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ABSTRACT: A coupled linear model is derived to describe interactions
between anomalous precipitation and vegetation over the North American
Grasslands. The model is based on biohydrological characteristics in the semi-
arid environment and has components to describe the water-related vegetation
variability, the long-term balance of soil moisture, and the local soil–moisture–
precipitation feedbacks. Analyses show that the model captures the observed
vegetation dynamics and characteristics of precipitation variability during sum-
mer over the region of interest. It demonstrates that vegetation has a preferred
frequency response to precipitation forcing and has intrinsic oscillatory vari-
ability at time scales of about 8 months. When coupled to the atmospheric
fields, such vegetation signals tend to enhance the magnitudes of precipitation
variability at interannual or longer time scales but damp them at time scales
shorter than 4 months; the oscillatory variability of precipitation at the growing
season time scale (i.e., the 8-month period) is also enhanced. Similar resonance
and oscillation characteristics are identified in the power spectra of observed
precipitation datasets. The model results are also verified using Monte Carlo
experiments.

KEYWORDS: Land–atmosphere interactions; Vegetation feedbacks; Soil
water balance

1. Introduction
In the first part of this study (Wang et al. 2006, hereafter W1), statistical

techniques are used to detect and analyze the influence of vegetation on climate
variability over the North American Grasslands. Results indicate significant
Granger causal relationships (Granger 1969; Granger 1980) from lagged anoma-
lies of vegetation activity to variations of summertime precipitation and surface
temperature, particularly when time lags are longer than 2 months (W1). That is,
vegetation anomalies earlier in the growing season provide unique information (in
a statistically significant fashion) regarding climate variability later in summer.
The nature of these causal relationships suggests that if mean vegetation anomalies
are high (positive) during the preceding months and/or the vegetation anomalies
show a decreasing trend, the climatic conditions during the following summer
months (July–September) will tend to be drier and warmer (W1). As suggested by
the sign of these climate–vegetation interactions, vegetation and precipitation
anomalies are also found to have distinct oscillatory variability at growing season
time scales (W1; also see below).

A physical mechanism was proposed to explain the statistical results of W1. In
an arid/semiarid environment, where soil water storage is limited, initially en-
hanced vegetation may deplete soil water faster than normal and thus generate
negative soil moisture anomalies later in the growing season. The drier soil in turn
reduces fluxes of water and latent heat to the atmosphere and leads to lower
precipitation and higher temperatures. Because drier soils also force vegetation to
decrease, such interactions may generate oscillatory adjustments in the two fields.
Part of this mechanism has been suggested by previous studies (e.g., Heck et al.
1999; Heck et al. 2001).

Conceptual models of vegetation–atmosphere interactions (e.g., Brovkin et al.
1998; Zeng et al. 2002; Wang 2004) and soil moisture–atmosphere interactions
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(e.g., Rodriguez-Iturbe et al. 1991a; Rodriguez-Iturbe et al. 1991b) have been
proposed previously by numerous researchers. Through simplified force-feedback
schemes, these models are able to analytically capture many of the complicated
dynamical characteristics of the climate system. For instance, analyses of these
models indicate that vegetation–atmosphere interactions may lead to multiple
stable equilibria of the climate system at long time scales (Brovkin et al. 1998;
Zeng et al. 2002; Wang 2004). For each of these long-term equilibria, on the other
hand, vegetation–atmosphere interactions also act to resist small (and transient)
disturbances to the system and thus to maintain its stability (Brovkin et al. 1998;
Alcock 2003). From the perspective of dynamics, this stability suggests that such
short-term (e.g., intraseasonal) vegetation–atmosphere interactions may be simpli-
fied using linear approximations (Glendinning 1994; also see the appendix). Fol-
lowing this line of thinking, therefore, this paper aims to develop a simple linear
model to capture the physical mechanism hypothesized by W1.

The rest of the paper is arranged as follows. Section 2 presents a development
of the stochastic model used in our study. Section 3 identifies the model and
retrieves the necessary system parameters from the observational datasets; section
4 analyzes the dynamic characteristics of vegetation in the model and discusses
how they may regulate the variability of precipitation; and section 5 conducts
Monte Carlo experiments to further verify the role vegetation plays in influencing
precipitation. Section 6 presents the concluding remarks.

2. Model development
For the proposed mechanism governing vegetation–climate interactions in semi-

arid grasslands regions, three important components need to be considered: 1) the
variability of vegetation (V) driven by available soil moisture (S) (Woodward
1987; Nemani et al. 2003); 2) the balance of soil moisture maintained by precipi-
tation (P) and evapotranspiration (ET) (Wever et al. 2002); and 3) the coupling
between soil moisture and precipitation (Koster et al. 2004). When anomalies of
these fields are considered, these relationships may be formulated in the following
linear difference equations (see the appendix for detailed discussions):

V�t = �V�t−1 + �S�t−1, (1)

S�t = S�t−1 + P�t − ET�t, (2)

P�t = �S�t−1 + �t , (3)

where V�, S�, P�, and ET� represent anomalies of the corresponding variables; �t in
Equation (3) represents the external precipitation variability, which is assumed to
be a random process (i.e., white noise); and �, �, and � are constant parameters,
each of which corresponds to a particular physical process. Specifically, � (0 <
� < 1) is the persistence rate of vegetation variability, � [normalized difference
vegetation index (NDVI)/water] represents the short-term response of vegetation
to soil moisture anomalies, and � (0 < � < 1) indicates the proportion of soil
moisture that contributes to local rainfall.

