
Investigation of product accuracy as a function of input

and model uncertainties

Case study with SeaWiFS and MODIS LAI/FPAR algorithm

Yujie Wanga,*, Yuhong Tiana, Yu Zhanga, Nazmi El-Saleousb,
Yuri Knyazikhina, Eric Vermoteb, Ranga B. Mynenia

aDepartment of Geography, Boston University, 675 Commonwealth Avenue, Boston, MA 02215, USA
bNASA Goddard Space Flight Center, Code 922, Greenbelt, MD 20771, USA

Received 28 June 2000; accepted 24 March 2001

Abstract

The derivation of vegetation leaf area index (LAI) and the fraction of photosynthetically active radiation (FPAR) absorbed by vegetation

globally from the Sea-Viewing Wide Field-of-view Sensor (SeaWiFS) multispectral surface reflectances using the algorithm developed for

the moderate resolution imaging spectroradiometer (MODIS) instrument is discussed here, with special emphasis on the quality of the

retrieved fields. Uncertainties in the land surface reflectance and model used in the algorithm determine the quality of the retrieved LAI/

FPAR fields. The in-orbit radiances measured by space-borne sensors require corrections for calibration and atmospheric effects, and this

introduces uncertainty in the surface reflectance products. The model uncertainty characterizes the accuracy of a vegetation radiation

interaction model to approximate the observed variability in surface reflectances. When the amount of spectral information input to the

retrieval technique is increased, not only does this increase the overall information content but also decreases the summary accuracy in the

data. The former enhances quality of the retrievals, while the latter suppresses it. The quality of the retrievals can be influenced by the use of

uncertainty information in the retrieval technique. We introduce a stabilized uncertainty, which is basic information to the retrieval technique

required to establish its convergence; that is, the more the measured information and the more accurate this information is, the more reliable

and accurate the algorithm output will be. The quality of retrieval is a function of the stabilized uncertainty whose accurate specification is

critical for deriving biophysical surface parameters of the highest quality possible using multispectral land surface data. The global LAI and

FPAR maps derived from SeaWiFS multispectral surface reflectances and uncertainty information, as well as an analysis of these products is

presented here. D 2001 Elsevier Science Inc. All rights reserved.

1. Introduction

Leaf area index (LAI) and the fraction of photosyntheti-

cally active radiation absorbed by vegetation (FPAR), which

characterize vegetation canopy functioning and its energy

absorption capacity, are important variables in terrestrial

modeling studies of canopy photosynthesis and transpira-

tion. Terrestrial carbon exchange studies with the retrieved

structural information show that canopy and landscape

structure plays a major role in determining CO2 fluxes in

spatially heterogeneous environments (Sellers et al., 1997).

Therefore, these variables are key state parameters in most

ecosystem productivity models and in global models of

climate, hydrology, biogeochemistry, and ecology (Sellers

et al., 1996). Advances in remote sensing technology

(Deschamps et al., 1994; Diner et al., 1999; Justice, Ver-

mote, Townshed, et al. 1998) and radiative transfer model-

ing (Kimes, Knyazikhin, Privette, Abuelgasim, & Gao,

2000; Kuusk, 1985; Myneni, 1991; Ross, Knyazikhin,

Kuusk, Marshak, & Nilson, 1992; Ross & Marshak, 1984;

Verstraete, Pinty, & Dickenson, 1990) greatly improved the

possibility of accurate estimates of biophysical information

from spatial, spectral, angular, and temporal resolution of

remotely sensing data. The objective of this paper is to

demonstrate that uncertainties in multispectral surface

reflectances are critical input information to retrieval algo-

rithms in order to derive biophysical surface parameters of

the highest quality possible using multispectral land surface

data. The operational algorithm for the production of global
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LAI and FPAR fields developed for the moderate resolution

imaging spectroradiometer (MODIS) instrument applied to

the Sea-Viewing Wide Field-of-view Sensor (SeaWiFS)

data is used to demonstrate this.

At least two factors influence the quality of surface

biophysical parameters retrieved from remotely sensed sur-

face reflectances:

� Uncertainty in the land surface reflectance product.

Satellite-borne sensors measure in-orbit radiances of the

target through the atmosphere. The surface reflectances are

obtained by processing the in-orbit data to correct for

atmospheric and other environmental effects which lead to

uncertainties in the surface reflectance product.� Model uncertainty determined by the range of

natural variation in biophysical parameters not accounted

by the model. In general, this type of uncertainty depends

on the amount of information available when retrieving

biophysical parameters from surface reflectances, as well

as the temporal and spatial resolution of data (Diner et

al., 1999).

In general, these uncertainties set a limit to the quality of

retrievals; that is, accuracy in the retrievals cannot be better

than summary accuracy in the data and the model. However,

the quality of the retrievals can be influenced by the use of

uncertainty information in the retrieval technique. Defini-

tions of uncertainties in the land surface reflectance product

and model, as well as their impact on the retrievals, are

discussed in Section 3 following a formulation of the

inverse problem of retrieving LAI and FPAR from surface

spectral reflectances. It is shown that if uncertainties are

ignored, it can result not only in the loss of information

conveyed by the multispectral data, but also in destabiliza-

tion of the retrieval process. Results from this section

underlie our strategy of producing global SeaWiFS LAI/

FPAR fields of highest possible quality.

