil. Similar to
LSM, each grid box over land in CLM contains up to
five tiles: lake, wetland, the first two dominant vege-
tation types (excluding water, snow–ice, or wetland),
and bare soil. However, because of the availability of
global 1-km land cover and sy data as discussed in
section 3a, different tiles are computed for each grid
box, which is different from the PFT approach in LSM.
Note that the IGBP type 16 of ‘‘barren’’ (see Table 1)
still contains about 11% of vegetation cover on average
(Zeng et al. 2000) and is treated as a vegetation type
different from ‘‘bare soil’’ that does not contain any
vegetation. All quantities are computed over each tile
at each time step, and each tile maintains its own prog-
nostic variables. The tiles in a grid box respond to the
mean conditions in the overlying atmospheric grid box,
and this grid box, in turn, responds to the areally weight-
ed surface fluxes from the tiles. The tiles within a grid
box do not interact with each other directly.

The first two dominant vegetation types (denoted as
v1 and v2, respectively), their fractional vegetation cov-
erages with respect to grid box (denoted as p1 and p2,
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FIG. 1. The annual cycle of green leaf-area index with respect to vegetated area (Lgv) of deciduous broadleaf forests (IGBP type 4) for
each 108 lat zone. Boreal and austral months are used for Northern and Southern Hemisphere zones, respectively.

respectively), as well as the percentage of wetland, lake,
and bare soil with respect to grid box can be directly
obtained from the global 1-km land cover and sy data.
The values of p1 and p2 are then adjusted to conserve
the total percentage of vegetated area in the grid box
while setting fractions of wetland, lake, and total veg-
etation less than 5% to zero. Because one of the purposes
of this paper is to compare CCM3–CLM and CCM3–
LSM results, these data are further adjusted to be fully
consistent with the CCM3–LSM T42 land/ocean mask
data in which fractional land/ocean are not considered.
If fractional land/ocean are considered (e.g., in the
NCAR land–atmosphere–ocean coupled Climate Sys-
tem Model), the above adjustment is unnecessary.

Figure 2 shows the global distribution of the dominant
vegetation type and its area coverage (v1 and p1, re-
spectively), while Fig. 3 shows the distribution of v2
and p2, respectively. The dominant type is barren with
area coverage of vegetation from 0% to 25% over North
Africa, while it is evergreen broadleaf forest over the
Amazon basin with area coverage from 75% to 100%
(Fig. 2). Over part of these two regions, p2 is zero; that
is, the second dominant type is not considered (Fig. 3).
Over central United States, v1 and v2 are grassland,
crop-land, and cropland/natural vegetation mosaic with
p1 typically from 25% to 75% and p2 typically from
5% to 25% (Figs. 2 and 3). Note that because v1 and
v2 are decided based on land cover type rather than the
vegetated area, p1 could be smaller than p2. For ex-
ample, if barren had only slightly more area than grass-

land, its fractional vegetation coverage as p1 would be
smaller than the grassland p2. Figure 4 shows the dis-
tribution of the area coverages of bare soil, wetland, and
lakes. Bare soil covers up to 100% over North Africa,
less than 10% over the Amazon region, and typically
5%–25% over central United States. Wetland is located
primarily over Northern Hemisphere high latitudes,
while lakes are distributed mainly over North America,
followed by Eurasia and Africa. Wetland is treated as
permanent in the model (i.e., with prescribed saturated
soil) with vegetation properties given for each grid box.

c. Roughness length, vegetation root, and albedo
data

Land aerodynamic characteristics, including rough-
ness length for momentum (zo) and zero-plane displace-
ment d, are proportional to the canopy height hc. Both
zo/hc and d/hc are dependent on the frontal area index
(i.e., the element silhouette area normal to the wind per
unit surface area occupied by each element), which is,
in general, a function of leaf-area index, fractional veg-
etation cover, and canopy height. Because of a lack of
global hc data, hc is specified as a function of land cover
type here following most other land models. Further-
more, since the variation of hc within a land cover type
is significant but cannot be accurately determined at
present, it is not unreasonable to neglect the secondary
effect of LAI and sy on zo and d. Therefore, zo and d
are prescribed as a function of land cover types based
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FIG. 2. The global distribution of the dominant vegetation type and its area coverage (v1 and p1, respectively) at T42
resolution.

on literature survey, as given in Table 2. Roughly speak-
ing, d is about 0.65 hc, while zo varies between 0.04hc

and 0.2hc.
While aerodynamic roughness zo is used for wind,

thermal roughness zoh is needed for heat and water vapor.
In general, zo is different from zoh, because the mo-

mentum transfer is effected by pressure fluctuations in
the turbulent wakes behind the roughness elements,
while no such dynamical mechanism exists for heat and
water vapor transfer. Rather, heat and water vapor must
ultimately be transferred by molecular diffusion across
the interfacial sublayer. Instead of prescribing zoh for
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FIG. 3. The same as Fig. 3 except for v2 and p2, respectively. The vegetation type v2 is denoted by a numbered 0
color bar if its fractional cover p2 is 0.

each land cover, CLM uses the formulation from Zeng
and Dickinson (1998) to compute zoh from zo and near-
surface variables.