To formulate the evapotranspiration (ET) term in Equation (2), we assume it is
a sum of two components: the evaporation component directly related to soil
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moisture (Yamaguchi and Shinoda 2002) and the transpiration component asso-
ciated with vegetation variability. Therefore, we represent ET as

ET�t = �1 − ��S�t−1 +
1

�
V�t, (4)

where � and � are also two constant parameters. In this way Equation (2) can be
rewritten as

S�t = �S�t−1 + P�t −
1

�
V�t. (2�)

Physically, the parameter � (0 < � < 1) is the persistence rate of soil moisture. The
coefficient 1/� represents the rate of transpiration associated with unit vegetation
anomalies. It is written such that � has the same units as � (NDVI/water). As will
be discussed later, � can be interpreted as the (potential) long-term response of
vegetation to precipitation forcing.

Equations (1), (2�), and (3) represent a stochastic model that describes interac-
tions among anomalies of vegetation, soil moisture, and precipitation in an arid/
semiarid environment. Prototypes of these equations can be found in the literature.
For example, a similar form of Equation (1) has been used to describe water-
related vegetation dynamics in Zeng et al. (Zeng and Neelin 2000; Zeng et al.
1999; Zeng et al. 2002); Equation (2) is derived from the “bucket model” of soil
water balance (e.g., Budyko 1956; Manabe 1969); and Equation (3) is based on the
formulation of soil moisture–precipitation interactions in Rodriguez-Iturbe et al.
(Rodriguez-Iturbe et al. 1991a; Rodriguez-Iturbe et al. 1991b). For this study,
these relationships have been simplified such that they can be represented as linear
equations with constant parameters [i.e., a linear time invariant (LTI) system].
Nevertheless, the physical meaning of the model and its parameters remains clear
from the discussion above. Detailed derivations of the model from representative
equations found in the literature are given in the appendix. It should also be noted
that in order to keep the model simple and the analysis feasible, we have neglected
the influence of temperature variations in this scenario; however, analyses indicate
that inclusion of temperature in the model does not qualitatively influence the
results discussed below.

To facilitate the comparison with the observed covariability of precipitation and
vegetation (W1), the model can be represented in a form that explicitly involves
only V and P:

V�t = �� + � − ����V�t−1 − ��V�t−2 + �P�t−1, (5)

P�t =
��� − ����

�
V�t−1 −

�����

�
· V�t−2 + �P�t−1 + �t . (6)

Thus, Equation (5) describes the variability of vegetation as driven by precipitation
(referred to as the open-loop model hereafter), Equation (6) represents feedbacks
of land surface processes to the atmosphere (referred to as the feedback function),
and together, Equations (5)–(6) are referred to as the closed-loop model. This form
of the model will be discussed in the following sections.
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3. Datasets and model identification
3.1. Datasets

To retrieve the parameters of the model, we use datasets of precipitation (Xie
and Arkin 1997) and NDVI (Tucker 1979; Myneni et al. 1997; Myneni et al. 1998;
Zhou et al. 2001), which is a measure of vegetation activity. Both datasets provide
monthly measurements at global scales over the period of 1982–2000, and the
NDVI dataset is aggregated to match the resolution of the precipitation dataset.
They are then compiled to form a panel for the North American Grasslands, which
includes about fifty-one 2° × 2° grid points that have the biome type of grasslands
(Friedl et al. 2002) and lie within 25°–55°N and 90°–130°W (W1). For both
datasets, monthly anomalies are calculated relative to their 1982–2000 climatolo-
gies (i.e., long-term mean seasonal cycles), respectively. More details about these
datasets can be found in W1.

Another dataset used in this study is the Climate Prediction Center (CPC) U.S.
UNIFIED Precipitation dataset (Higgins et al. 2000). This dataset provides
monthly (and daily) precipitation measurements from 1948 to 1998 for the con-
tinental United States at a spatial resolution of 0.25° × 0.25°. There are about 2700
grid points in the domain of the North American Grasslands. Monthly anomalies
of this dataset are calculated relative to their 1948–98 climatologies. These anoma-
lies are used to calculate the mean power spectra of precipitation variations over
this region, which will be discussed later in the paper.

3.2. Model identification

The form of Equations (5) and (6) readily allows their parameters to be esti-
mated from the observational datasets by the methods of regression. For this
purpose, we rewrite the equations as

V�t = A1V�t−1 + A2V�t−2 + A3P�t−1 + �1t , (5�)

P�t = B1V�t−1 + B2V�t−2 + B3P�t−1 + �2t , (6�)

where As and Bs represent the corresponding regression coefficients.
We utilize two algorithms, namely, the ordinary least squares (OLS) method and

the out-of-sample forecast method (see appendix A of W1), to estimate the re-
gression coefficients of Equations (5�)–(6�) and to test their statistical significance
levels. Different from the OLS method, the method of out-of-sample forecast is
particularly devised for panel data (Granger and Huang 1997): it examines how
well the statistical model can predict the climate/vegetation variability at grid
points that are not included in the regression (W1); also, the testing statistics are
constructed based on the accuracy of the predictions rather than the r2 of the
regressions (W1; Diebold and Mariano 1995). As such, this method helps to avoid
spurious fits of the statistical model to the data (Granger and Huang 1997). Nev-
ertheless, consistent regression results are obtained via the two algorithms. For the
sake of simplicity, therefore, we mainly discuss the results obtained using the OLS
method.