2. Formulation of the inverse problem

One of the algorithms to retrieve LAI and FPAR from

atmospherically corrected Bidirectional Reflectance Distri-

bution Function (BRDF) is formulated as follows (Knyazi-

khin, Martonchik, Myneni, Diner, & Runing, 1998): Given

sun (V0) and view (Vv) directions, BRDFs dk(V0,Vv) at N

spectral bands and uncertainties dk(V0,Vv) (k = 1, 2, . . ., N),
find LAI and FPAR. The algorithm compares observed

dk(V0,Vv) and modeled rk(V0,Vv,p) canopy reflectances

for a suite of canopy structures and soil patterns that

represent a range of expected natural conditions. Here

p=[canopy, soil pattern] denotes a pattern of canopy structure

and soil type (Kimes et al., 2000). All canopy/soil patterns p

for which modeled and observed BRDFs differ by an amount

equivalent to or less than the corresponding uncertainty, i.e.

1

N

XN
k¼1

rkðVv;V0; pÞ � dkðVv;V0Þ
dk

� �2

� 1; ð1Þ

are considered as acceptable solutions. FPAR is also

calculated for each acceptable solution. The mean values

of LAI and FPAR averaged over all acceptable solutions and

their dispersions are taken as solutions and retrieval

uncertainties (Kimes et al., 2000; Knyazikhin, Mortonchik,

Diner, et al., 1998; Tian et al., 2000; Zhang et al., 2000). If

the inverse problem has a unique solution for a given set of

surface reflectances, mean LAI coincides with this solution

and its dispersion equals zero. If Eq. (1) allows for multiple

solutions, the algorithm provides a weighted mean in

Fig. 1. (a) Distribution of processed pixels with respect to their reflectances at red (dRED) and near-infrared (dNIR) spectral bands derived from SeaWiFS data

(September 22, 1997). Inequality (1), N= 2, defines an ellipse with the semiaxes
ffiffiffi
2

p
dRED and

ffiffiffi
2

p
dNIR centered at the point (dRED, dNIR). Each canopy/soil

pattern for which modeled reflectances belong to the ellipse is an acceptable solution. For each set d=(dRED, dNIR) of observed spectral reflectances, one sorts

the set of acceptable solutions into ascending order with respect to LAI values and defines a solution distribution functionFd(l,d) as the portion of different LAI

values, which are less than l. (b) Solution density distribution function dFd(l,d)/dl for five different pixels. Mean LAI over this distribution and its dispersion

are taken as LAI retrieval and its uncertainty, respectively.
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accordance with the frequency of occurrence of a given

value of LAI. The dispersion magnitude indicates the

reliability of the corresponding LAI value. The accuracy of

retrievals cannot be improved if no additional information is

available. Fig. 1 illustrates this approach. Note that the

concept of multiple acceptable solutions was originally

formulated and implemented in the Multiangle Imaging

SpectroRadiometer (MISR) aerosol retrieval algorithm

(Martonchick et al., 1998).

In the case of a dense canopy, its reflectance in one or

several directions can be insensitive to various parameter

values (e.g., LAI) characterizing the canopy because, for

example, the reflectance of solar radiation from the under-

lying soil surface or lower leaf-stories is completely

obscured by the upper leaves (Carlson & Ripley, 1997;

Jasinski, 1996; Liu & Huete, 1995; Price,1993). When this

happens, the canopy reflectance is said to belong to the

saturation domain (Knyazikhin, Martonchik, Diner, et al.,

1998). The distribution of acceptable LAI values will appear

flat over the range of LAI, illustrating that the solutions all

have equal probability of occurrence (Fig. 1b). The reli-

ability of LAI values retrieved under a condition of satu-

ration is very low (Gobron, Pinty, & Veratraete, 1997). This

situation can be recognized by the retrieval technique

(Knyazikhin, Martonchik, Diner, et al., 1998). We introduce

a saturation index (SI) as:

SI ¼ number of LAIs retrieved under conditions of saturation

total number of retrieved LAI values
:

This index is an indicator of the quality of the retrievals;

that is, the smaller its value, the more reliable the algorithm

output would be. One may expect low values of the SI when

more information is used to retrieve LAI and FPAR (Diner

et al., 1999). However, the SI may increase with increase of

uncertainties dk.
Given the set d=(d1, d2, . . ., dN) of observed canopy

reflectances, it may be the case that Eq. (1) has no solutions.

A pixel for which the algorithm retrieves a value of LAI and

FPAR is termed a retrieved pixel. The ratio of the number of

retrieved pixels to the total number of processed pixels is the

retrieval index (RI), i.e.:

RI ¼ number of retrieved pixels

total number of processed pixels
:

Fig. 2. Histograms of SeaWiFS canopy reflectances in July 1998: (a) red spectral band; (b) near-infrared spectral band; (c) green spectral band; and (d) blue

spectral band.
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This variable characterizes the quality of LAI and FPAR

maps showing of how the retrieved LAI and FPAR values

cover the globe. It is a function of uncertainties in the

observed and modeled canopy reflectances and number N of

spectral bands used. Generally, the RI increases with

increasing uncertainties in data and model. However,

increasing uncertainties means poor quality of input data

and therefore poor quality in LAI/FPAR. Uncertainties,

therefore, must be carefully evaluated in order to achieve

optimal algorithm performance. A better result should, in

general, have a high RI, low SI, and retrieval dispersion.

