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Abstract

The insights gained from present land cover classification activities suggest integration of multiangle data into classification attempts for

future progress. Land cover types that exhibit distinct signatures in the space of remote sensing data facilitate unambiguous identification of

cover types. In this two-part series, we develop a theme for consistency among cover type definitions, uniqueness of their signatures, and

physics of the remote sensing data. In the first part, Zhang et al.’s [Remote Sens. Environ., in press.] empirical arguments in support of the

consistency principle were presented. This part provides a theoretical justification of the consistency requirements. Radiative transfer best

explains the physics of the processes operative in the generation of the signal in the optical remote sensing data. Biome definitions given in

terms of variables that this theory admits and the use of the transport equation to interpret biome signatures guarantee the consistency

requirements. It is shown in this paper that three metrics of the biome angular signature in the spectral space— location, angular signature

slope (ASSI), and length (ASLI) indices—are related to eigenvalues and eigenvectors of the transport equation. These variables allow a

novel parameterization of canopy structure based on the partitioning of the incident radiation among canopy absorption, transmission, and

reflection. Consistency between cover type definitions and uniqueness of their signatures with the physics of the remote sensing data is

required not only to reduce ambiguity in land cover identification, but also to directly relate land cover type to biophysical and

biogeochemical processes in vegetation canopies. D 2002 Elsevier Science Inc. All rights reserved.

1. Introduction

The solar radiation reflected by a vegetation canopy and

measured by satellite-borne sensors results from interaction

of photons traversing through the foliage medium, bounded

at the bottom by a radiatively participating surface (soil,

understory, etc.). To estimate the canopy radiation regime,

three important variables must be correctly formulated

(Ross, 1981). They are (1) the architecture of individual

plant or tree and the stand; (2) optical properties of the

vegetation elements; and (3) reflective properties of the

ground beneath the canopy. Photon transport theory aims

at deriving the solar radiation regime, both within the

vegetation canopy and the exitant radiance, using the above-

mentioned attributes as input data. The success of remote

sensing of vegetation depends, to a high degree, on being

able to formulate a particular remote sensing problem, e.g.,

identification of the land cover type or estimation of surface

biophysical variables, in terms of the abovementioned

variables. Photon transport theory provides the most logical

linkage between a specific remote sensing problem and the

physics of the processes operative in the generation of the

signal in the optical remote sensing data. This idea underlies

the principle of consistency between biome definitions and

uniqueness of their signatures with the physics of remotely

sensed data formulated in the first part of our two-part series

(Zhang, Tian, Myneni, & Knyazikhin, in press). The object-

ive of this paper is to provide a theoretical basis for the

consistency requirement.

The transport equation in three spatial dimensions is the

appropriate starting point for our arguments for a theory for

land cover identification. The bidirectional reflectance dis-

tribution function (BRDF) is defined as the solution of the

three-dimensional transport equation at the upper canopy

boundary along upward directions. We start with the simplest

case when reflectance of the ground below the vegetation is
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zero and define variables required to characterize the inter-

action and transport of photons within the canopy and to

uniquely resolve the transport equation. The directional

hemispherical reflectance (DHR) is the hemispherically

integrated BRDF, and is used to define the location of

remotely sensed data in the spectral space. Knyazikhin,

Martonchik, Myneni, Diner, and Running (1998) precisely

derived the dependence of DHR on wavelength and

expressed it uniquely as a simple function of the wave-

length-dependent leaf albedo and wavelength-independent

canopy-specific eigenvalue of the transport equation. This

was recently validated with field measurements by Panferov

et al. (2001). The eigenvalue governs the shortwave energy

conservation in vegetation canopies; that is, the partitioning

of incident radiation among absorption, transmission, and

reflection. Thus, the energy conservation law determines the

location of reflectance data in the spectral space in the case

of vegetation canopies with a dark background. Note that

DHR is a standard product of the multiangle imaging

spectroradiometer (MISR) (Diner, Beckert, et al., 1998;

Martonchik et al., 1998) and moderate resolution imaging

spectroradiometer (MODIS) (Justice et al., 1998; Lucht &

Schaaf, 2000) data. Two metrics, angular signature slope

and length indices (ASSI and ASLI, respectively), which

characterize the angular and spectral signatures of vegeta-

tion canopies are related to the eigenvalue of the transport

equation and their properties are discussed below.

The three-dimensional radiation field in a scattering and

absorbing medium bounded at the bottom by a reflecting

surface can be expressed in terms of solutions of two surface-

independent subproblems: the radiation field calculated for

the case of a completely absorbing surface below the medium

and the radiation field in the same medium generated by

anisotropic wavelength-independent sources located at the

bottom of the medium (Knyazikhin et al., 1998; Marshak,

Knyazikhin, Davis, Wiscombe, & Pilewskie, 2000). We use

this property to extend our analysis to the general case of a

reflecting background beneath the vegetation.

Our theoretical investigation is based on the assumption

that the transport equation can describe the radiative regime

in vegetation canopies. However, it has been indicated by

many investigators that the transport equation in its original

form (Ross, 1981) cannot describe the radiative regime in

vegetation canopies because it does not account for the hot-

spot effect, i.e., a sharp peak about the retrosolar direction

(Knyazikhin, Marshak, & Myneni, 1992; Kuusk, 1985; Li &

Strahler, 1992; Marshak, 1989; Myneni, Marshak, & Knya-

zikhin, 1991; Nilson, 1991; Verstraete, Pinty, & Dickenson,

1990). With a simple example, we demonstrate that the solu-

tion of the transport equation contains a singular component

that was ignored in all previous studies on three-dimensional

radiative transfer problems, leading to the erroneous state-

ment on inapplicability of the transport equation. This

component describes the hot-spot effect. This justifies the

use of the transport equation as the basis for interpretation of

remotely sensed data acquired over vegetated land surface.