Table 1 gives the regression results of Equations (5�) and (6�). Generally, results
indicate that the open-loop model captures the variability of NDVI anomalies
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(Table 1a). The r2 statistics of the regressions of Equation (5�) are above 60% for
all the months from June to October, and as high as 80% in August. All estimates
of the regression coefficients (As) are significant (p < 0.05) and physically con-
sistent during this period. For example, the signs associated with these coefficients
show a regular pattern through the season, such that A2 is always negative while
A1 and A3 are always positive. Because A2 represents –�� [Equation (5)], negative
values of this coefficient are consistent with the derivation of the model.

Compared with the open-loop model, identification of the parameters of the
feedback equation [Equation (6�)] is much more difficult. The regression results
(Table 1b) generally indicate low r2 values (2%–9%), and the estimates of the
coefficients (Bs) are also scattered: August is the only month in which the three
coefficients are statistically significant and have the expected sign (Table 1b).
These results reflect the fact that land surface feedbacks are generally weak and
can be masked by the stronger internal variability of the atmosphere. Nevertheless,
the results of Table 1b still provide a way to estimate all the system parameters.

Ideally, the five system parameters can be retrieved from the coefficients in
Equations (5�) and (6�) using the following relationships:

� = A3, (7a)

� = B3 = �B2�A2, (7b)

� = A1 − �����B1, (7c)

� = −A2��, and (7d)

� = ���� + � − A1�. (7e)

Here, the parameter � can only be estimated from the feedback equation [Equation
(6�)]. Based on Equation (7b) and the results of Table 1b, this parameter is

Table 1. Regression coefficients for (a) Equation (7) and (b) Equation (8) estimated
from observed precipitation and vegetation (NDVI) for the North American Grass-
lands. Only regression coefficients that are statistically significant at 95% level are
shown here.

(a)

Month A1 A2 A3 r2

Jun 1.059 −0.593 0.009 0.61
Jul 1.008 −0.533 0.009 0.64
Aug 0.943 −0.424 0.014 0.80
Sep 0.762 −0.193 0.014 0.77
Oct 0.980 −0.398 0.007 0.70

(b)

Month B1 B2 B3 r2

Jun 0.326 0.09
Jul 3.236 0.02
Aug 2.144 −4.306 0.125 0.06
Sep −2.225 0.1417 0.03
Oct −8.725 0.07
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estimated to be about 0.13–0.15 for August and September, and may be as high as
0.33 in June.

The other four parameters (�, �, �, and �) are contained in both the open-loop
model and the feedback equation. Because the influence of precipitation on veg-
etation variability is much stronger than the influence of vegetation upon precipi-
tation, we try to estimate these parameters mainly based on the regression results
of the open-loop model (Table 1a). However, because Equation (5�) has only three
coefficients (A1–A3), the four parameters are underdetermined by the open-loop
model itself. To fully retrieve them, therefore, we either need to take into account
the feedback equation [Equation (6�)] or make an a priori estimate for one of the
parameters (see below).

Table 2 shows the estimated values of the five system parameters based on the
regression results for August, in which the precipitation–vegetation interactions
are most evident (Table 1). As shown, the estimated persistence rate of NDVI
anomalies (�) is about 0.70, and the persistence rate of soil moisture (�) is about
0.60 (Table 2). We also make estimates for these parameters by arbitrarily setting
� to 0.6∼1.0 at an interval of 0.1; correspondingly, � decreases from about 0.7 to
about 0.4. Nevertheless, we find that these different estimates do not affect the
overall characteristics of the model because the combination of the two will still
give the same coefficients for Equation (5) and similar coefficients for Equation
(6). Therefore, we use the estimates in Table 2 as typical parameters to illustrate
the characteristics of the model in the following sections. When it is necessary, we
will also discuss how different values of the parameters may induce additional
variability as a means of interpreting the characteristics in a physically meaningful
way.

4. Model analysis
The regression results of the last section (Table 1) indicate that the open-loop

model captures the variability of vegetation driven by precipitation. First, we will
diagnosis this model in order to investigate and interpret the dynamics of the
vegetation variability. Then we will study how vegetation signals may modulate
the variability of precipitation when they propagate to the atmosphere by analyzing
the feedback equation [Equation (6)]. Finally, we will try to identify some of the
simulated characteristics within the corresponding observed precipitation datasets
in order to provide additional evidence for the hypothesized vegetation–
precipitation feedbacks contained in the model.

4.1. Open-loop model

As a first check for the open-loop model, we use it to simulate the observed
vegetation variations. That is, given known observed precipitation information and

Table 2. System parameters used in the open- and closed-loop models for the
North American Grasslands.

� � � � �

0.703 0.014 0.603 0.039 0.125
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two initial values of NDVI, Equation (5) is used to predict observed vegetation
variations for the rest of the growing season. Figure 1 shows the results of the
simple simulation. Generally, the simulated NDVI evolves with the observed time
series, resulting in good agreement between the two (Figure 1). As shown, al-
though the input precipitation signal is fairly noisy, vegetation over the midlatitude
grasslands has lower-frequency variations and an apparent oscillatory component,
as suggested by W1 (Figure 1).

These dynamic characteristics of the model can be quantified by the frequency
response functions of the system (Figure 2), which describes the magnitudes and
phase angles of the outputs (NDVI) relative to the sinusoidal inputs (precipitation)
at different frequencies. For the convenience of comparison, the gain function
(Figure 2a) is normalized by the input gain factor [i.e., � in Equation (5)], such that
a 0-dB value suggests that unit variance in precipitation generates unit variance in
NDVI. (Such normalization will be used for discussions throughout the paper
unless otherwise specified.)