3. Uncertainties in modeled and observed canopy

reflectances

Uncertainties in the land surface reflectance product and

model uncertainties set a limit to the quality of retrievals

and, thus, their specification is critical to production of

global LAI and FPAR of maximum possible quality. Their

definitions are presented in this section.

3.1. Uncertainties in the land surface reflectance product

Satellite-borne sensor measures in-orbit radiances of the

target through the atmosphere. Obtaining surface reflectan-

ces requires processing of the in-orbit data to correct for

atmospheric and other environmental effects, which deter-

mines uncertainties in the surface reflectance product. Let

d1, d2, . . ., dN be atmospherically corrected BRDFs at N

spectral bands. We treat these values as independent random

variables with finite variances sk
2, k = 1, 2, . . ., N, and

assume that the deviations ek=(dk�mk)/sk follow Gaussian

distribution. Here, mk is the mathematical expectation of dk,

which are treated as ‘‘true values.’’ The random variable

c2
s½d�m	 ¼

XN
k¼1

e2k ¼
XN
k¼1

ðdk � mkÞ2

s2k
; ð2Þ

characterizing the proximity of atmospherically corrected

data d=(d1, d2, . . ., dN) to true values m=(m1, m2, . . ., mN)

has a chi-square distribution. A value of cs
2�N indicates

good accuracy in the atmospherically corrected surface

reflectances. We assume that the atmospheric correction

algorithm provides surface reflectances d satisfying cs
2�N

with a probability 1�a; that is, Prob(cs
2 >N) =a where

1�a is the value of the chi-square distribution at N.

Dispersions s=(s1, s2, . . ., sN) are uncertainties in the land

surface reflectance product.

3.2. Model uncertainty

Model uncertainty characterizes the accuracy of models

to approximate natural variability, which in general is quite

high. For example, consider two broadleaf forests (having

the same canopy/soil patterns) located, say, in Siberia and in

North America. The algorithm treats these as identical

scenes. However, their reflectances can differ by 15–20%

due to factors that were not accounted in the model. It

means that one must assume 15–20% uncertainties in the

simulation to account for the fact that these two forests are

treated as belonging to one class. This type of uncertainties

depend on the amount of information available when

retrieving biophysical parameters from surface reflectances,

as well as on the temporal and spatial resolution of data.

The propagation of model uncertainty through the

retrieval technique starts when one replaces ‘‘true’’ reflec-

tances m in Eq. (2) with modeled reflectances r=(r1, r2, . . .,
rN). We use values eM,k=(mk� rk)/sM,k, to characterize the

inaccuracy in model predictions. Dispersions sM=(sM,1,

sM,2, . . ., sM,N) are model uncertainties. Consider a canopy

radiation model that can simulate surface reflectances m

with accuracy csM

2 [m� r]�N. Based on the Minkowski

inequality (Bronstein & Semendyayev, 1985), the following

transformation of cs[d� r] can be performed,

cs½d� r	 ¼ cs½ðd�mÞ � ðr�mÞ	


 jcs½d�m	 � cs½m� r	j

¼ cs½d�m	 �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXN
k¼1

ðmk � rkÞ2

s2k

vuut
������

������
¼ cs½d�m	 �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXN
k¼1

e2M ;k

s2M ;k

s2k

vuut
������

������:

Thus, cs[d� r] is a function of the ratio sM,k/sk. Let
sk tend to zero (i.e., one has very accurate surface

Table 1

Mean reflectance of various biome types

Biome

Spectral band Grass/cereal crops Shrubs Broadleaf crops Savannas Broadleaf forests Needle forests

Red 0.104 0.087 0.081 0.083 0.058 0.042

NIR 0.244 0.227 0.288 0.245 0.286 0.255

Blue 0.049 0.038 0.048 0.050 0.047 0.027

Green 0.090 0.078 0.086 0.082 0.073 0.059

NDVI 0.409 0.477 0.559 0.503 0.670 0.713
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reflectance measurements) while holding sM,k constant

(i.e., the model is not improved). The quantity cs[d�m]

is a bounded value, i.e., cs[d�m]�
ffiffiffiffi
N

p
, while cs[m� r]

becomes arbitrary large. It means that the more accu-

rately atmospheric correction is performed, the more

inaccurately the solutions of Eq. (1) approximate LAI

values in this case, because the ‘‘true’’ LAI values do not

provide a good fit between observed and modeled

reflectances. Ignoring the model uncertainty in the

retrieval algorithm, therefore, causes a destabilization of

the convergence process; that is, the more accurate the

input information is, the more reliable the algorithm

output should be. This instability also takes place when

one uses the metric csM
characterizing the accuracy in

model predictions without accounting for the uncertainties

in measurements.

To stabilize the convergence process, a stabilized uncer-

tainty d=(d1, d2, . . ., dN) is introduced as dk
2=(sM,k

2 + sk
2)/ q2.