2. Signatures of vegetation in the case of an

absorbing ground

Consider a vegetation canopy confined to 0 < z <H. The

surface z= 0 and bottom z =H constitute its upper and

lower boundaries. The spectral composition of the incident

radiation is altered from interactions with phytoelements.

The magnitude of scattering by the foliage elements is

characterized by the hemispherical leaf reflectance and

transmittance, defined as follows: the hemispherical leaf

transmittance (reflectance) is the portion of radiation flux

density incident on a leaf surface that is transmitted

(reflected). Their sum is denoted as the hemispherical leaf

albedo. The reflectance and transmittance of an individual

leaf depends on wavelength, tree species, growth condi-

tions, leaf age, and its location in the canopy. For simpli-

city, leaf albedo is assumed to be spatially independent,

and the ratio of leaf transmittance to leaf albedo independ-

ent of wavelength. We start with the simplest case— the

reflectance of the ground below the vegetation is zero.

Results presented in this section are required to extend our

analysis to the general case of a reflecting ground below

the vegetation. Let a parallel beam of intensity cl be

incident on the upper boundary. The governing transport

equation is

V � rIlðr;VÞ þ uLðrÞGðr;VÞIlðr;VÞ

¼ wluLðrÞ
Z
4p

1

p
Gðr;V0 ! VÞIlðr;V0ÞdV0; ð1Þ

and the boundary conditions are

Ilðr0;VÞ ¼ jm0j

1dðV
V0Þ;

for downward directions; ð2Þ

IlðrH;VÞ ¼ 0; for upward directions: ð3Þ

Here, the vector r denotes the Cartesian triplet (x,y,z) with its

origin at the canopy top; r0 and rH denote points on the

upper and lower boundaries, respectively. The unit vector V

is expressed in spherical coordinates with respect to (
 Z)

axis and cos 
 1 m and f are its polar angle and azimuth.

V0 = (m0, f0) is the direction of the parallel beam; Il (in

sr
 1) is the ratio of the monochromatic radiance at r in the

direction V at wavelength l to incident flux cl|m0|, where
cos 
 1 m0 is the solar zenith angle. uL is the leaf area density

distribution function. G is the projection of leaf normals at r

onto a plane perpendicular to the direction V. The symbol G

denotes the area scattering phase function normalized by the

leaf albedo wl. Given the assumption above regarding the

leaf spectral transmittance and albedo, this variable does not

depend on wavelength (Knyazikhin & Marshak, 1991). A

precise description of variables used can be found in

Myneni (1991) and Ross (1981). Below, the formulation of

Myneni (1991) is adopted.
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The BRDF is the directional radiance reflected from a

target divided by the irradiance (incident flux) illuminating

the target at a single incident angle (Nicodemus, Richmond,

Hsia, Ginsberg, & Limperis, 1977). For a vegetation canopy

bounded below by a black surface, the BRDF is the solution

Il of the boundary value problem (Eqs. (1)–(3)). Note that

Il depends on values of the spectral leaf albedo that in turn

depend on wavelength. It allows the parameterization of

BRDF in terms of leaf albedo rather than wavelength.

Therefore, the wavelength dependence will be suppressed

in further notations. The value of leaf albedo will be added

to the argument list of the solution of Eqs. (1)–(3).

We investigate spectral and angular variation in BRDF

using operator theory (Richtmyer, 1978; Vladimirov, 1963)

by introducing the differential and integral operators (L and

S operators, respectively; Eq. (4))

LIw ¼ V � rIw þ uLðrÞGðr;VÞIwðr;VÞ;

SIw ¼ uLðrÞ
Z
4p

1

p
Gðr;V0 ! VÞIwðr;V0ÞdV0:

ð4Þ

It should be emphasized that the differential and integral

operators do not depend on leaf albedo. The solution Iw of

Eqs. (1)–(3) can be represented as the sum of two

components, viz., Iw=Q +jw. Here, the wavelength-inde-

pendent function |m0|Q is the probability density that a

photon in the direct beam will arrive at r along V0 without

suffering a collision. It satisfies the equation LQ = 0 and the

boundary conditions (Eqs. (2) and (3)). Note that Q contains

the Dirac delta function d(V
V0), and thus, it takes zero

values in all directions except V0. The second term

describes photons scattered one or more times in the

canopy. It satisfies Ljw=wSjw+wSQ and zero boundary

conditions. By letting T= L
 1S, the latter can be trans-

formed to

jw ¼ wTjw þ wTQ: ð5Þ

Substituting jw = Iw
Q into Eq. (5) results in an integral

equation for Iw (Bell & Glasstone, 1970; Vladimirov, 1963):

Iw 
 wTIw ¼ Q: ð6Þ

It follows from Eq. (6) that Iw
wTIw does not depend on w
and involves the validity of the following relationship

Iw 
 wTIw ¼ Ia 
 aTIa; ð7Þ

where Iw and Ia are solutions of Eqs. (1)–(3) corresponding

to leaf albedos w and a, respectively.
An eigenvalue of the operator T is a number p such that

there exists a function y that satisfies y = pTy. Kaufmann

et al. (2000), Knyazikhin et al. (1998), and Panferov et al.

(2001) defined the eigenvalue and eigenvector problem for

the integro-differential form of the transport equation spe-

cified in Eq. (1) that is equivalent to the above formulation.