The normalized gain function (Figure 2a) indicates “red” responses of NDVI to
precipitation forcing. The magnitude of NDVI is positive (∼6 dB) at longer time
scales (i.e., periods longer than 8 months) but decreases to negative values (about

Figure 1. (top) NDVI anomalies simulated with the open-loop model (upper, dark),
and the observed NDVI (upper, gray). (bottom) Precipitation anomalies
used in the simulation. The simulation uses the first two observed NDVI
values of each growing season as initial values and is forced by the
precipitation anomalies during the course of the season.
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−7 dB at the 2-month period) as the time scales become shorter. Correspondingly,
the phase lag between NDVI and precipitation is small at longer time scales but
decreases to −180° at the 2-month period (the negative sign indicates that NDVI
lags precipitation). The transitions of the magnitude and the phase functions occur
at about the 8-month period, where the magnitude peaks (∼8 dB) and the phase lag
is about −90° (Figure 2), indicating that the system has intrinsic oscillatory vari-
ability at this frequency range (Reid 1983). Figure 2 also indicates that the spectral
characteristics of the model (line plots) are consistent with those independently
estimated from observations only (dot plots; also see W1).

Explanations for these frequency characteristics are provided by the derivation
of the model. For example, Equation (1) indicates that vegetation has a “memory”
(given by the persistence rate �) of soil moisture variations, and soil moisture itself
represents an accumulating process of precipitation [Equation (2)]. Both mecha-
nisms act as low-pass filters to remove transient variations from the input precipi-
tation signals. In addition, Equation (1) indicates that soil moisture surplus pro-
motes vegetation growth; however, Equation (2) indicates that vegetation depletes
soil water. The interaction between these two equations therefore can lead to
oscillatory adjustments in the vegetation field.

Figure 2. System response functions of NDVI as driven by precipitation (open-loop
model). (top) Gain functions; (bottom) phase function. The discrete points
(“o”) show the estimates from the observed data (taken from W1).
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A quantitative interpretation of the red responses of vegetation and its oscilla-
tory variability can also be obtained by analyzing the analytical solution of the
model explicitly. As represented by Equation (5), the open-loop model is essen-
tially a second-order difference equation. General solutions to such an equation are
determined by its two characteristic roots (or eigenvalues):

�1,2 =
�� + � − ���� ± ��

2
, (8)

where

� = �� + � − ����2 − 4��. (9)

When the characteristic roots have complex components (� < 0), this system will
have oscillatory variability.

With the estimated �, �, �, and � values (Table 2), it can be shown that
Equation (8) gives two complex characteristic roots at exp(−0.43 ± i0.76). The
imaginary part of the exponential indicates an oscillation frequency at 0.76 (radian/
month), or equivalently at a period of 8.25 months, which is consistent with the
estimated value here and in W1. The real part of the exponential is negative and
indicates that the system is stable. Hence, the magnitude of the oscillatory varia-
tions will decay at the rate of e−0.43 (i.e., e−1/2.3, or 0.65) per month; in other words,
the time constant of the decay process is about 2.3 months.

The oscillatory decaying adjustments of the open-loop model are represented by
its impulse-response function (Figure 3), which examines the output signals of the
system when a unit precipitation anomaly is input at the initial time (i.e., P � 1
at t � 0, and P � 0 for t > 0). Figure 3 shows that the positive response of

Figure 3. The oscillatory decaying process of NDVI’s response to an impulse input of
precipitation at time t = 0 (open-loop model). The magnitude of NDVI is
normalized by the factor �.
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vegetation arises in the next month (t � 1) and lasts for 4 months (with decreasing
magnitudes); the response then switches to the negative phase (t � 5 ∼ 8),
representing the first cycle of the oscillation (Figure 3).

The above analyses all suggest that the model system has a preferred response
at low frequencies and that vegetation–soil moisture interactions within the model
promote oscillatory behavior. These characteristics of vegetation variability can in
turn be physically interpreted using the system parameters (i.e., �, �, �, and �) of
the model itself. To interpret the red spectra of vegetation, we first check the
stability of the system (which as discussed above indicates a stable evolution as
opposed to an unstable evolution). By plugging two constant values for precipi-
tation (Ps) and vegetation (Vs) into Equation (5), we find that

V�s = �*P�s, (10a)
where

�* =
�

�1 + �1 − ���1 − ������
. (10b)

Here, �* describes the long-term relationship between vegetation and precipita-
tion, and it is related to the system parameter �. To see this, note that �* is equal
to � when � is 1 [Equation (10b)]. Because a value of 1 for � means that all water
loss is transpired through vegetation [Equation (2�)], � describes the potential
long-term response of vegetation to precipitation, that is, a situation in which
vegetation continues to grow until it utilizes all available moisture. On the other
hand, as indicated by Equation (1), the rate of vegetation production is determined
by the short-term response coefficient �. Therefore, the ratio of �/� gives a
measure of the rate at which vegetation reaches its (potential) equilibrium with
precipitation. Given the estimates of the system parameters (Table 2), the value of
� (0.014) is about one-third of � (0.039) and less than one-half of �* (∼0.030).
This means that it takes some time for vegetation to fully respond to precipitation
forcing. Therefore, vegetation responds more readily to persistent precipitation
variability at longer time scales, producing the red system response function.