Vegetation root distribution (including rooting depth)
directly affects the water holding capacity of the land
surface and the relative rates of water extraction from
the different layers in the rooting zone. Using the com-

prehensive field survey data of vegetation root distri-
bution (Jackson et al. 1996) and maximum rooting depth
(Canadell et al. 1996), Zeng (2001) has generalized the
approach in Zeng et al. (1998b) to provide vegetation
root distribution (including rooting depth) that can be
used by any land model with any number of soil layers
in the vegetation rooting zone:
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FIG. 4. The global distribution of the area coverages of bare soil,
wetland, and lakes at T42 resolution. Note that bare soil fraction is
given as zero for permanent snow and ice (IGBP type 15).

1
2az 2bzY 5 1 2 (e 1 e ), (3)

2

where Y is the cumulative root fraction from the surface
to depth z (positive), and a and b are coefficients de-
pending upon vegetation types, as given in Table 2.

A simplified two-stream approach is used in CLM to
compute the radiative transfer through canopy under the
constraint that vegetation albedo approaches that of the
underlying ground when leaf-area index goes to 0 and
approaches a prescribed albedo value for each vegeta-
tion type when leaf-area index becomes very large (see
section 2). The prescribed albedo values for thick can-
opy are given in Table 2. These values are initially pre-
scribed based on values in BATS (Dickinson et al. 1993)
and then adjusted (more specifically, slightly reduced)
based on the analysis of AVHRR derived albedo data
of Strugnell et al. (2001) in Xue et al. (2001).

As in BATS (Dickinson et al. 1993) and LSM (Bonan
1996), soil albedos in CLM vary with soil color class
(as well as soil moisture). In addition to the eight color

classes in BATS, LSM creates a ninth class with high
albedos to better match the clear-sky top-of-the-atmo-
sphere albedos derived from the Earth Radiation Budget
Experiment (ERBE) for desert and semidesert surface
types located in North Africa and the Arabian Peninsula.
However, analysis of the AVHRR-derived albedo data
of Strugnell et al. (2001) in Xue et al. (2001) suggests
that soil color class 9 is unnecessary. Therefore, CLM
uses LSM soil color data after replacing soil color class
9 by class 1 and increasing soil color class (or decreasing
soil albedos) for some of the desert or semidesert grid
boxes based on Xue et al. (2001). Since the quality of
the AVHRR-derived albedo data is affected by the lack
of aerosol distribution data (particularly over desert and
semidesert), new satellite data and in situ measurements
are still needed to accurately determine surface albedo
over these regions. Finally, the soil texture data are the
same as those in LSM.

4. Results

Results are based on a 15-yr simulation of the NCAR
CCM3 coupled with CLM using observed sea surface
temperature and sea ice for the period of 1979–93. Ini-
tial conditions for the land and atmosphere were ob-
tained from a 10-yr spinup simulation using CCM3–
CLM. Results from CCM3 coupled with LSM and
BATS in previous research are used for comparison,
although most of the discussions below will be focused
on CLM versus LSM comparison. The same sea surface
temperature and sea ice data for the same period and
the same spinup procedure were used in the CCM3–
LSM and CCM3–BATS simulations. For brevity, sim-
ulations of CCM3 coupled with CLM, BATS, and LSM
will be referred to as CLM, BATS, and LSM, respec-
tively, hereafter. Similar to Bonan (1998), only the sur-
face air temperature and hydrology are emphasized here.

a. Surface air temperature

Figure 5 compares the 2-m surface air temperature
from LSM and CLM with the 0.58 3 0.58 temperature
climatology in Willmott et al. (1998). The difference
fields between LSM and observations are similar to
those shown in Figs. 1 and 3 of Bonan (1998): in Jan-
uary, LSM has a cold bias over most of the regions
except over part of the Northern Hemisphere high lat-
itudes, while LSM has an overall cold bias in July. Fig-
ure 5 also shows that CLM significantly reduces the
cold biases of LSM in July over most of the regions,
particularly over Eurasia and North Africa. In January,
CLM significantly reduces the warm bias of LSM over
Eurasia in high latitudes and reduces the cold biases of
LSM over North Africa and Southern Hemisphere mid-
latitudes.

To gain further insight to the model simulation of
surface air temperature, Fig. 6 compares the annual cy-
cle of surface air temperatures from CCM3 coupled with
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FIG. 5. Differences in surface air temperature in Jan and Jul between models (CCM3 2 CLM and CCM3 2 LSM) and observations
(Willmott et al. 1998) and between the two models.

CLM, LSM, and BATS, respectively, over seven re-
gions. The continental United States (298–498N and
858–1258W), the Amazon region (08–108S and 508–
708W), and western Siberia (508–708N and 608–908E)
represent midlatitude land, tropical forest, and high-lat-
itude forest, respectively, while the Sahara and the Ara-
bian Peninsula (108–308N and 208W–508E) represent the
subtropical desert. The shaded area in each panel in-
dicates CLM’s 95% confidence interval for the mean
(i.e., the CLM vs observational temperature difference

plus or minus twice the standard deviation based on
CLM’s 15-yr climatology). Note that there are well-
documented shortcomings in the use of the t statistic
for assessing differences between model results and ob-
servational data, partly because temperature or hydro-
logical variables are not normally distributed. Nonethe-
less, if the temperature difference fields in the shaded
area contain both positive and negative values, the CLM
versus observed temperatures are more or less not sig-
nificantly different (i.e., the observed temperatures fall
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FIG. 6. Monthly differences in surface air temperature between CCM3 coupled with CLM, LSM, and BATS vs observations (Willmott et
al. 1998) over seven regions. Four of the regions are the United States (298–498N and 858–1258W), Amazon (08–108S and 508–708W), the
Sahara and the Arabian Peninsula (108–308N and 208W–508E), and western Siberia (508–708N and 608–908E). The shaded area in each panel
indicates CLM’s 95% confidence interval for the mean based on its 15-yr climatology.

within CLM’s interannual variability). Similarly, if the
LSM results fall within the shaded area, LSM and CLM
results are more or less not significantly different.