Under some general conditions (Vladimirov, 1963), the sets

of eigenvalues pk (k = 0, 1, 2,. . .) and eigenvectors yk(r,V)

(k = 0, 1, 2,. . .) are a discrete set; the eigenvectors satisfy the

condition of orthogonality. The transport equation has a

unique positive eigenvalue that corresponds to a unique

positive eigenvector. This eigenvalue is greater than the

absolute magnitudes of the remaining eigenvalues. This

means that only one eigenvector, say y0, takes on positive

values for any r and V. Fig. 1 shows an example of the

positive eigenvector of T evaluated by the Kellogg’s method

(Riesz & Sz.-Nagy, 1990).

2.1. Location of canopy reflectances in spectral space

The location of reflectance data in spectral space is an

important source of information about the vegetation can-

opy conveyed by multiangle and multispectral satellite data.

The DHR, defined as

rðwÞ ¼
Z
2p
Iwðr0;VÞjmjdV

� �
0

; ð8Þ

is used to specify the location of multiangle data. Here, h i0
denotes the average over the upper canopy boundary. Let

t(w) and a(w) be canopy transmittance and absorptance

corresponding to leaf albedo w, i.e.,

tðwÞ ¼
Z
2p
IwðrH;VÞjmjdV

� �
H

; ð9Þ

aðwÞ ¼
ð1
 wÞ

R
V
dr

R
4p uðrÞLGðr;VÞIwðr;VÞdV

S
: ð10Þ

Here, h iH denotes the average over the canopy bottom, V is

the domain in which the canopy is located, and S is area of

Fig. 1. Positive eigenvector j0(r0,V) of the operator T= L
 1S at the

canopy top and in upward directions. Polar angles are shown with a

positive (negative) sign if the azimuth of the upward direction is 0
 (180
).
The positive eigenvalue is p= 0.785. Calculations were performed for

homogeneous canopy, uL(r) = LAI/H, and uniform leaves, G = 0.5;

G(u) = (3p)
 1(1
 g)(sin u
 u cos u)
 g cos u/3. Here, LAI is the leaf

area index, u is the scattering angle, and g is the ratio of leaf transmittance

to leaf albedo. LAI and g were set to 4 and 0.46, respectively. In the case of

uniform leaves, the eigenvector does not depend on azimuth.
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the upper canopy boundary. Variables (Eqs. (8)–(10)) are

related via the energy conservation law as

tðwÞ þ rðwÞ þ aðwÞ ¼ 1; ð11Þ

that is, the radiation absorbed, transmitted, and reflected by

the canopy is equal to radiation incident on the canopy. Let

i(w) be canopy absorption a(w) normalized by leaf

absorption 1
w, i.e.,

iðwÞ ¼ aðwÞ
1
 w

¼ 1
 tðwÞ 
 rðwÞ
1
 w

: ð12Þ

For a vegetation canopy bounded at the bottom by a black

surface, this variable is the average number of photon

interactions with the leaves before either being absorbed or

exiting the medium. We term this canopy interception.

Eq. (7) allows a relationship between the maximum

eigenvalue p0 and canopy interception to be established.

Multiplying this equation by the extinction coefficient

s = uLG and integrating over V and all directions V

results in

iðwÞ 
 wqiðwÞiðwÞ ¼ iðaÞ 
 aqiðaÞiðaÞ: ð13Þ

Here,

qiðwÞ ¼
R
V
dr

R
4p uLðrÞGðr;VÞywdV

iðwÞ � S ; ð14Þ

where yw = TIw and Iw is the solution of Eqs. (1)–(3). It can

be shown that qi(w) = p0, where p0 is the positive eigenvalue
of the operator T (Knyazikhin et al., 1998). This implies that

the ratio (Eq. (14)) is invariant with respect to the

wavelength, and the value of p0 is determined by intrinsic

structural properties of the vegetation canopy. Multiplying

Eq. (7) by |m|, integrating over all downward directions and

averaging over the canopy lower boundary, one obtains a

similar relationship for canopy transmittance, with another

wavelength-independent constant pt:

tðwÞ 
 wpttðwÞ ¼ tðaÞ 
 apttðaÞ: ð15Þ

Panferov et al. (2001) investigated the spectral-invari-

ance property of canopy interception and transmission in the

general case (i.e., without the previously mentioned assump-

tion regarding the leaf optical properties) and confirmed it

with field measurements. It was demonstrated that the

variables p0 and pt govern the shortwave energy conser-

vation in vegetation canopies; that is, the partitioning of

incident radiation among canopy absorption, transmission,

and reflection. A similar relationship, however, cannot be

derived for canopy reflectances (Panferov et al., 2001),

because Q = 0 for upward directions, and thus, the integ-

ration of Eq. (14) over upward traveling directions does not

specify a wavelength-independent coefficient.

Thus, given p0 and pt and canopy interception (i(a)) and
transmittance (t(a)) at a reference leaf albedo a, one can

evaluate these variables for any leaf albedo. These variables,

p0, pt, t(a), and i(a), are determined solely by the structural

properties of vegetation. The DHR can be evaluated via the

energy conservation law (Eq. (11)). In the case of dense

canopies, Eqs. (11), (13), and (15) determine the location of

reflectance data in the spectral space as a function of leaf

albedo and canopy structure. This facilitates the linkage

between land cover type, expressed in terms of these

variables, to biophysical and biogeochemical processes in

vegetation canopies.