In addition we can use Equation (9) to investigate the oscillatory variability of
the open-loop system, which is determined by the values of �, �/�, and �. As
discussed above, when �/� is high, vegetation production is fast and soil water is
consumed rapidly. At the same time, because persistent vegetation anomalies also
consume water, vegetation must decay quickly (i.e., � must be small) to avoid
negative soil moisture anomalies from being generated. Clearly this process is also
regulated by the soil moisture persistence rate �, which indicates the proportion of
soil moisture subject to the influence of vegetation (see below).

We use � to normalize � and �/�, and rewrite Equation (9) as follows:

� = �2��1 + �* − �*��*�2 − 4�*�, (9�)
where

�* =
�

�
, �*��* =

���

�
.

As such, the oscillatory/nonoscillatory domain of the system can be determined on
the �* − �*/�* plane (Figure 4). To simplify the discussion, we first consider the
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case when � is 1, and the values of �* and �*/�* (the same as � and �/�) are
between 0 and 1. In these ranges, the system is nonoscillatory only if vegetation
has short memory (e.g., �* is close to 0) or it reaches its steady state slowly enough
(i.e., �*/�* is close to 0; Figure 4). When � is less than 1, the impact of vegetation
on soil moisture variability decreases. Therefore, the nonoscillatory domain is also
present in the range where �* or �*/�* is larger than 1 (Figure 4). In either case,
however, Figure 4 indicates that for most values of the system parameters, oscil-
lations are likely to be an intrinsic property of the soil moisture–vegetation system.

4.2. External disturbance to vegetation

In addition to precipitation, other external disturbances can also influence veg-
etation variability. Such disturbances may include climate factors (e.g., tempera-
ture, solar radiation, etc.) or nonclimatic factors (e.g., fire, pest, and human ac-
tivity). To account for the influence of these processes, we introduce an external
input term et to Equation (1), such that

V�t = �V�t−1 + �S�t−1 + et. (1�)

Figure 4. Subdomains of oscillatory (gray) and nonoscillatory (white) variability of
the open-loop model on the �*−�*/�* plane [Equation (9�)]. The small
circle (“o”) indicates the location of the observed system on this plane.
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If we assume that et is independent of the precipitation forcing, the variability of
vegetation induced by et can be described by

V�t = �� + � − ����V�t−1 − ��V�t−2 + et − �et−1. (5�)

Because Equation (5�) has the same characteristic equation as Equation (5), the
general solutions to this equation have the same properties (i.e., stability and
intrinsic oscillations) as discussed before. However, because there is no input of
water in Equation (5�), the negative effects of et on soil moisture will generate
opposing vegetation anomalies [i.e., �et−1 in Equation (5�)] in the following
months to counter any initial disturbances. This is illustrated by the impulse-
response function (Figure 5). As shown, when et induces a unit positive vegetation
anomaly at the initial time (t � 0), it rapidly decreases to a negative value in 2
months (t � 2) and remains negative in the following four months (t � 2 ∼ 5).

Equation (5�) allows us to explicitly investigate the vegetation variability that is
responding to soil moisture variations as opposed to precipitation variations. To
denote the fraction of the vegetation variations that is related to soil moisture, we
define an additional variable, V�soil, such that

V�soil = V�t − et. (11)

The spectral responses of V�t and V�soil to external disturbances of et are illustrated
by the corresponding system functions (Figure 6). As shown, the magnitude of V�t
is slightly negative at low frequencies (e.g., −1.4 dB at the 64-month period); at the
same time, the magnitude of V�soil is slightly positive (about 2 dB at the 64-month
period), but the phase angle is 180°, just opposite that of V�t . These results suggest
that if vegetation growth is initially positive (but there is no corresponding increase
in the water supply), the soil will become drier and generate opposing vegetation

Figure 5. The oscillatory decaying process of NDVI’s response to an impulse input of
external vegetation disturbance at time t = 0 (open-loop model).
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anomalies (V�soil) to cancel the input. As a result, we get an output of V�t lower
(−1.4 dB, or 0.85) than the input.

4.3. Closed-loop model
Because interactions between vegetation and soil moisture have distinct dy-

namic characteristics (e.g., Figure 2 and Figure 6), when such signals feed back to
the atmosphere [Equation (3) or Equation (6)], they will leave their spectral sig-
natures on the variability of precipitation (Delire et al. 2004). This hypothesis is
verified by the spectral characteristics of the closed-loop model.

Figure 7 shows the frequency-response functions of the output precipitation
[i.e., P�t in Equation (6)] relative to the “original” precipitation forcing [i.e., �t in
Equation (6)]. Overall, it indicates slight but clear red variability of P�t . The
magnitude is slightly enhanced (0.7 dB) at low frequencies but damped (−0.6 dB)
at high frequencies, and the transition occurs at about the 8-month period, where
the magnitude has a peak of about 1.5 dB (Figure 7). The phase function indicates
that P�t varies almost in phase with �t at both high and low frequencies, and the
phase lag is also small at transition frequencies (∼13°; Figure 7).

Figure 6. System response functions of NDVI as driven by external vegetation dis-
turbances (open-loop model). The solid line shows the total output of NDVI
(Vtotal), while the dashed line shows the portion of NDVI variations asso-
ciated with soil moisture (Vsoil).
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The frequency responses of P�t in Figure 7 have a clear association with the
corresponding characteristics of vegetation (Figure 2). Qualitatively, as vegetation
varies synchronously with precipitation at low frequencies (Figure 2), the corre-
sponding transpiration anomalies induce water vapor anomalies with the “correct”
sign to reinforce the variations of precipitation (Figure 7); on the other hand,
because vegetation lags precipitation by almost 180° at high frequencies (Figure
2), the corresponding transpiration anomalies induce water vapor anomalies with
the opposite sign, which in turn cancel a portion of the precipitation variability
(Figure 7). At the intermediate frequencies where the land surface processes have
intrinsic oscillations, the oscillatory variability of precipitation is further enhanced
(Figure 7).