Figure 6 shows that over the continental United
States, temperature simulations from all three models
are better in warm seasons (May–September) than in
other months. In the Amazon basin, monthly tempera-
ture biases of both CLM and LSM from observations
are within 1.08C for most months. Over western Siberia,
LSM is too warm in winter but too cold in summer,
which reduces the temperature annual range by up to

88C compared with observational data. In contrast, the
temperature bias from CLM is within 28C for most
months. In these three regions, the observed tempera-
tures fall within CLM’s interannual variability for most
months, because the temperature difference fields in the
shaded area contains both positive and negative values.
Similarly, CLM and LSM results are not significantly
different for most months. In the Sahara and the Arabian
Desert, LSM significantly underestimates surface air
temperature, which is partly caused by prescribed high
soil albedos (Bonan 1998). The cold bias is reduced
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FIG. 7. Monthly surface air temperature over global land as simulated by CCM3 coupled with CLM, LSM, and BATS and from four
observational datasets (Crutcher and Jenne 1969; Shea 1986; Legates and Willmott 1990a; Willmott et al. 1998). The shaded area indicates
CLM’s 95% confidence interval for the mean based on its 15-yr climatology.

throughout the year in CLM largely because lower soil
albedos are prescribed based on data analysis in Xue et
al. (2001). In particular, the reduction of the cold bias
in LSM is statistically significant at the 95% level from
June to October. Over both Northern Hemisphere land
and global land, CLM significantly reduces the cold
biases in LSM from May to September. For instance,
the cold bias of 3.18C in summer (June–August) over
global land in LSM is reduced by 1.18C in CLM. Over
Southern Hemisphere land, CLM also significantly re-
duces the cold biases in LSM during austral summer
(December–February).

To address the possible impact of uncertainties in ob-
servational data on the above results, Fig. 7 shows the
annual cycle of surface air temperature over global land
from three model simulations and four observational
datasets. The Willmott et al. (1998) dataset represents
the long-term average of surface observations at 0.58 3
0.58 resolution and is a revised version of the original
Legates and Willmott (1990a) dataset, which is also used
here for comparison. The Shea (1986) dataset represents
the average temperature from 1950 to 1979 at 2.58 3
2.58 resolution, while the Crutcher and Jenne (1969)
dataset represents the average temperature from 1950
to 1964 at 58 3 58 resolution. In contrast, the average
temperatures of 15 yr (1979–93) are used from each of
the three models. Among the four observed datasets,

Crutcher and Jenne (1969) give the lowest surface air
temperature while Willmott et al. (1998) and Legates
and Willmott (1990a) give the highest. However, each
of these datasets gives a higher temperature than any of
the three models, and the difference among observed
datasets is smaller than the difference between model
results and observations. Furthermore, most of the ob-
served values lie outside the 95% confidence interval
of the CLM (LSM or BATS) results. Over a specific
region, however, the temperature difference among the
four observational datasets could be larger than the dif-
ference between these datasets and model results. For
instance, over the Amazon region, the annual mean tem-
perature difference from CLM is less than 0.58C cooler
than that from Legates and Willmott (1990a), while the
difference between the Willmott et al. (1998) and Le-
gates and Willmott (1990a) datasets is about 18C (not
shown).

The above results demonstrate that CLM improves
the simulation of surface air temperature compared with
LSM, and the possible physical reasons for these im-
provements will be explored later. However, it is dif-
ficult to judge to what extent the remaining biases are
real or rather an artifact of incompatibility between the
observations and model results. The major incompati-
bilities include the following: the model surface vari-
ables are determined as an average over the model sur-
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face, whereas surface observations, to the extent they
are sited according to World Meteorological Organi-
zation standards, are for a well watered short grass sur-
face; the model surface temperatures are for a 24-h av-
erage whereas the observations evaluate daily temper-
ature as an average of daily minimum and maximum;
the observational sites generally have a low elevation
bias in mountainous terrain. These biases largely act to
shift the observations to higher temperatures than those
calculated in the models. Furthermore, as a diagnostic
variable, surface air temperature can be computed by
various methods in models. To directly compare CLM
versus LSM results, CLM adopts the same method as
LSM (Bonan 1996), which may introduce some biases
over forests. Remaining discrepancies between CLM
and observations cannot be assessed until these factors
are adequately accounted for as well as the contributions
of errors in the atmospheric simulation in terms of spa-
tial patterns and contributions to surface radiation bud-
gets. As an example, 30 months of 30-min average sur-
face air temperature data obtained over midlatitude
grassland (Betts and Ball 1998) are used here to illus-
trate the impact of the two averaging methods on the
computed monthly temperatures. It is found that month-
ly mean temperature using hourly samples can be lower
by 0.28–1.28C than that using daily maximum and min-
imum temperatures, and the temperature difference av-
eraged for these 30 months using these two methods is
0.68C. To illustrate the impact on surface air temperature
of generally low elevation bias of observational sites,
the Willmott et al. (1998) dataset (which does not use
the station-height information directly) is compared
with the Willmott and Matsuura (2000) dataset, which
employs the digital-elevation-model (DEM)-assisted in-
terpolation of air temperature with a constant lapse rate
of 6 K km21 (independent of geographic location and
season). Temperature differences of up to 208C are
found between the two datasets over part of the Tibet,
Greenland, and Antarctic. The surface air temperature
averaged over global land from Willmott and Matsuura
(2000) is about 1.08C cooler than that from Willmott et
al. (1998).