Here, q is a stabilization parameter as specified below. This

uncertainty is used to solve Eq. (1). It follows from the

Minkowski inequality that:

cd½d� r	 ¼ cd½ðd�mÞ þ ðm� rÞ	

� cd½d�m	 þ cd½m� r	

¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXN
k¼1

ðdk � mkÞ2

s2k
q2

s2k
s2k þ s2M ;k

vuut

þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXN
k¼1

ðmk � rkÞ2

s2M ;k

q2 1� s2k
s2k þ s2M ;k

 !vuut
� qlmaxcs½ � 	 þ qð1� lminÞcsM ½ � 	

� ½qlmax þ qð1� lminÞ	
ffiffiffiffi
N

p
; ð3Þ

Fig. 3. Statistical properties of SeaWiFS canopy reflectances. Distribution of pixels with respect to their reflectances at red and near-infrared spectral bands in

(a) July 1998 and (b) November 1997. Each biome-dependent contour identifies an area of high data density that contains 25% of the pixels from a given biome

type. NDVI histograms for six biome types in (c) July 1998 and (d) November 1997.

m rd m
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where:

l2
max ¼ max

k

s2k
s2k þ s2M ;k

;

l2
min ¼ min

k

s2k
s2k þ s2M ;k

:

We assign a value to q such that qlmax + q(1� lmin) = 1 is

satisfied, i.e., q = 1/(1 + lmax�lmin). The stabilization

parameter varies between 0.5 and 1. It follows from Eq.

(3) that the use of the stabilized uncertainty establishes

convergence of the retrieval technique; that is, tending sk
and sM,k to zero independently, ‘‘true’’ LAI always provides

a good fit between observed and modeled reflectances

within the stabilized uncertainty d and, thus, solutions of

Eq. (1) can approximate the desired parameters.

The metric cd is a decreasing function with respect to the

stabilized uncertainty d. If model and land surface product

uncertainties are underestimated (i.e., d < d0), the algorithm

will not admit those solutions of Eq. (1), which provide a

good fit in the correct metric cd0 and fail in the metric cd. It

can result in fewer solutions or even the absence of a

solution to Eq. (1) and, consequently, in lower values of

the dispersion and RI. For example, all canopy/soil patterns

with cd0[d� r] =
ffiffiffiffi
N

p
, will be treated as unacceptable sol-

utions in this case. The theory of ill-posed problems states

that a best estimate of desired parameters satisfies

cd0[d� r] =
ffiffiffiffi
N

p
(Tikhonov & Arsenin, 1986). Therefore,

we cannot expect the decrease in the number of acceptable

solutions, the dispersion and the RI to indicate improvement

in the algorithm output. On the contrary, the underestima-

tion of real uncertainties can result in the deterioration of

retrieval quality.

If model and land surface reflectance uncertainties are

overestimated (i.e., d>d0), then,cd[d� r]�cd0[d� r]�
ffiffiffiffi
N

p
,

i.e., the number of solutions to Eq. (1) and, consequently,

the RI will increase. It results in a larger number of

acceptable solutions, higher RI, and, consequently, lower

quality of LAI retrievals. Unlike the former case, however,

the best estimation of the desired parameters satisfies Eq.

(1). It means that the underestimation of uncertainties can

result in a lower retrieval quality than their overestimation.

A technique for modification of the algorithm for deriving

biophysical parameters of the highest possible quality is

equivalent to maximization of RI, minimization of SI and

Fig. 4. Twenty-five percent density contours in (a) red–green, (b) red–blue, (c) green–NIR, and (d) in blue–NIR spectral spaces.
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the dispersion while holding the best estimation in the set

of acceptable solutions. Accurate specification of uncer-

tainties should provide a high value of RI for any

combination of spectral bands used in Eq. (1). Under this

condition, the dispersion, RI, and SI can characterize

quality of retrievals.

To study the effect of uncertainties on retrievals, an

overall uncertainty d� is introduced as:

d ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
d1d2 : : : dN

N
p

where dk is the stabilized uncertainty in the ith spectral band.
The value of

ffiffiffiffi
N

p
dN is proportional to the area (N=2) or

volume (N>2) of the ellipse/ellipsoid determined by the

inequality (1) in the N-dimensional spectral space (Fig. 1a).

In this paper, we will use a relative uk and an overall relative

ū(N) uncertainty defined as:

uk ¼
dk
rk

; k ¼ 1; 2; . . . N ;

u�ðNÞ ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u1u2 : : : uNN

p ð4Þ

The overall uncertainty can be considered as a measure

of the uncertainty in model and land surface reflectance

product. We cannot expect a lower uncertainty in the

LAI/FPAR retrievals than the overall uncertainty. Two

retrievals are said to be comparable if they were obtained

from data having the same value of the overall uncer-

tainty. On this equal-overall uncertainty basis, one can

compare different retrievals as a function of the number N

of spectral bands used to solve Eq. (1) and uncertainties

uk, k = 1, 2, . . ., N.

4. Data analysis

Multispectral data from the SeaWiFS were used to pro-

duce LAI/FPAR of the highest possible quality with the

MODIS algorithm. Geocoded, calibrated, cloud-screened,

and atmospherically corrected global surface reflectances in

eight spectral bands at 8-km resolution were used in this

study. The temporal range of data is September 1997, with

nominal mission duration of 5 years. We used surface

reflectances centered at 443 (blue), 555 (green), 670 (red),

and 865 (near-infrared) nm to retrieve LAI and FPAR with

MODIS algorithm (Knyazikhin, Martonchik, Myneni, et al.,

1998). The width of the blue, green, and red bands was 20 nm,

and NIR was 40 nm. For each pixel, solar and view zenith

angles and azimuths were available and are required by the

algorithm. The daily data of each month were composited

into one layer based on the minimum-blue standard.