2.2. ASSI and ASLI

In terms of the transport theory, the BRDF is the solution

jw of Eq. (5) for diffuse radiation in upward directions and

at the upper canopy boundary, i.e., BRDF= hjw(r0,V)i0. To
characterize the scattering process within the canopy, the

following function is introduced (see Eq. (16)) (Kaufmann

et al., 2000)

hn;wðr;VÞ ¼ Tnjw

jw
: ð16Þ

If the solution jw is treated as a source within the vegetation

canopy, Tnjw describes the intensity of photons from this

source scattered n times and attenuated by the vegetation

canopy. hn,w is the ratio between the intensity of n times

scattered and attenuated radiation to jw. It follows from

Eq. (5) that 0
wh1,w
 1 at any spatial point and in any

direction. The function h1,w is related to the eigenvalue p0 as

follows (Kaufmann et al., 2000; Knyazikhin, 1990;

Krasnoselskii, 1964): the sequences,

an ¼ n
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
infhn;w

q
; bn ¼ n

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
suphn;w

q
ð17Þ

converge to the maximum eigenvalue p0 of the operator T

from below and above; that is, an
 p0
 bn. The supremum

and infinum in Eq. (17) are taken over all spatial points and

directions for which uL(r) 6¼ 0. Thus, the values of the

function hn,w vary about p0
n and the interval [an

n,bn
n] of its

variation becomes arbitrarily small as n tends to infinity.

The solution jw can be expanded in Neumann series as

(Knyazikhin & Marshak, 1991)

jw ¼ wTQþ w2T 2Qþ w3T 3Qþ : : : þ wnTnQ

þ wnTn wTQþ w2T2Qþ w3T 3Qþ : : :
� �

¼ wTQþ w2T 2Qþ w3T3Qþ : : : þ wnTnQþ wnTnjw

¼ wTQþ w2T 2Qþ w3T3Qþ : : : þ wnTnQþ wnhn;wjw:

It follows from these relationships that

jw ¼ w
TQþ wT2Qþ w2T3Qþ : : : þ wn
1TnQ

1
 wnhn;w
: ð18Þ

Eq. (18) establishes the required relationship between the

BRDF and the eigenvalue of the operator T: for
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sufficiently large n, the function hn,w can be replaced with

p0
n. The function hn,w was introduced in Kaufmann et al.

(2000) and used to assesses the effect of changes in solar

zenith angle on reflectances in Channels 1 and 2 and

normalized difference vegetation index (NDVI) from the

AVHRR Pathfinder land data set. The theoretical and

empirical analyses indicated that for dense canopies, h1,w
is minimally sensitive to solar zenith angle changes and

this sensitivity decreases as leaf area increases. If the

reciprocity principle is valid for vegetated surfaces, this

function should possess the same properties with respect

to view angles, i.e., one may expect small variation in

h1,w due to view angle changes. Fig. 2 shows the function

h1,w at red (wred = 0.2) and near-infrared (NIR; wNIR = 0.92)

spectral bands. We focus on Eq. (18) for n = 1 in our

study. It should be noted, however, that this case might

not provide a full interpretation of remotely sensed

surface reflectances.

The BRDF can be expressed in terms of the function

h1,w as

jw ¼ w
F

1
 wh1;w
: ð19Þ

Here, F = TQ is the probability density that a photon from

the direct beam, having been scattered by a phytoelement

will escape the canopy. The probability density function F

mainly determines the shape of BRDF. The ratio between

BRDFs at NIR and red spectral bands, or the simple ratio

(SR, Eq. (20)), results in the cancellation of F; thereby

decreasing its sensitivity to view angle changes, i.e.,

SRðVÞ ¼ jNIR

jred

¼ wNIR

wred

1
 wredh1;red
1
 wNIRh1;NIR

ð20Þ

The POLDER (polarization and directionality of the Earth’s

reflectances) surface reflectances demonstrate this effect:

Fig. 2. Function h1,w at (a) red and (b) NIR wavelengths for various values of the cumulative leaf area index u=LAI�z/H. The solar zenith angle is 15
. Other
parameters are the same as in Fig. 1. The eigenvalue p0 = 0.785 of the operator T is shown as a bold straight line.

Fig. 3. (a) Angular signature of canopy reflectance on the red–NIR plane and (b) SR. All parameters were set to the same values as in Fig. 2. Arctangent of the

SR is the angle between the line that connects a point on the signature and the origin of coordinates, and the horizontal axis. In this example, SR varies between

its maximum (11.02) and minimum (8.37) values; its mean and standard deviation are 9.96 and 0.69, respectively. Thus, the linear function

BRDFNIR(V) = 9.96�BRDFred(V) approximates the angular signature within uncertainty value of 0.69�BRDFred that corresponds to relative uncertainty

dBRDFNIR/BRDFNIR = 0.069.
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although some BRDFs exhibit a hot-spot-like behavior

(Fig. 7 in Zhang et al., in press), their angular signatures in

the spectral space are almost linear (Fig. 8 in Zhang et al., in

press). Fig. 3 demonstrates another example of variation in

BRDF and SR. Values of BRDFs at red and NIR spectral

bands are related as BRDFNIR(V) = SR(V)�BRDFred(V).

The coefficient SR(V) is slightly sensitive to V and thus one

can replace it by its mean value k. Based on the Minkowski

inequality (Bronstein & Semendyayev, 1985), the following

estimate of the accuracy (Eq. (21)) can be performed

dBRDFNIR ¼
Z
2pþ

ðSRNIRðVÞ 
 kÞ � BRDFred½ �2dV



ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiZ
2pþ

SRNIRðVÞ 
 k½ �2dV
s

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiZ
2pþ

BRDF2reddV

s

¼ s � jjBRDFredjj; ð21Þ
where s is the standard deviation of the SR and

BRDF2red ¼
R
2pþ BRDF

2
redðVÞdV. This explains the near-

linear relationship between BRDFs at red and NIR

spectral bands observed in POLDER data in the case of

dense canopies.