b. Surface hydrology

Figure 8 evaluates the model precipitation climatol-
ogy in January and July using the Willmott et al. (1998)
dataset. Overall, CCM3–LSM simulates the principal
features of the observed precipitation distribution. Some
of its notable deficiencies include the following: an
overestimate of precipitation in January over western
North America, Australia, South Africa, and part of
South America; an underestimate of July precipitation
over most tropical and subtropical land; and a slight
overestimate of July precipitation over most of the
Northern Hemisphere high latitudes. The precipitation
differences between CLM and LSM are quite small over
most of the regions, probably because both simulations

were forced by the same sea surface temperature data.
Evidently, the precipitation distribution in CCM3 is
more controlled by the land–sea contrast, topography,
and atmospheric processes than by the change of land
models from LSM to CLM. Notable improvements in
simulated precipitation in CLM include the reduction
of January and July precipitation biases in LSM in Aus-
tralia, and the reduction of precipitation overestimation
in LSM over an east–west band in Eurasia in July.

Figure 9 compares the annual cycle of precipitation
from CCM3 coupled with CLM, LSM, and BATS in
seven regions. Over the United States, model precipi-
tation bias is within 0.5 mm day21 for most months. In
the Amazon region, CLM simulates precipitation better
than LSM in October and November, which represent
the transition period from the dry season to the wet
season. The last month (during or after the dry season)
when model precipitation is below observations is July,
August, and September for CLM, LSM, and BATS, re-
spectively, in Fig. 9, which is consistent with the month
for the peak warm bias of models in Fig. 6. In the Sahara
and Arabian Peninsula, model precipitation agrees with
observations very well for most months. Over western
Siberia, model precipitation bias is within 0.4 mm day21

for most months. Over Northern Hemisphere land, CLM
and LSM overestimate precipitation in March to May
but they underestimate it in July to September. Over
Southern Hemisphere land, all models underestimate
precipitation from March to August. Over global land,
the model bias is within 0.2 mm day21 for most months.
In each panel, the differences between CLM and LSM
results are not significant at the 95% level for most (or
all) months.

To address the possible impact of uncertainties in ob-
servational data on the above results, Fig. 10 shows the
annual cycle of surface precipitation over global land
from three model simulations and five observational da-
tasets. The Xie and Arkin (1997) dataset represents the
climatology from 17 yr (1979–95) of data at 2.58 3
2.58 resolution as a combination of rain gauge data,
satellite estimates, and National Center for Environ-
mental Prediction–NCAR reanalysis data. In contrast,
other observed datasets are all derived from rain gauges
only: the Shea (1986) dataset represents the average
precipitation from 1950 to 1979, while the Jaeger (1983)
and Legates and Willmott (1990b) datasets represent the
long-term averages of rain gauge data. The Willmott et
al. (1998) dataset represents a revised version of the
original Legates and Willmott (1990b) dataset. CLM
and LSM results are not significantly different. They
show low biases compared to the Willmott et al. (1998)
and Legates and Willmott (1990b) datasets in June–
August. In addition, they are biased high relative to the
other datasets except for June–September. These model
biases may be real but the variability among various
datasets suggests caution in drawing such a conclusion.

Snow processes, particularly the timing of snowmelt
and the subsequent fate of meltwater, play an important
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FIG. 8. Precipitation differences in Jan and Jul between models (CCM3 2 CLM and CCM3 2 LSM) and observations (Willmott et al.
1998) and between the two models.

role in the overall hydrological cycle. They also strongly
affect the surface energy cycle primarily because of
snow’s high albedo and low thermal conductivity com-
pared with soil. Both snow cover and depth data are
already available from observations (e.g., Foster et al.
1996); however, comparison of model and observational
snow cover data is strongly affected by at least two
uncertainties; that is, the criterion used to define full
snow cover in a grid box and the consideration of frac-
tional snow cover. Neither snow cover nor depth data
were saved in the integration of CCM3 coupled with
CLM, BATS, or LSM. However, snow mass is saved

in all global models that consider snow processes. Fig-
ure 11 evaluates snow mass over North America (here
defined as the broad region between 08 and 908N and
108 and 1708W but excluding Greenland) and Eurasia
(here defined as the broad region between 08 and 908N
and 1708 and 108W through the date line) using data
reported in Foster et al. (1996). The original snow depth
data were compiled by the U.S. Air Force Environ-
mental Technical Applications Center at Scott Air Force
Base in Illinois based on climatological records, liter-
ature searches, surface weather synoptic reports, and
data obtained at snow course sites (Foster and Davy



15 JULY 2002 1845Z E N G E T A L .

FIG. 9. Monthly precipitation differences between CCM3 coupled with CLM, LSM, and BATS vs observations (Willmott et al. 1998) over
seven regions. Definitions of these regions are the same as in Fig. 6. The shaded area in each panel indicates CLM’s 95% confidence interval
for the mean based on its 15-yr climatology.