Frequency-response functions are also calculated for precipitation as it is driven
by external vegetation disturbances [i.e., et in Equation (1�) or Equation (5�);
Figure 8]. Again, the gain function of precipitation shows a red spectrum that has
enhanced (10 dB) magnitudes at low frequencies and damped (about −10 dB)
magnitudes at high frequencies, with the transition occurring at about the 8-month
period (Figure 8). The phase function indicates that the responses of precipitation
are opposite to the external forcing et at low frequencies, which is related to the

Figure 7. System response functions of precipitation as driven by external precipi-
tation variations (closed-loop model). (top) Normalized gain functions;
(bottom) phase function.
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corresponding characteristics of the open-loop model (Figure 6). For instance,
positive vegetation anomalies (without corresponding water input) will tend to
decrease soil moisture (i.e., “Vsoil” of Figure 6) and as such they will have negative
impacts on precipitation as well (Figure 8).

Together, the results of Figures 7 and 8 indicate that vegetation feedbacks add
additional variability to precipitation such that it has red spectra as well. To verify
this feature in the observations, we calculate power spectra of observed precipi-
tation anomalies based on the CPC U.S. UNIFIED Precipitation datasets (Higgins
et al. 1996; Higgins et al. 2000). Before the power spectra are calculated, precipi-
tation anomalies at each grid point are normalized to have unit variance, such that
the spectra of all the grid points can be averaged to represent the mean power
spectra for the North American Grasslands (Figure 9, dark solid line). As shown,
the mean power spectra of the observed anomalies have higher magnitudes (about
−4 dB) at time scales longer than 16 months, but lower magnitudes (about −5.5
dB) at periods of 4 months or shorter (Figure 9, dark solid line). The standard
deviations of the mean power spectra (averaged over 2700 grid points) are about
0.03 dB at all frequencies; therefore, a magnitude difference of 1.5 dB indicates
red spectra of precipitation variations in a statistically significant fashion.

The observed red spectra of precipitation anomalies can be reproduced by model

Figure 8. System response functions of precipitation as driven by external distur-
bances of vegetation (closed-loop model).
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simulations (Figure 9, dash lines). Results indicate that when the model uses a
feedback coefficient of �/2 (Table 2), the power spectra of the simulated precipi-
tation (Figure 9, dark dash line) show a similar magnitude range as the observed
values (Figure 9, dark solid line), while the spectra of the random inputs are
essentially “flat” (Figure 9, gray dash line). When the model uses the full value of
�, the output precipitation has larger magnitude differences between high and low
frequencies (not shown). The overestimated red spectra of the model simulations
may be due to the fact that the strength of land–atmosphere interactions in the
observed system has monthly/seasonal variability (W1), which is not included in
the model (here all values are constant through the entire simulation). For the same
reason, the model may also overestimate the spectral magnitudes at 8–16-month
time scales (Figure 9).

The red power spectra of the observed precipitation shown in Figure 9 do not
rule out the possibility that they may be induced by other external processes at
interannual or longer time scales (e.g., ocean–atmosphere interactions). To address
this problem, we divide the observed monthly precipitation anomalies into grow-
ing season months (GS; March–October) and nongrowing season months (NonGS;
September–April), and calculate the power spectra for the two time windows
separately (Figure 10, top). The two 8-month periods are defined to facilitate the
calculation, and the overlap between them does not substantially influence the
results (not shown). For comparison, we also divide the model simulations and the
random inputs into 8-month segments and recalculate their power spectra, respec-
tively (Figure 10, bottom).

As shown (Figure 10, top), the power spectra of the observed GS precipitation
anomalies have higher magnitude (−4.7 dB) at the 8-month period and have lower
magnitudes (about −5.2 dB) at the 4-month or shorter time scales, which is con-
sistent with the red characteristics of the full spectra in the same frequency ranges
(Figure 9; also shown in gray solid line in Figure 10, top). On the other hand, the

Figure 9. Mean power spectra of observed precipitation and model simulations.
“Obs”: observations compiled from the CPC U.S. UNIFIED precipitation
datasets (Higgins et al. 2000); “Simu”: simulations with the closed-loop
model with the feedback coefficient set to �/2; “Ctrl”: random inputs used
for the model simulation.
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power spectra of observed NonGS precipitation anomalies have almost the same
magnitudes (about −5.1 dB) at periods of 8, 4, and 8/3 months, while there is a
magnitude drop (about −5.5 dB) at the 2-month period (Figure 10, top). Comparing
the spectral characteristics of the observed precipitation anomalies with those of
the model simulations, it indicates qualitative agreement between the observed GS
anomalies and the simulated precipitation, as well as qualitative agreement be-
tween the NonGS anomalies and the random inputs (Figure 10, bottom). There-
fore, these results suggest that land surface feedbacks during the growing season
represent an important source for the red spectra of the precipitation anomalies
shown in Figure 9, which is not present during the nongrowing season.