Fig. 4 demonstrates the function wh1,w at the NIR spectral

band derived from airborne multiangle imaging spectroradi-

ometer (AirMISR) (Diner, Barge, et al., 1998) surface reflec-

tance acquired over grassland, July 11–17, 1999 (Wang et al.,

1999). The following relationship between the NDVI and

h1,NIR reported in Kaufmann et al. (2000) was used:

NDVI �
ð1
 qÞð1
 wNIRh1;NIRÞ þ wNIRh1;NIR
ð1þ qÞð1
 wNIRh1;NIRÞ þ wNIRh1;NIR

; ð22Þ

where q is the ratio between leaf albedos at red and NIR

wavelengths, i.e., q =wred/wNIR. It follows directly from

Eq. (22) that wNIRh1,NIR� 1
 (q�SR) 
 1. In the case of

dense canopies, the ASSI, introduced in Zhang et al. (in

press) can be approximated by the SR.

The ASLI was introduced to quantify the anisotropy of

radiation reflected by vegetation. For a linearized signature,

this variable can be evaluated as

ASLI ¼
Z qmax

qmin

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
dBRDFred

dm


 �2

þ dBRDFNIR

dm


 �2
s

dm

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ k2

p Z qmax

qmin

dBRDFred

dm










dm: ð23Þ

In Eq. (23), m is the distance introduced in Zhang et al. (in

press). Thus, the ASLI is determined by variation in the shape

of BRDF, which is mainly determined by the wavelength-

independent probability density function F whose shape is

governed by the composition, density, and geometric struc-

ture of vegetation canopies. It will be shown in Section 4 that

F is the bidirectional gap probability function.

3. Signatures of vegetation in the case of a

reflective ground

The three-dimensional radiation field in a scattering and

absorbing medium bounded at the bottom by a reflecting

surface can be expressed in terms of the ground reflectance

properties (which are independent of medium) and solutions

of two independent subproblems: the radiation field calcu-

lated for the case of a completely absorbing surface below

the medium and the radiation field in the same medium

generated by anisotropic wavelength-independent sources

located at the bottom of the medium (Knyazikhin et al.,

Fig. 4. (a) Angular signature of grasses derived from AirMISR data. This curve can be approximated by the liner function BRDFNIR = 12.9�BRDFred. The
relative uncertainty dBRDFNIR/BRDFNIR = 0.17, which does not exceed uncertainties in AirMISR surface reflectances was used. (b) Function wNIRh1,NIR was

derived from AirMISR data (solid line) using Eq. (19) and from the solution of the transport equation (dotted line). In model calculation, wNIR and the ratio

q =wred/wNIR were set to 0.92 and 0.22, respectively. Other parameters are the same as in Fig. 3.
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1998; Marshak et al., 2000). This representation of the

radiation field does not violate the law of energy conser-

vation within the medium. For simplicity, we assume that

the canopy ground can be idealized as a Lambertian surface,

although this is not required for our analysis.

In the case of a reflective ground beneath the canopy, the

radiative field Iw,r(r,V) in the vegetation canopy satisfies

Eq. (1), boundary condition (Eq. (2)) for downward dir-

ection, and

Iw;rðrH;VÞ ¼ p
1

Z
2p

rðV0;VÞIw;rðrH;V0Þjm0jdV0 ð24Þ

for upward directions. Here, r is the bidirectional distribu-

tion function of the ground. In the case of Lambertian

surface (i.e., r does not depend on angular variables), the

solution of the boundary value problem (Eqs. (1), (2), and

(24)) can be decomposed to a linear sum of two angle-

dependent functions, namely,

Iw;rðr;VÞ ¼Iwðr;VÞ þ tðwÞ r
1
 rr*ðwÞJwðr;VÞ: ð25Þ

Here, Iw is the solution of the ‘‘black soil’’ problem (Eqs.

(1)–(3)) discussed previously, t(w) is determined by Eq. (9)

and does not depend on V, and Jl and the angle-

independent variable r*(w) are radiance and downward flux

at the ground level, respectively, generated by the isotropic

source located at the bottom of the canopy. The function Jw
satisfies Eq. (1), zero boundary condition at the top and

Jw(rH,V) = p 
 1 at the bottom. The operator equation

Jw=wTJw+ JS for Jw can be derived by a technique analogous
to that used earlier. Here, JS is the radiance generated by

photons in the isotropic source located at the bottom that have

not undergone any interactions in the canopy. It satisfies the

equation LJS = 0 and the boundary condition JS(r0,V) = 0 for

downward directions and JS(rH,V) = p 
 1 for upward

directions. Because the operator L does not depend on

wavelength, the function JS is wavelength independent, too.

The solution Jw can be represented as the sum of two

components, Jw= JS +j*w (Fig. 5), where j*w satisfies the

operator equation j*w=wTj*w+wTJS. It follows from this

representation that the radiative field Jw along upward

directions can be expressed as Jw = Js +wTJs/(1
wh*1,w)
where h*1,w = Tj*w/j*w. By applying the methods outlined in

the previous section, it can be shown that j*w possesses

properties similar to the solution of Eq. (5) in the sense of an

adjoint formulation; that is, j*w along the upper (lower)

canopy boundary in upward (downward) directions behaves

as jw at the canopy bottom (canopy top) in downward

(upward) directions.