1988). A constant density of 300 kg m23 was then used
to convert snow depth to mass in Foster et al. (1996).
All three models reach the peak snow mass in March
over North America, in agreement with observations,
while they lag observations by 1 month to reach the
peak snow mass over Eurasia, or equivalently, they are
slow in their spring snowmelt. LSM underestimates
snow mass for each month over North America and for
most months over Eurasia. Overall, snow mass from
CLM is closer to observations than that from LSM,
provided the conversion from depth data has not seri-
ously overestimated the mass.

Runoff (including surface runoff and base flow) is
another important component of the surface hydrolog-
ical cycle, and is driven by precipitation and snowmelt.
Recently, Fekete et al. (2000) have developed global
composite runoff fields between 838N and 55.58S [de-
noted as the University of New Hampshire (UNH)–
Global Runoff Data Center (GRDC) dataset] by com-
bining observed river discharge information with a cli-
mate-driven water balance model. First, a water balance
model was used to simulate global runoff as driven by
the long-term averaged monthly precipitation and sur-
face air temperature data of Willmott et al. (1998). The
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FIG. 10. Monthly precipitation over global land as simulated by CCM3 coupled with CLM, LSM, and BATS and from five observational
datasets (Jaeger 1983; Shea 1986; Legates and Willmott 1990b; Xie and Arkin 1997; Willmott et al. 1998). The shaded area indicates CLM’s
95% confidence interval for the mean based on its 15-yr climatology.

simulated annual mean runoff was then adjusted to fit
the observed river discharge data. The seasonal cycle
of the simulated runoff in the UNH–GRDC dataset is
affected by several assumptions of the water balance
model: precipitation is considered snow when the
monthly surface air temperature is below 218C; snow-
melt is a prescribed function of temperature and ele-
vation; and runoff is formed either as snowmelt or when
the surplus from the difference between precipitation
and evaporation exceeds the soil moisture deficit from
the soil’s water holding capacity (Fekete et al. 2000).
In contrast, precipitation, snowmelt, and runoff are com-
puted at each time step (i.e., 20 min) in the climate
model. Precipitation is assumed to be snow when the
surface air temperature is below 2.28C, and snowmelt
is computed as part of the snow parameterization. Run-
off in CLM is generated by a saturated area runoff com-
ponent that responds rapidly to water added to the sur-
face and a base-flow term that also will generally be
largest near the time of maximum soil moisture but will
decay on a longer timescale. Overall CLM appears to
generate a larger fraction of its runoff rapidly near the
time of maximum soil moisture.

Figure 12 evaluates the annual cycle of model runoff
over seven regions using the UNH–GRDC dataset. Over
the United States, which represents one of the regions

with the highest density of discharge and precipitation
gauge stations, CLM simulates runoff very well
throughout the year, including the correct timing of peak
runoff (in April) and minimum runoff (in September).
In contrast, LSM incorrectly gives the peak runoff in
May and minimum runoff in December, and the am-
plitude of the seasonal cycle in the LSM runoff is just
0.4 mm day21, or about 40% of that from the UNH–
GRDC dataset (or CLM), apparently because of a stron-
ger base-flow component in LSM. In the Amazon basin,
peak precipitation occurs in February or March from
the five observational datasets used in Fig. 10 (not
shown). CLM gives the correct month (March) of peak
precipitation (not shown) and hence gives the peak run-
off in March (Fig. 12), which is 1 month earlier than
indicated by the UNH–GRDC dataset. In contrast, LSM
gives the peak precipitation in November (with a weaker
peak in March) (not shown) and hence gives the peak
runoff incorrectly in December. Over the Sahara and
Arabian Desert, both CLM and LSM give the correct
seasonal variation of precipitation (not shown). Figure
12 shows that CLM-simulated runoff is nearly zero ex-
cept between July and October, and reaches its peak in
August, both in agreement with the data, while LSM
gives an incorrect month (October) for the peak runoff
and maintains runoff in February and March when the
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FIG. 11. Monthly snow mass as simulated by CCM3 coupled with CLM, LSM, and BATS and from observations (Foster and Davy 1988)
over North America (08–908N and 108–1708W but excluding Greenland) and Eurasia (08–908N and 1708–108W through the date line). The
shaded area in each panel indicates CLM’s 95% confidence interval for the mean based on its 15-yr climatology.

runoff is zero from the data. Over the western Siberia,
the peak runoff is too high in CLM but too low in LSM.
CLM gives the peak runoff in April probably because
of the early snowmelt associated with the warm bias in
winter (e.g., Fig. 5). In contrast, LSM does not show
any peak runoff associated with snowmelt; instead it
incorrectly shows the peak in October (after the peak
precipitation in summer).