A biome classification map (BCM) is another important

ancillary data layer used as input to the algorithm. The BCM

is derived from the AVHRR Pathfinder data set (Myneni,

Nemani, & Running, 1997). In this map, global vegetation

is classified into six biome types: grasses and cereal crops;

shrubs; broadleaf crops; savannas; broadleaf forests; and

needle forests. The structural attributes of these biomes are

parameterized in terms of variables that the radiative transfer

model admits (Myneni et al., 1997). The three-dimensional

transport equation was used to simulate canopy reflectances

rk, k = 1, 2, . . ., N, using the BCM, sun-view geometry and

canopy/soil pattern as input (Knyazikhin, Martonchik,

Myneni, et al., 1998).

4.1. Spectral signature of the SeaWIFs surface reflectances

Fig. 2 presents histograms of canopy reflectances for

different spectral bands and biome types and Table 1

shows mean values of these histograms. Typically, global

canopy reflectance varies between 0 and 0.2 at the red

band, 0.1 and 0.4 at the NIR band, 0 and 0.15 at the

green band, and less than 0.1 at the blue band. On the

average, needle forests have the strongest absorption in

red, green, and blue bands, but have a stronger reflec-

tance in the NIR band. Grasses can be regarded as the

‘‘brightest’’ biome exhibiting almost the highest reflectan-

ces in red, green, and blue bands. Broadleaf crops have a

strong reflectance in both NIR and red bands while the

reflectance of broadleaf forests is strong in NIR but very

low in the red band.

The Normalized Difference Vegetation Index (NDVI) is

defined as (dNIR� dR)/(dNIR + dR), where dNIR and dR are

observed reflectances at the NIR and red band, respec-

tively. The NDVI is a very important measure of chlor-

Table 2

Theoretical estimation of relative uncertainties in atmospherically corrected

surface reflectances (Vermote, 2000)

Spectral band 1 (Red) 2 (NIR) 3 (Blue) 4 (Green)

Center of band, nm 670 865 443 555

Bandwidth, nm 20 40 20 20

Relative error, % 10–33 3–6 50–80 5–12

uk, dimensionless 0.2 0.05 0.8 0.1

Fig. 5. RI for various biome types and spectral bands used to produce LAIs.

R&NIR: red and near-infrared bands; R&NIR&G: red, near-infrared, and

green bands; R&NIR&B&G: red, near-infrared, blue, and green bands.

Relative uncertainties were set to the upper bound 0.2.

�
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ophyll abundance and energy absorption. The histograms

of NDVI values derived from the SeaWiFS data in July

and November 1998 are shown in Fig. 3c and d. Most of

the broadleaf and needle forests exhibit very high NDVI

values compared to other biomes. On the average, the

mean values are 0.67 for broadleaf and 0.71 for needle

forests, respectively (Table 1).

It is helpful to introduce a data density function that

indicates how densely the pixels occupy the spectral space.

Each point in the N-dimensional spectral space represents

reflectances d=(d1, d2, . . ., dN) of a pixel at N spectral bands.

The data density function is defined as the number of points

per unit volume about the point d. Figs. 3a,b and 4

demonstrate 25% data density contours in different two-

Fig. 6. Dispersions DLAI and DFPAR of retrieved LAI and FPAR values for two biome types (grasses and cereal crops; broadleaf forests) and spectral bands

used by the algorithm. The meaning of the labels R&NIR, R&NIR&G, and R&NIR&B&G is the same as in Fig. 5. Relative uncertainties were set to the upper

bound 0.2.

Table 3

RI for various combinations of spectral bands used to retrieve LAI and FPAR in the case of band independent uncertainties, u�(N) = 0.2

Spectral bands used Biome type

Red NIR Blue Green Grasses/cereal crops Shrubs Broadleaf crops Savannas Broadleaf forests Needle forests
p p

0.970 0.978 0.897 0.972 0.386 0.666p p p
0.941 0.923 0.843 0.962 0.37 0.573p p
0.936 0.909 0.867 0.973 0.719 0.714p p p p
0.717 0.72 0.685 0.648 0.274 0.395p p
0.648 0.697 0.744 0.548 0.634 0.76p p p
0.651 0.708 0.671 0.572 0.267 0.47p p
0.893 0.74 0.808 0.876 0.713 0.513
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dimensional spectral spaces. Each contour separates an area

on the spectral plane of high data density containing 25% of

the pixels from a given biome type. These contours show

the most probable location of pixels belonging to a given

biome type in the spectral space. The better these contours

are separated, the more distinguishable the corresponding

biomes are. In the red–NIR plane (Fig. 3a and b) grasses

and crops are well separated from forests. In-between these

are broadleaf crops and savannas. Both biomes have high

NDVI and their contours are close to the NIR axis. The

NDVI of grasses and cereal crops is substantially lower and

their contours are close to the soil line. Fig. 4 shows that

contours can overlap, especially in the red–blue plane. The

degree of overlap depends on the resolution of the data

(Tian et al., 2000). The contours are maximally separated in

the red–NIR plane. This indicates that these two bands

Table 4

SI for various combinations of spectral bands used to retrieve LAI and FPAR in the case of band independent uncertainties,u�(N) = 0.2