However, results of Figure 10 cannot be uniquely attributed to the influence of
vegetation upon precipitation variability. In fact, the feedback function of Equation

Figure 10. (top) Power spectra of observed precipitation (taken from the CPC UNI-
FIED datasets) during the GS (March–October, dark solid line) and the
NonGS (September–April, dark dashed line). The gray line shows the
continuous power spectra for the observations as in Figure 9. (bottom)
Power spectra of simulated precipitation (solid lines) and the random
inputs. The dark lines show values calculated based on 8-month seg-
ments of simulations and controls, and the gray lines are the correspond-
ing continuous spectra from the simulations as shown in Figure 9.
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(6) is not the only process that can lead to the red shift in the power spectra of
precipitation. For example, removing the vegetation terms from Equation (6) gives

P�t = �P�t−1 + �t , (12)
which can also induce red spectral characteristics of precipitation that are similar
to those observed (not shown). Equation (12) can be understood as a direct inter-
action between soil and the atmosphere (e.g., via evaporation), without any influ-
ence of vegetation upon soil–atmosphere water exchanges. Theoretically, the prin-
cipal difference between Equation (6) and Equation (12) is that vegetation feed-
backs [Equation (6)] can introduce oscillatory variability in precipitation (e.g.,
Figure 7 and Figure 8), while direct soil moisture–precipitation variations [as
contained in Equation (12)] cannot. However, because vegetation feedbacks are
strong only in certain seasons during the year (e.g., summer), identifying such
oscillatory characteristics directly from the power spectra of Figure 9 remains
difficult. Therefore, other metrics are required to further analyze the role of veg-
etation in influencing precipitation, which we discuss in the following section.

5. Model experiments
We conduct Monte Carlo experiments to determine which candidate models

best capture the observed summertime precipitation–vegetation interactions. The
three candidates are the open-loop model [Equation (5); “OPEN”], the closed-loop
model with the feedback function described by Equation (6) (“VEG”), and the
closed-loop model in which the feedback function is given by Equation (12)
(“AR1”). These models have the same model component to describe vegetation
variability [i.e., Equation (5)], but they differ from one another only in the ways
they treat precipitation: in the OPEN model precipitation variations are simply
assumed to be white noise; in the VEG model precipitation variability depends on
the preceding status of both precipitation and vegetation; and in the AR1 model
precipitation is only related to its own preceding status, and not to vegetation.

In each model experiment, the external climate forcing and the external distur-
bances to vegetation are represented by two random time series, which have a
Gaussian distribution and standard deviations of 0.7 (mm day−1, precipitation) and
0.02 (NDVI), respectively. The simulated vegetation (V) and precipitation (P)
are truncated (with the first 500 values discarded) to 11 628 samples (i.e., 12
months × 19 yr × 51 pixels), which is the length of the panel data for the North
American Grasslands (W1). As such, these model simulations can be analyzed in
the same way that the observational data are analyzed (W1). The model experi-
ments are repeated 10 000 times to estimate the mean state of each model as well
as the corresponding intraseasonal evolution.

We compare the model simulations with the observations using the autocorre-
lations of monthly vegetation and precipitation anomalies, as well as the lagged
cross correlations between them (Figure 11; correlations of the observed data are
averaged over July–September). Overall, all the models capture the observed
vegetation variability. Simulations and observations show that the autocorrelations
of vegetation (NDVI) decrease from positive values (e.g., 0.7) to negative values
(e.g., −0.2) as the time lag increases to 4 months (Figure 11a), which is an indicator
of oscillatory variability in the vegetation anomalies (W1). Also, all models and
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observations indicate that the positive correlations between vegetation and the
preceding precipitation variations decrease as time lag increases (Figure 11b).

On the other hand, the models differ in describing the variability of precipita-
tion. As shown in Figure 11c, autocorrelations of observed precipitation decrease
from positive values (∼0.12, at the 1-month lag) to slightly negative values (−0.05,
at lags longer than 3 months; Figure 11c, “OBS”). At the same time, cross cor-

Figure 11. Autocorrelations and lagged correlations of/between anomalies of veg-
etation and precipitation. (a) Correlations between V(t ) and V(t–lag), (b)
correlations between V(t ) and P(t–lag), (c) correlations between P(t )
and P(t–lag), and (d) correlations between P(t ) and V(t–lag). VEG stands
for the closed-loop model with vegetation feedbacks [Equation (6)], AR1
denotes the closed-loop model with precipitation related only to its own
preceding status (but not vegetation), OPEN is the open-loop model,
and OBS indicates observations that are averaged over the late summer
(July–September).
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relations between current precipitation (P�t ) and lagged vegetation (V�t−lag) have
negative values as time lag increases (Figure 11d, OBS). Of the model simulations,
only the VEG model captures both these observed characteristics (Figure 11c and
Figure 11d, VEG). In contrast, because precipitation in the OPEN model is ran-
dom, it cannot be predicted either by preceding values of itself or those of veg-
etation. As such, it has essentially zero autocorrelations and lagged cross corre-
lations (Figure 11c and Figure 11d, OPEN). The AR1 model captures the decreas-
ing trajectory of the autocorrelations of precipitation anomalies; however, these
autocorrelations converge to zero at the 3-month lag and do not become negative
(Figure 11c, AR1). Also, vegetation in the AR1 model shows no information about
future precipitation (Figure 11d, AR1). Together, these results indicate that the
VEG model, which incorporates the feedback of vegetation upon the atmosphere,
best captures the observed statistical precipitation–vegetation interaction charac-
teristics.