Over Northern Hemisphere land, Fig. 12 also shows
that the peak runoff occurs in May in CLM, which is

consistent with the maximum decrease of snow mass
from April to May during the snowmelt season (Fig.
11). The 1-month difference in the timing of the peak
runoff between CLM and the UNH–GRDC dataset
could be caused in part by the different methods used
for computing snowmelt, as mentioned earlier. LSM
shows the incorrect seasonal cycle with the peak runoff
in October even though the seasonal cycle of precipi-
tation is quite similar between CLM and LSM (Fig. 9).
The snowmelt in late spring (Fig. 11) only slightly in-
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FIG. 12. Monthly surface runoff over seven regions as simulated by CCM3 coupled with CLM, LSM, and BATS and from the UNH–
GRDC dataset (Fekete et al. 2000). Definitions of these regions are the same as in Fig. 6 except that Antarctica is excluded. The shaded
area in each panel indicates CLM’s 95% confidence interval for the mean based on its 15-yr climatology.

creases runoff in LSM. Evidently, LSM and CLM have
different partitionings of meltwater among soil water,
evaporation, and runoff, with the partitioning from CLM
apparently more consistent with observations. Over
Southern Hemisphere land (excluding Antarctic), the
month for the peak runoff is February in CLM (or
BATS) and March in LSM, while it is January in the
UNH–GRDC dataset. CLM significantly overestimates
runoff during austral summer (December–February),
partly because of the overestimate of precipitation (Fig.
9). Over global land (excluding Antarctic), the timing
for the peak (or minimum) runoff is within 1 month

between CLM and the data, while the timing differs by
5 or 6 months between LSM and the data. CLM over-
estimates the peak runoff by 0.18 mm day21, while LSM
underestimates it by 0.23 mm day21. The annual range
of monthly runoff is very small (0.18 mm day21) in
LSM, 0.52 mm day21 in CLM, and 0.55 mm day21 in
the UNH–GRDC dataset. The annual average runoff
over global land (excluding Antarctic) is 0.81, 0.93,
0.78, and 0.77 mm day21 from the UNH–GRDC dataset,
CLM, BATS, and LSM, respectively. Note that, since
the observed river discharge is affected by human ac-
tivities (e.g., dams and agricultural, industrial, and
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FIG. 13. (top) Volumetric soil water in the top 1 m of soil in CCM3–CLM and (bottom) volumetric
soil moisture difference in the top 1 m of soil between CCM3–CLM and CCM3–LSM for the month
of July.

household consumptions of water), the UNH–GRDC
dataset may underestimate the natural annual mean run-
off.

Another important component of the hydrological cy-
cle is soil moisture. LSM determines only soil water,
whereas CLM considers both soil water and ice. The
ice content, however, was not saved. Figure 13 compares
the volumetric soil water [mm(water)3 mm(soil)23] for
the top 1 m of soil in July from CLM and LSM in the
regions between 308S and 508N where soil ice is ex-
pected to be insignificant. Figure 13 shows that CLM
reproduces the expected spatial patterns of soil water:
wet soil over tropical forests, very dry soil over arid
regions (such as the Sahara and the Arabian Desert),
and relatively dry soil over Northern Hemisphere mid-
latitude land due to depletion of soil water during the
growing season. There are few large-scale observations
for the quantitative evaluation of model soil water. Soil
moisture data from various reanalyses depend primarily
on precipitation, surface energy, and water balance, and
the land model, none of which is likely comparable to
that from CCM3 coupled with CLM, LSM, or BATS.
Therefore, it would be difficult to obtain anything useful
from the comparison of soil moisture from reanalyses
and models. Quantitative comparison is also inherently
difficult among models that treat soil water, root distri-

bution, vegetation transpiration, and bare soil evapo-
ration differently, because the same volumetric soil wa-
ter would result in different vegetation transpiration and
bare soil evaporation in different models. Soil texture
data in CLM are from LSM and vegetation biophysics
in CLM is primarily based on LSM. However, CLM
and LSM have different root distribution data and use
different formulations for the bare soil evaporation.
Therefore, quantitative comparison of volumetric soil
water from CLM and LSM is not entirely appropriate.
Overall, CLM and LSM give a similar spatial distri-
bution of soil water but CLM has slightly drier soils.
Over some areas with large soil water differences (e.g.,
India), the negative (or positive) differences in soil water
are also consistent with the positive (or negative) dif-
ferences in temperature (in Fig. 5) and negative (or pos-
itive) differences in precipitation (in Fig. 8).

c. Interpretation of the results

Land surface processes are primarily driven by pre-
cipitation and solar radiation; they also feedback to the
atmosphere through surface energy, water, and momen-
tum fluxes. Because of this interactive nature, it is a
challenging (if not impossible) task to provide exact
reasons for the improvement of CLM in the simulation
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of surface air temperature, runoff, and snow mass. Here
we attempt to at least give some possible explanations.

Runoff in CLM is generated by a saturated area runoff
component that responds rapidly to water added to the
surface (from precipitation or snowmelt) and a base-
flow term that also will generally be largest near the
time of maximum soil moisture but will decay on a
longer timescale. In contrast, LSM appears to contain
too strong a base-flow term and its surface runoff term
does not respond rapidly to water added to the surface
from snowmelt. This explains the improved simulation
of the annual cycle of runoff in CLM (Fig. 12).

During the snow accumulation stage (October–
March) over Northern Hemisphere land, the CLM- and
LSM-simulated precipitation is nearly the same (Fig. 9).
Precipitation is also taken as snow in both CLM and
LSM when the surface air temperature is below 2.28C.
Compared with the one-layer snow parameterization in
LSM, the more realistic multilayer snow parameteri-
zation in CLM reduces the thermal coupling of snow
to the underlying soil, hence allowing a colder snow
surface with less sublimation. The increased stability in
the near-surface atmosphere reduces the turbulent mix-
ing, which also contributes to reduced sublimation. In-
deed, offline tests show that CLM can realistically sim-
ulate the snow accumulation and snowmelt (Dai et al.
2002, manuscript submitted to Bull. Amer. Meteor.
Soc.). These are probably the main reasons for the more
realistic (i.e., faster) accumulation of snow mass in CLM
(Fig. 11).