It follows from Eq. (25) that the hemispherically inte-

grated surface reflectance rw,r can be expressed as

rw;r ¼ rðwÞ þ tðwÞ r
1
 rr*ðwÞt*ðwÞ ð26Þ

where r(w) is determined by Eq. (9) and t*(w) is the upward
flux at the upper canopy boundary resulting from the source

located beneath the canopy. Eq. (26) determines the location

of surface reflectance data in the spectral space. Decom-

positions (Eqs. (25) and (26)) hold true for non-Lambertian

surface also. In general case, r is an effective ground

reflectance. Jw describes the radiative field in the vegetation

canopy generated by an anisotropic wavelength-independ-

ent source located at the bottom of the canopy, the

specification of which depends on the anisotropy of the

canopy ground (Knyazikhin et al., 1998).

The representation Eq. (25) allows us to define biomes in

terms of three basic variables that determine the radiative

Fig. 5. Angular variation of Jw(r0,V) (legend ‘‘J’’) on the red–NIR plane. Each point on this signature can be regarded as a vector J = ( Jwred,JwNIR), which is

the sum of two vectors, Js=( JS,JS) and J=(j*wred,j*wNIR). Calculations were performed for the homogeneous canopy described in Fig. 1.
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regime in vegetation canopies. They are (1) architecture of

the individual plant or tree and the entire canopy, (2) optical

properties of the vegetation elements, and (3) anisotropy

and optical properties of the ground beneath the canopy.

Indeed, Iw and Jw depend on leaf albedo and two wave-

length-independent canopy-specific variables, p0 and pt,

both being determined by the wavelength-independent

operator T (see Eqs. (7)–(15)). In addition, the anisotropy

of the ground influences the behavior of Jw whose contri-

bution can be explicitly separated in terms of the functions Js
and h*1,w. The effective ground reflectance r in Eq. (25)

describes the optical properties of the ground beneath the

canopy. It follows from Eqs. (26), (15), and (11) that four

wavelength-independent and vegetation structure-specific

variables p0, pt, t(a), and a(a), and wavelength-dependent

leaf albedo and effective ground reflectance uniquely

determine the location of remotely sensed surface reflectance

data in the spectral space.

Eq. (25) includes two extreme situations. The first is the

case of a dense canopy, which transmits a negligible

amount of radiation, i.e., Jw(r0,V)t(w)� 0. The angular

signature of the canopy reflectance behaves as described

previously. This is also the case when the surface under-

neath the canopy is sufficiently dark, i.e., rl� 0. Broadleaf

forests are an example of such a situation. The second

situation is characteristic of a sparse canopy, which trans-

mits almost all incident radiation, i.e., t(w)� 1, and scatter-

ing from green leaves is negligible; that is, r*(w)� 0,

Iw,r� rJw. In this case, the angular signature is totally

determined by the optical properties of the ground. Two

angle-dependent components, Iw and Jw, in Eq. (25) deter-

mine the BRDF signature corresponding to intermediate

scenes. The first component varies about a line passing the

origin of the spectral plane. This does not hold true for Jw
(Fig. 5). A deviation of biome signature from the line

passing the origin, therefore, indicates the influence of the

ground beneath the canopy on canopy leaving radiation. It

results in a nonzero intercept in the linear regression of

the signature.

We conceive the canopy reflectance in one direction as a

vector on the spectral plane. Let BRDF, BRDFBS, and J be

vectors whose coordinates are Iw,r, Iw, and Jw, respectively,

at red and NIR wavelengths. These vectors depend on the

view direction. We denote by K a diagonal matrix whose

diagonal elements are values of t(w)r/(1
 rr*(w)) at red and
NIR wavelengths. This matrix is independent of the view

directions. We use the symbol �L to denote the length of a

vector in the spectral plane. Let BRDF0 be the reflectance of

a vegetation canopy with the most probable structural

composition. It follows from Eq. (25) that the distance

between BRDF0 and BRDF of another canopy satisfies the

following inequalities

jjBRDF0 
 BRDFjjL 
 jjBRDFBS
0 
 BRDFBSjL

þ jjK0J0 
KJjjL 
 �BS þ�G; ð27Þ

where

�BS ¼ jjBRDFBS
0 
 BRDFBSjjL;

�G ¼ max tcanopyðwlÞ
rcanopy;l

1
 rcanopy;lrcanopy* ðwlÞ
Jcanopy;wl :

ð28Þ

Here, the maximum is taken over red and NIR wavelengths

and two canopies. Based on the Minkowski inequality

(Bronstein & Semendyayev, 1985) and representation

Jw= JS +jw* (Fig. 5), the following estimate of the ASLI

can be derived from Eq. (25)

ASLI ¼
ZJmax

Jmin

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
dIwred;rred

dm


 �2
þ

dIwNIR;rNIR

dm


 �2s
dm



ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ k2

p ZJmax

Jmin

dIwred

dm










dm

þ�G

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ k2S

q ZJmax

Jmin

dj*wred

dm










dm;

where kS is the mean ratio JNIR(r0,V)/Jred(r0,V). It means

that the ASLI is determined by variation in the shape of the

BRDF and anisotropy of ground and �G. It follows from

Eq. (28) that the brighter the background, the higher the

value of the ASLI. The inequality Eq. (27) separates a circle

in the spectral space with its center at BRDF0 in one

direction and radius R =�BS +�G. Aggregating these

circles over all available observation directions results in a

set in the spectral space that contains the multiangle data

corresponding to various realizations of biome-specific

canopy structures and soil patterns. Its size is determined

by the radius R and the ASSL of BRDF0. Fig. 4 in Zhang

et al. (in press) shows the biome-specific sets derived from

POLDER multiangle reflectances.