Spectral bands used Biome type

Red NIR Blue Green Grasses/cereal crops, % Shrubs, % Broadleaf crops, % Savannas, % Broadleaf forests, % Needle forests, %
p p

13.0 5.8 16.9 10.3 62.2 49.5p p p
13.0 3.7 11.3 10.6 60.3 44.7p p p p
12.2 3.9 10.6 11.4 60.5 43.3

Fig. 7. Dispersions DLAI and DFPAR of retrieved LAI and FPAR values for two biome types (grasses and cereal crops; broadleaf forests) derived from

SeaWiFS surface reflectances at red and NIR (label R&NIR); red, NIR and green (label R&NIR&G) spectral bands. Abbreviators ‘‘bd’’ (band dependent) and

‘‘bi’’ (band independent) identify two cases, namely, ‘‘bd:’’ the relative uncertainties depend on wavelength whose values are presented in Table 2; ‘‘bi:’’ the

relative uncertainties are wavelength independent, each being set to 0.1.
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contain maximum information about the biome type, at

least, in the case of the 8-km resolution data. This may

explain why the algorithm produces reasonable results when

using red and NIR data only.

Fig. 3 demonstrates seasonal variation in the contour

location and NDVI histogram. All contours move toward

the soil line from July (Fig. 3a) to November (Fig. 3b)

because of a decrease in LAI. This shift is more pronounced

in the case of shrubs. The area of the contours becomes

larger in November, which implies a lower data density. The

NDVI distributions also show a sharp seasonal change (Fig.

3c and d).

5. Quality of LAI/FPAR retrievals

Monthly minimum-blue composite SeaWiFS reflectances

over the vegetated areas in July and November 1998 were

chosen as input to the algorithm in this section. The term

vegetated pixel is used to refer to pixels of NDVI value

greater than 0.1. The algorithm was run pixelwise over all

vegetated pixels. In this section, we discuss performance of

the algorithm as a function of the number of spectral bands

and overall uncertainties.

The relative uncertainties (Eq. (4)) are input to the LAI/

FPAR algorithm. However, the SeaWiFS processing does

not provide this information routinely. Therefore, we start

with the estimation of a possible upper boundary of the

overall uncertainty u�(N) as follows. Assuming that the

relative uncertainties in red, uR, and NIR, uNIR, reflectances
are wavelength independent, i.e., uR = uNIR = u�(2), find such

ū(2)for which 95% of all land pixels for which Eq. (1) has

no solutions for nonvegetated areas and corrupted data due

to clouds or atmospheric effect. SeaWiFS surface reflectan-

ces at red and NIR spectral bands (N = 2) acquired over land

on September 22 were used to specify u�(2). The solution to

this problem was u�(2) = 0.2 (Kimes et al., 2000; Knyazi-

khin, Zhang, Yian, Shabanov, & Myneni, 1998). This value

was assigned to u�(N). Thus, this upper level of the overall

uncertainty allows the algorithm to discriminate between

vegetation and nonvegetation reflectances.

The uncertainties in the land surface reflectance product

can be estimated from the atmospheric correction algorithm

(Kaufman et al., 1997; Vermote et al., 1997). Table 2 shows

a theoretical estimate of the relative uncertainties in the

MODIS surface reflectance product (Vermote, 2000). The

following values were assigned to the relative uncertainties

(Eq. (4)) in our study, uR = 0.2 (red), uNIR = 0.05 (NIR),

uB = 0.8 (blue), and uG = 0.1 (green). The overall relative

uncertainty u
¯
(4) of the four spectral bands is 0.168, which is

quite close to the upper boundary of the overall uncertainty

specified above.

To investigate the quality of the LAI/FPAR fields

retrieved from multispectral surface reflectances (multiband

retrieval), we ran the algorithm using the composite

SeaWiFs surface reflectances with: (1) two (red and

NIR); (2) three (red, NIR and green); and (3) four (red,

NIR, green, and blue) spectral bands as input. The objec-

tive of this section was to analyze the use of different

combinations of spectral bands to produce LAI and FPAR

fields. Special emphasis was given to assessing the influ-

ence of relative uncertainties on the quality of the retrieved

LAI/FPAR product.

5.1. Multiband retrieval with band-independent

uncertainties

It is assumed in this subsection that the relative uncer-

tainties (Eq. (4)) do not depend on wavelength, i.e.,

uR = uNIR = uB = uG, each being set to upper level of the

overall uncertainty 0.2. Fig. 5 shows the RI for various

biome types and the number of the input spectral bands

used. For a certain uncertainty setting, the RI is a decreas-

ing function of the number of bands. One can see a sharp

jump caused by inclusion of the blue surface reflectance in

Eq. (1). Table 3 summarizes the use of different combina-

tions of spectral bands in the retrieval technique. All

combinations of spectral bands excluding the blue, on the

average, have higher values of RI. The following argu-

ments can be presented. The foliage optical properties at

Fig. 8. RI for various biome types and spectral bands used to produce LAIs.