In the Sahara and the Arabian Desert, CLM signifi-
cantly reduces the cold bias in LSM (Figs. 5 and 6)
largely because lower soil albedos are prescribed based
on data analysis in Xue et al. (2001). For instance, the
net solar radiation at surface in July in CLM is 17 W
m22 higher than that in LSM. Over Australia, which is
dominated by open shrublands (Fig. 2), CLM also re-
duces the cold bias in LSM (Fig. 5). Here the net ra-
diative flux is unchanged, but its partitioning into the
sensible and latent heat fluxes is different, with a higher
sensible and lower latent heat fluxes in CLM, and hence
the higher surface air temperature in CLM. In July,
CLM’s reduction of the cold bias over Eurasia in LSM
(Fig. 5) results from the increase of net solar radiation
(and net solar and longwave radiation) as well as the
higher sensible and lower latent heat fluxes associated
with the lower soil moisture in CLM (Fig. 13). In winter,
CLM’s reduction of the warm bias over Eurasia in LSM
(Fig. 5) is accompanied by a decrease of the (negative)
sensible heat flux. Evidently, changes in the microme-
teorology reduce the coupling of the surface to the over-
lying warmer atmosphere. The multilayer snow param-
eterization reduces the coupling of snow to the under-
lying soil, which also contributes to the colder surface.
Although LSM has a higher snow fraction and hence
higher albedo (Xue et al. 2001), the net solar radiation
is nearly the same in CLM versus LSM, because the
downward solar radiation is small in winter over Eur-

asia. In addition to the overall improvement in model
physics in CLM, the use of the satellite data may also
contribute to the reduction of temperature bias over Eur-
asia. For instance, Buermann et al. (2001) showed that
replacing the default leaf-area index data in LSM by the
satellite LAI (Myneni et al. 1997) would slightly reduce
the cold (or warm) bias over part of the Eurasia in July
(or January). At the same time, however, this would
further increase the cold bias over northern Asia in July.
Similarly, when the fractional vegetation cover of each
plant functional type in LSM was replaced by the sat-
ellite data (Zeng et al. 2000), we also found that the
cold (or warm) bias in July (or January) in LSM was
slightly reduced over part of the Eurasia.

To understand the reasons for the CLM- and LSM-
simulated surface air temperature differences over glob-
al land, and to illustrate the overall impact of land pro-
cesses on the surface and top-of-the-atmosphere bud-
gets, Figs. 14 and 15 show the various quantities av-
eraged over global land that are related to the energy
and water budgets at surface and top of the atmosphere
(TOA). Figure 14 shows that the partitioning of the net
surface radiative flux is quite different between CLM
and LSM, with a higher sensible heat flux, lower latent
heat flux, and hence a much higher Bowen ratio (i.e.,
the ratio of sensible over latent heat fluxes) from CLM.
Note that nearly the same photosynthesis-conductance
parameterization is used in CLM and LSM. However,
the partitioning of the net radiation into the sensible and
latent heat fluxes can still be significantly different, be-
cause the latent heat flux along with runoff is also con-
strained by the total precipitation, which differs little
between the two models. The more realistic runoff pa-
rameterization and typically higher runoff in CLM need
to be balanced by a lower latent heat flux, which, in
turn, needs to be balanced by a higher sensible heat flux.
Note that 1 mm day21 of precipitation or runoff is equiv-
alent to about 29 W m22 of heat fluxes. Other differences
in model physics (e.g., the turbulent parameterization)
can also affect the partitioning of the net radiation, but
whether they increase or decrease the Bowen ratio is
difficult to assess. The higher surface air temperature
in CLM (particularly in boreal summer) primarily re-
sults from this increase of sensible heat flux (e.g., by
about 10 W m22 in July) and the corresponding decrease
of latent heat flux. The higher surface air temperature
in CLM leads to a higher net (upward) longwave ra-
diation, which largely compensates the higher solar flux
in CLM (e.g., by 7 W m22 in July), so the net surface
radiative flux differs little (e.g., the difference is only
0.6 W m22 between CLM and LSM in July). The higher
surface air temperature in July in CLM is also consistent
with the lower precipitation and drier soil (e.g., Fig. 13).
In February and March, CLM and LSM still give nearly
the same surface air temperature, even though precip-
itation is higher in CLM. The average snow water equiv-
alent depth over global land is primarily determined by
snow depth over Antarctic and Greenland, and the large
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FIG. 14. Various components related to surface energy and water cycles over global land as simulated by CCM3 coupled with CLM,
LSM, and BATS. The shaded area in each panel indicates CLM’s 95% confidence interval for the mean based on its 15-yr climatology.

difference over these two regions among models does
not affect surface energy or water cycle.