4. Validity of the transport equation for

vegetation media

Our theoretical investigations are based on the assump-

tion that the three-dimensional transport equation can

describe the radiative regime in vegetation canopies. Pan-

ferov et al. (2001) recently made field measurements of

canopy spectral reflectance and transmittance at two sites

representative of equatorial rainforests and temperate con-

iferous forests to test the validity of the three-dimensional

transport equation for describing the radiation regime in

vegetation media. The idea behind the experiments was

simple. The transport equation can be regarded as a linear
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operator that assigns a three-dimensional radiation field

corresponding to the incident radiation (Vladimirov, 1963).

Under some general conditions, this linear operator can be

uniquely specified by its eigenvalues and eigenvectors

(Vladimirov, 1963). Eigenvalues are measurable parameters

(Panferov et al., 2001). It was demonstrated that the theoret-

ically derived eigenvalues (Knyazikhin et al., 1998) are

consistent with those derived from measurements. Thus,

the linear operator of the transport equation represents

radiative transfer in vegetation media. On the other hand, it

has been mentioned by many investigators that the transport

equation in its original form (Ross, 1981) cannot describe

certain aspects of the radiation regime in vegetation canopies

because it does not account for the hot-spot effect, i.e., a very

sharp delta function like maximum about the retrosolar

direction (Knyazikhin et al., 1992; Kuusk, 1985; Li &

Strahler, 1992; Marshak, 1989; Myneni et al., 1991; Nilson,

1991; Verstraete et al., 1990). Fig. 6 illustrates the mech-

anism of the hot-spot effect: photons penetrate into the

canopy through gaps, interact with leaves and exit the

canopy though the same gaps resulting in enhanced bright-

ness along the retroillumination direction. We shall use this

example to demonstrate the ability of the transport equation

to describe the hot-spot effect correctly.

Consider the three-dimensional medium shown in Fig. 6.

We use the boundary value problem for three-dimensional

transport equation to describe radiative transfer in this

medium, which is assumed to be bounded from below and

lateral sides by an absorbing surface,

V � rIðr;VÞ þ cðrÞsIðr;VÞ

¼ cðrÞ sS
4p

Z
4p
Iðr;V0ÞdV0; ð29Þ

Iðrt;VÞ ¼ i0dðV
V0Þ; nt �V < 0;

Iðrb;VÞ ¼ 0; nb �V < 0: ð30Þ

Here, s and sS are extinction and scattering coefficients that

are assumed to be constants for ease of analysis, c is the

indicator function that takes on values 1 and 0 in the ‘‘gray’’

and ‘‘white’’ areas, respectively, rt and rb denote points on

the top (subscript ‘‘t’’) and bottom and lateral (subscript

‘‘b’’) boundaries, nt and nb are outward normals to the

boundary at rt and rb, respectively, i0 is intensity of the

incident beam, and ‘‘�’’ denotes scalar product of two unit

vectors. The solution I(r,V) to this problem is the radiance at

r in the direction V that is treated as a Schwartz distribution.

The Schwartz theory distinguishes two types of functions:

regular and singular distributions (Vladimirov, 1971). There

is a one-to-one correspondence between ‘‘usual functions’’

and regular distributions, and thus, an ordinary function can

be regarded as a special case of a distribution. The Dirac

delta function is the simplest example of a singular

distribution. No usual function can be identified with it

(Vladimirov, 1971). In general, a solution of the transport

equation can be expressed as a sum of regular and singular

distributions. The singular summand must be separated

explicitly because numerical technique cannot deal with

singular distributions. The mathematical theory of Schwartz

distributions applicable to the transport equation was

developed by Germogenova (1986). Choulli and Stefanov

(1996) recently reported that there is a one-to-one corres-

pondence between the complicated three-dimensional struc-

ture of the medium and radiation exiting the medium. They

also pointed out that this property loses its validity in the

case of one- and two-dimensional media. An additional

singular distribution in the solution of the three-dimensional

transport equation makes this one-to-one correspondence

possible. We will closely follow ideas of Germogenova and

Choulli and Stefanov.

Photons entering the medium through Point A in the

direction V0 experience the first collision at Point C that

results in the appearance of a point diffuse. It is intuitively

clear that the three-dimensional radiation field decomposes

into two very different fields (Fig. 6). The first is generated

by this point diffuse source at C and the second from

photons penetrating into the medium thorough elementary

surfaces dS on the upper boundary. The incident beam,

therefore, should be treated as a horizontally inhomogen-

eous field with respect to its contribution to the radiation

regime inside the medium. We treat each point on the upper

Fig. 6. Three-dimensional medium with one isolated scattering center at

Point C. This medium is obtained from a homogeneous parallelepiped by

removing a sphere and a line connecting the sphere and the upper

medium boundary and putting a radiatively participating point at the

sphere center C. The removed portion is depicted as a white area. There

are no photon interactions in it. The gray area (which also includes Point

C) is an absorbing and scattering medium. The direction V0 of an incident

beam is chosen in such way that photons can penetrate into the medium

through Point A and experience the first collisions at Point C. It causes

the apparition of a point diffuse source generated by photons scattered by

this point. As a result, the three-dimensional radiation field decomposes

into two fields. The first one is generated by the point diffuse source

located at C. The second field results from photons penetrating into the

canopy thorough elementary surfaces dS on the upper boundary z= 0.
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boundary as a point monodirectional source and formulate

the radiative transfer problem for each such source. The

radiative response of the medium at r in direction V to a

point monodirectional source located at r0 is the Green’s

function, G(r,V;r0,V0) (Bell & Glasstone, 1970), which

satisfies Eq. (29) and G(rt,V;r0,V0) = d(rt
 r0)�d(V
V0).