Labels have the same meaning as in Fig. 7.

Table 5

SI for various combinations of spectral bands used to retrieve LAI and FPAR in the case of band dependent uncertainties determined in Table 2

Spectral bands used Biome type

Red NIR Blue Green Uncertainty, u� (N) Grasses/cereal crops, % Shrubs, % Broadleaf crops, % Savannas, % Broadleaf forests, % Needle forests, %
p p

0.1 8.6 1.4 15.1 8.4 48.8 21.4p p p
0.1 6.5 0.2 6.2 8.9 44.1 9.55p p p p
0.168 6.3 0.2 5.5 8.0 43.8 10.2

�
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blue and red wavelengths are similar and, thus, the canopy

reflectances at these spectral bands are comparable in

magnitude. However, atmospheric effect at blue is much

stronger than at red and, therefore, uncertainties in the

atmospherically corrected surface reflectances are greater at

blue than at red band (Table 2). However, these were set to

0.2, i.e., the stabilized uncertainty appears to be substan-

tially underestimated and the RI decreased.

Dispersions of retrieved LAI values for two biome

types and various combinations of input spectral bands

are shown in Fig. 6. Although some minor differences

exist, one cannot see much improvement in the retrieval

quality when the number N of bands used to retrieve LAI

and FPAR increases. The SI for different combinations of

spectral bands is summarized in Table 4. It is only

slightly sensitive to N. This implies that we cannot

improve accuracy in retrievals by simply including more

spectral bands.

5.2. Multiband retrieval with band-dependent uncertainties

Including more spectral information in the retrieval

technique initiates two competing processes: increase of

information content of data and decrease of overall accu-

racy in the input data. The first enhances the quality of

retrievals, while the second suppresses it. In this subsec-

tion, we set values of relative uncertainties to the uncer-

tainties in the land surface reflectance product (Table 2),

which are treated as the lower bound of the overall

uncertainties. It should be noted that the model uncertainty

in canopy reflectance at the green spectral band can be

quite high. Indeed, leaf albedo at this wavelength is

characterized by temporal variation. For example, a young

leaf reflects more energy than an old one. This was not

accounted for in our model and, thus, the relative uncer-

tainty at the green wavelength is probably underestimated.

Fig. 7 demonstrates the accuracy of retrieved LAI values

derived from surface reflectances at red and NIR wave-

lengths (N = 2, legends ‘‘R&NIR,bd’’ and ‘‘R&NIR,bi’’),

and at red, NIR, and green (N = 3; legends ‘‘R&NIR&G,bd’’

and ‘‘R&NIR&G,bi’’) spectral bands. Abbreviation ‘‘bd’’

(band dependent) and ‘‘bi’’ (band independent) identify two

cases. In the first case, the relative uncertainties uk depend
on wavelength (Table 2). In the second case, relative

uncertainties are wavelength independent, each being set

to u¯ (N) =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u1u2 : : : uNN

p
, N = 2 or 3. Note that in all cases,

the overall uncertainty u�(N) has the same value (0.1).

Again, retrieval dispersions are slightly sensitive to the

number N of input spectral bands. However, their values

are clearly lower compared to those shown in Fig. 6. This

indicates that the retrieval dispersion is sensitive to the

overall uncertainty but not to the number N of spectral bands

in Eq. (1), i.e., retrieval accuracy is mainly determined by

uncertainties in input data. Fig. 8 shows the RI for the four

cases described above. The overall uncertainty affects the RI;

that is, RI increases with increase of the overall uncertainty

Fig. 10. NDVI/LAI and NDVI/FPAR regression curves for two biome types (grasses and cereal crops; broadleaf forests). LAI and FPAR fields were derived

from SeaWiFS surface reflectances at red and near-infrared (label N&NIR) and red, near-infrared and green (label R&NIR&G) spectral bands, which then were

regressed against SeaWiFS NDVI. Relative uncertainties listed in Table 2 were used.

Fig. 9. RI for various biome types and relative uncertainties derived from

SeaWiFS surface reflectances at red, near-infrared, green, and blue spectral

bands. The bars labeled ‘‘0.1,’’ ‘‘0.168,’’ and ‘‘0.2’’ correspond to the cases

when relative uncertainties in spectral reflectances were wavelength

independent and set to 0.1, 0.168, and 0.2, respectively. The label

‘‘0.168bd’’ identifies RIs obtained by using band-specific uncertainties

presented in Table 2.

�
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(compare Figs. 5 and 8). However, with overall uncertainty

constant, an accurate prescription of band-dependent uncer-

tainties results in higher values of the RI (Fig. 8).

Table 5 shows the SI for different biomes and number N

(N = 2, 3, and 4) of input spectral bands. Values of relative

uncertainties listed in Table 2 were taken as input for Eqs. (1)

and (4). First, the SI decreased compared to those shown in

Table 4, i.e., accurate surface reflectance data and models

provide higher quality retrievals. Note that the SI is a

decreasing function of N (Table 5), and when the overall

uncertainty u�(N) increases from 0.1 (N = 2 and 3) to 0.168

(N = 4), the SI has not increased. Therefore, an increase in

the overall uncertainty due to more input spectral bands

does not necessarily suppress the increase in information

Fig. 11. Seasonal variation of LAI histograms derived from the MODIS LAI/FPAR algorithm with SeaWiFS surface reflectances (right column) and NDVI

based algorithm (Myneni et al., 1997) with 10-year averaged Pathfinder data (right column).
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supplied to the algorithm if accurate band-specific uncer-

tainties are available.