Figure 15 shows that CLM yields a higher planetary
boundary layer depth in agreement with its higher Bow-
en ratio as discussed earlier. The difference in sea level
pressure or precipitable water between CLM and LSM
is not significant at the 95% level. CLM also has a lower
total cloud cover partly because of a drier atmosphere
(particularly in boreal summer). The average clear-sky
planetary albedo over land at the top of the atmosphere
(TOA) in boreal summer (June–August) differ by less
than 0.5% between CLM and LSM, partly because the
same atmospheric model (CCM3) is used. However, due
to the smaller total cloud cover in CLM, the total plan-
etary albedo at TOA over land averaged in June–August
is lower by 2% in CLM, which is statistically significant

at the 95% level. Because of this smaller cloud cover
and a higher surface air temperature in CLM, the TOA
clear-sky and total outgoing longwave radiation fluxes
are also higher over land (particularly in boreal sum-
mer).

5. Conclusions

The land boundary data, the coupling strategy, and
the results of the Common Land Model (CLM) coupled
with the NCAR CCM3 have been presented in this pa-
per. The high-resolution vegetation data include the
global 1-km fractional vegetation cover and Interna-
tional Geosphere–Biosphere Program (IGBP) land cov-
er classification, both of which are pixel-dependent but
season-independent (Zeng et al. 2000), and the global
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FIG. 15. Various components related to surface and TOA energy cycles over global land as simulated by CCM3 coupled with CLM,
LSM, and BATS. The shaded area in each panel indicates CLM’s 95% confidence interval for the mean based on its 15-yr climatology.

8-km green leaf-area index (LAI) data, which are both
season- and pixel-dependent (Myneni et al. 1997). All
these data were derived using the satellite AVHRR data.
The stem and dead leaf-area index data were derived
from the seasonal variation of LAI. The vegetation root
distribution depends on vegetation type and was derived
using data from global field surveys (Zeng et al. 1998b;
Zeng 2001). The vegetation albedo (under dense canopy
conditions) depends on vegetation type and was derived
based on Dickinson et al. (1993) with modifications
using remote sensing data in Strugnell et al. (2001) and
Xue et al. (2001). The soil texture data are the same as
those in the NCAR Land Surface Model (LSM) (Bonan
1996), while soil color data (related to soil albedo) are
based on Dickinson et al. (1993) with modifications
using remote sensing data in Strugnell et al. (2001) and

Xue et al. (2001). Together, the above data represent a
significant improvement over those currently used by
regional or global models.

Using the above data, a 15-yr simulation of CCM3–
CLM has been done from 1979 to 1993 with observed
sea surface temperature and sea ice. The subgrid vari-
ability of vegetation is treated using the mosaic ap-
proach with each atmospheric model grid box contain-
ing up to five tiles (i.e., the first two dominant vegetation
types, bare soil, lakes, and wetland). The CLM code
results from a 3-yr joint effort among seven land mod-
eling groups in the United States, and has been devel-
oped primarily based on the Biosphere–Atmosphere
Transfer Scheme (Dickinson et al. 1993), LSM (Bonan
1996), and the multilayer snow model of Dai and Zeng
(1996). The 15-yr averaged land surface climatology
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from CCM3–CLM has been compared with those from
CCM3–LSM and CCM3–BATS, although most of the
discussions were focused on CLM versus LSM com-
parison.

The simulation of land surface climate by global mod-
els has shown much improvement over the last decade
as a result of both improved land surface treatments and
atmospheric simulations. Consequently, errors in ob-
servational data and incompatibilities between model
and observed variables now can introduce differences
between model and observed variables that are not much
smaller than the departures of the model fields from
reality. Even given these caveats, the results reported
here appear to indicate that the simulation of land cli-
mate in CCM3 has been substantially improved through
use of the CLM. It is found that CLM significantly
reduces the cold bias of surface air temperature in LSM
(particularly in summer) and reduces the warm bias in
LSM over some regions in winter. For instance, the cold
bias of 23.28C in LSM in July over global land is re-
duced to 22.08C in CLM, while the warm bias of 4.28C
in LSM in January over western Siberia is reduced to
1.28C in CLM. Another significant improvement from
CLM is the simulation of the annual cycle of runoff.
While LSM incorrectly reaches the peak runoff in Oc-
tober (rather than in June as given by observed data)
over Northern Hemisphere land, CLM realistically sim-
ulates the overall annual cycle of runoff. CLM also sim-
ulates the snow mass better than LSM during the snow
accumulation period, while their performance is similar
during the snowmelt period. These improvements are
primarily caused by the improved parameterizations in
runoff, snow, and other processes (e.g., turbulence) in
CLM. The new land boundary data (e.g., leaf-area in-
dex, fractional vegetation cover, albedo) also contribute
to the improvement in surface air temperature simula-
tion over some regions.

In agreement with the above results, CLM increases
both the net surface solar and long-wave fluxes over
global land. These increases, however, largely cancel
each other, resulting in little change in net surface ra-
diative flux between LSM and CLM. The partitioning
of the net radiative flux is quite different in CLM and
LSM with higher sensible heat fluxes and lower latent
heat fluxes in CLM. Precipitation differs little between
LSM and CLM, but its partitioning is different with
lower latent heat fluxes and higher runoff in CLM.

The higher surface air temperature and lower latent
heat fluxes in CLM are consistent with a drier atmo-
sphere, higher planetary boundary layer depth, lower
sea level pressure, lower total cloud cover, and higher
outgoing longwave radiation at the top of the atmo-
sphere (TOA) over global land. While the TOA clear-
sky planetary albedo differs little between CLM and
LSM in boreal summer, the TOA total planetary albedo
over global land is reduced by about 2% in CLM in
June–August, partly because of the reduced total cloud
cover.
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