The solution to the problem (Eqs. (29) and (30)) can be

expressed as an integral over the upper boundary of the

Green’s function as

Iðr;VÞ ¼ i0

Z
Gðr;V; r0;V0Þjnt �V0jdr0: ð31Þ

A technique to separate the singular components from

Eq. (31) is based on the following result (Choulli &

Stefanov, 1996; Germogenova, 1986): for three-dimen-

sional media, radiances, G0 and G1, of uncollided and

single-scattered photons from a point monodirectional

source are singular distributions while the remaining field

is described by a regular distribution GR. The Green’s

function, therefore, is the sum of two singular and one

regular component, i.e., G =G0 +G1 +GR. Substituting this

sum into Eq. (31) results in the decomposition of the

solution I(r,V) into three terms, I = I0 + I1 + IR, being inte-

grals over the upper boundary of G0, G1, and GR, respect-

ively. Because GR is a regular function, the third integral,

IR, is insensitive to a value of GR at a particular point r0,

i.e., one can ignore Point A when integrating GR over the

upper boundary. It means that the contribution of multiply

scattered photons entering the medium through Point A to

the term IR can be neglected (Fig. 6).

The singular nature of G0 and G1 makes their integrals

sensitive to particular points of the upper boundary. There-

fore, we perform the integration Eq. (31) over the upper

boundary surface that excludes Point A and separately

over Point A. The former separates photons ‘‘continu-

ously’’ penetrating into the medium through elementary

surfaces dS while the letter specifies the path that results

in the illumination of an isolated scattering center in the

medium (Fig. 6). The integration of G0 and G1 over the

surface results in similar expressions for the uncollided

and first-order scattering radiance. Thus, the sum of IR
and these two terms is the solution IS of the boundary

value problem (Eqs. (29) and (30)). Note that IS consists

of a singular (uncollided intensity) and regular (diffuse

intensity) components.

The integration of G0 and G1 over the set of points {rA}

results in IP= IP,0 + IP,1, where (Germogenova, 1986)

IP;0ðr;V; rCÞ ¼
i0

jr 
 rAj2
dðV
V0Þ

�d V
 r 
 rA

jr 
 rAj


 �
H

�ðjrA 
 rCj 
 jr 
 rCjÞ; ð32Þ

IP;1ðr;V; rCÞ ¼ I0
sSexpð
s � cðrÞ � jr 
 rCjÞ

4pjr 
 rCj2

� d V
 r 
 rC

jr 
 rCj


 �
: ð33Þ

Here, rA and rC denote the Cartesian coordinates of

Points A and C, respectively, H is the Heaviside function,

and |r
 rC| is the distance between r and rC. Thus, a

formal mathematical solution to the problem (Eqs. (29)

and (30)) is

Iðr;VÞ ¼ ISðr;VÞ þ Ipðr;V; rCÞ: ð34Þ

The first summand, IS, describes the three-dimensional

radiation field generated by photons penetrating into the

medium through elementary surfaces dS (Fig. 6) and is

insensitive to the presence of the isolated scattering center

C and the paths AB. We term IS the classical solution of the

transport equation (Eq. (29)). The second summand, IP, is

the radiative response of the medium to the point source

that is a singular distribution. With changes in the number

of isolated scattering centers, the classical solution IS is

unchanged but the singular component transforms to the

sum of IP(r,V;rC) over rC. Note that singular solutions

(Eqs. (32) and (33)) express the following well-known law,

namely, the radiance in vacuum decreases between two

points as the second power of the distance between the

points. It follows from Eqs. (32)–(34) and the relationship


V0=(rA
 rC)/|rA
 rC| that the exitant intensity at Point A

(Fig. 6) is I(rA,V) = IS(rA,V) + j(rA)d(V+V0), where

j(r) = i0sS/(4p|r
 rC|
2). The second summand causes a

delta function like peak in the retroillumination direction

of Eq. (34), i.e., the hot-spot effect.

Let Point C in Fig. 6 completely reflect the incident

radiation while the remaining ‘‘gray area’’ is a completely

absorbing medium. The classical solution IS = 0, and the

singular component IP,1 take on nonzero values within the

‘‘white area.’’ Let the number of paths AB be changed.

The classical solution is insensitive to this change. The

singular component IP,1 is sensitive to only those paths

that pass Point C (e.g., Line CD). Therefore, its specifica-

tion is equivalent to an estimation of the probability that a

scattering center can be simultaneously viewed from two

different points, i.e., the bidirectional gap probability

function. This function appears in most vegetation radi-

ation models (Kuusk, 1985; Li & Strahler, 1992; Nilson,

1991; Verstraete et al., 1990). The bidirectional gap

probability, however, was not related to the solution of

the transport equation previously, and thus, its incorpora-

tion into a particular model on an ad hoc basis led to the

violation of the energy conservation law (Knyazikhin

et al., 1998).
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5. Concluding remark

The insights gained from present land cover classifica-

tion activities suggest integration of multiangle data into

classification attempts for future progress. Land cover types

that exhibit distinct signatures in the space of remote

sensing data facilitate unambiguous identification of cover

types. In this two-part series, we develop a theme for

consistency between cover type definitions, uniqueness of

their signatures, and physics of the remote sensing data.

Radiative transfer best explains the physics of the processes

operative in the generation of the signal in the optical

remote sensing data. Biome definitions given in terms of

variables that the transport theory admits provide the basis

for the consistency principle. The underlying physical

principle is the energy conservation law. The three-dimen-

sional transport equation expresses this law in the most

general form. The realization of the consistency principle,

therefore, means that the law of energy conservation is the

required basis for a theory of land cover identification.
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