Fig. 9 demonstrates the RI for N = 4 (four-band retrieval)

as a function of biome type and overall uncertainties. The

bars labeled ‘‘0.1,’’ ‘‘0.168,’’ and ‘‘0.2’’ correspond to the

cases when relative uncertainties in spectral reflectances

were wavelength independent, i.e. nk = n�(4), and set to 0.1,

0.168, and 0.2, respectively. The legend ‘‘0.168bd’’ identi-

Fig. 12. SeaWiFS global LAI in January, April, July, and October 1998.

Fig. 13. SeaWiFS global FPAR in January, April, July, and October 1998.
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fies retrieval indices obtained by using band-specific uncer-

tainties nk (Table 2). One can see that the use of band-

specific uncertainties results in higher RI and retrievals of

the best possible quality.

5.3. Test of physics

It is well known that there is a strong relationship between

a vegetation index, such as NDVI, and surface parameters

such as LAI and FPAR (Asrar, Fuchs, Kanemasu, & Har-

field, 1984; Chen, 1996; Myneni & Williams, 1994; Peter-

son, Spanner, Running, & Band, 1987; Tucker & Sellers,

1986; Verma et al. 1993). This relationship provides a

method to test the physics of retrievals. Fig. 10 shows the

NDVI/LAI and NDVI/FPAR regression curves for two

biome types derived using the retrieved LAI and FPAR

fields and NDVI computed from SeaWiFS surface reflec-

tances. These correspond to literature reports (Clevers, 1989;

Myneni et al., 1997). Note that the LAI values were retrieved

directly from surface spectral reflectances without using the

NDVI. The advantages of using spectral reflectance rather

than NDVI are: (a) NDVI/LAI relations are sensitive to

changes in sun angle, view angle, and background reflec-

tance, while the MODIS algorithm actually exploits these

changes to retrieve LAI; (b) the NDVI based algorithm can

use two spectral bands only, while Eq. (1) can ingest all the

available spectral information to improve quality of the

retrievals. It should be noted that the retrieved LAI and

FPAR fields regressed against SeaWiFS NDVI shown in Fig.

10 were obtained using different combinations of spectral

bands as input to Eq. (1). Irrespective of the number of input

bands, the NDVI/LAI and NDVI/FPAR relations appear to

be close to each other within an accuracy determined by the

overall uncertainty u�(N). This illustrates algorithm consis-

tence with respect to the physical processes responsible for

the observed variation in canopy spectral reflectances.

6. SeaWIFS LAI/FPAR global product

With the above results as guiding principles, we now

discuss global LAI/FPAR fields derived from monthly Sea-

WiFS data from January, April, July, and October. Surface

reflectances at red, NIR, and green bands and band-depend-

ent uncertainties listed in Table 2 were used to produce these

fields. When the algorithm failed to retrieve a LAI value, the

NDVI/LAI and NDVI/FPAR regression curves shown in

Fig. 10 were used to estimate LAI and FPAR values. This is

similar to the processing for MODIS data.

Histograms of LAI values for the 4 months are shown in

Fig. 11. For comparison, a 10-year average global LAI

distributions derived from the AVHRR pathfinder 8-km data

using a NDVI-based algorithm (Myneni et al., 1997) is also

shown in Fig. 11. The histograms clearly show the seasonal

variations. Shrubs and needle forests located in the northern

hemisphere have low LAI values in the winter (Fig. 11a).

During the boreal summer, their LAI increases (Fig. 11e).

Savannas in the southern hemisphere have minimum LAI

values in the dry period during July (Fig. 11e). Broadleaf

forests, which are located in both the northern and southern

hemispheres, have a bimodal distribution of LAI.

Figs. 12 and 13 are color-coded images of SeaWiFS LAI

and FPAR fields for the 4 months in 1998. In the northern

hemisphere, LAI increases from January to a maximum in

July and then decreases towards October. On the contrary,

because January and April are wet and July is dry season in

Africa, LAI values have the lowest values in July. This is

consistent with Fig. 11.

7. Conclusions

In this paper, we examine the quality of LAI and FPAR

fields derived from SeaWIFs multispectral surface reflec-

tances using the MODIS LAI/FPAR algorithm as a function

of input and model uncertainties. When the amount of

spectral information input to the LAI/FPAR algorithm is

increased, not only does this increase the overall informa-

tion content but also decreases the summary accuracy in

data. The former enhances the quality of retrievals, while the

latter suppresses it. The total uncertainty sets a limit on

the quality of the retrieved fields. Accurate specification of

the uncertainties of inputs to the algorithm is critical to the

production of global biophysical variables, and to realize the

basic principle of any retrieval technique; that is, the more

the measured information and the more accurate this infor-

mation is, the more reliable and accurate the algorithm

output will be. This approach was used to produce global

SeaWIFs LAI/FPAR fields of the highest possible quality.

Comparing with published results shows this approach

works reasonably well.
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Deschamps, P. Y., Bréon, F. M., Leroy, M., Podaire, A., Bricaud, A.,
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