Figure 11. (Continued )
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It is noted that the correlation structures of model simulations are likely to
deviate from the observations at long time lags (Figure 11). For example, simu-
lations show that correlations between vegetation (V�t ) and lagged precipitation
(P�t−lag) become slightly negative at the 5-month lag, while the observations do not
(Figure 11b). Also, the negative correlations between simulated precipitation (P�t )
and vegetation (V�t−lag) show a recovering tendency at lags longer than 3 months,
while the observations indicate a further decrease (Figure 11d). These differences
may reflect the seasonal variations of the precipitation–vegetation interactions.
Additional analyses indicate that at the beginning of the growing season (e.g.,
April and May) vegetation is less dependent on precipitation and is more strongly
related to temperature (not shown); in this sense, higher vegetation anomalies may
be associated with warmer temperatures but less rainfall during the cooler early
growing season months. Because both factors have negative impacts on soil mois-
ture (e.g., Figure 3 and Figure 5), they suggest that higher vegetation in spring may
be followed by precipitation anomalies that are lower than expected in summer
(negative correlation; Figure 11d, OBS). In the same way, higher precipitation in
spring may precede higher-than-expected vegetation in summer (positive correla-
tion; Figure 11b, OBS) because the consumption of soil water is delayed until later
in the growing season.

Finally, we verify these model simulations by testing Granger causal relation-
ships from vegetation to precipitation, which examines whether lagged vegetation
anomalies contain information to predict current precipitation variability (W1). In
particular, for the case of 4-month lags, we test how the mean (V�mean) and the trend
(V�diff) of vegetation anomalies over the preceding months contribute to such
relationships (W1). From W1, V�mean and V�diff are defined by

V�mean = �
l = 1

4

V�t−l�4, V�diff = �
l = 1

2

V�t−l�2 − �
l = 3

4

V�t−l�2. (13)

Of the total 10 000 experiments, the results indicate that 96% of VEG simulations
have a significant causal relationship from vegetation to precipitation, while the
corresponding numbers for both OPEN and AR1 models are about 4%. In addition,
in 99% of the VEG experiments the sign associated with V�mean is negative, and in
84% of the VEG experiments, the sign associated with V�diff is positive. These
results indicate that higher mean values or/and decreasing trends of vegetation
variations are likely to precede lower precipitation anomalies and hence are con-
sistent with the findings of W1 based upon the observed data. Furthermore, it is
found that when the model (VEG) is simulated only with the external climate
forcing, in which all the information of vegetation is derived only from precipi-
tation, the significant causal relationships disappear (not shown). These experi-
ments further indicate that a system in which there is negligible influence of vegetation
on precipitation could not spuriously produce the observed results found in W1.

6. Conclusions
This paper develops a simple stochastic model to quantitatively investigate

interactions between anomalous precipitation and vegetation over the North
American Grasslands. Based on characteristics of biohydrological processes in this
semiarid environment, the model has components to describe the water-related
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vegetation variability, the long-term balance of soil moisture, and the local soil
moisture–precipitation feedbacks. These dynamic relationships are quantified by
five physically meaningful parameters, which describe the persistence rate of
vegetation, precipitation, and soil moisture, as well as the short-term/long-term
responses of vegetation to precipitation forcing. To facilitate the comparison with
the observational analysis (W1), the model is represented in two linear difference
equations, with a focus on how precipitation drives variations in vegetation (the
open-loop model), and how vegetation signals feed back to the atmosphere (the
feedback equation). This representation allows the system parameters to be readily
estimated from the observational data.

Analyses indicate that the open-loop model, which represents the variability of
vegetation driven by precipitation, captures two principal characteristics of the
observed vegetation dynamics. First, the model indicates that vegetation has a
“red” response function to precipitation forcing; that is, vegetation responds more
actively to low-frequency precipitation variations but does not respond to rapid
disturbances. Second, the model indicates that the system has intrinsic oscillatory
variability, which is induced by interactions between vegetation and soil moisture.
With the estimated system parameters, this oscillation frequency is calculated to be
0.76 rad month−1, representing a period of about 8 months, which is consistent
with the analysis of W1.

Analyses of the closed-loop model indicate that vegetation signals can impart
similar spectral signatures on the variability of precipitation when they feed back
to the atmosphere. The frequency-response functions of the model show that the
magnitude of precipitation is slightly enhanced at low frequencies (e.g., periods
	8 months) but damped at high frequencies (e.g., periods 
4 months), regardless
of the external forcing coming from the climate side or the vegetation side. Such
red frequency characteristics are verified by the power spectra of observed pre-
cipitation datasets and the model simulations. The role of vegetation in influencing
precipitation variability is further verified by Monte Carlo experiments. Only when
the vegetation feedback is incorporated can the model simulations reproduce char-
acteristics of observed covariability between summertime precipitation and veg-
etation anomalies, as represented by the lagged correlations and the Granger causal
relationships. These relationships indicate that higher mean values and/or decreas-
ing trends of vegetation anomalies are likely followed by lower precipitation
anomalies, in agreement with observed results (W1).

More important than just replicating the characteristics of the observed precipi-
tation–vegetation interactions, the dynamic aspects of the model provide insights
for the understanding of the physical mechanisms of the system. For example, the
red response functions of vegetation reflect the fact that the short-term production
of vegetation is lower than its long-term balance with precipitation. Therefore, it
takes time for vegetation to fully respond to a precipitation impulse; in other
words, an impulse of precipitation will generate variations of vegetation in the
following months and not simply during the precipitating month. At the same time,
because preceding vegetation anomalies also consume water, this response process
is also regulated by the persistence rate of vegetation and soil moisture. Depending
on the values of these parameters, the adjustments of the system can either be
oscillatory or nonoscillatory, although the parameter space tends to be dominated
by oscillatory behavior.
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The model also helps to clarify the role of vegetation in regulating soil moisture
and precipitation. Because vegetation represents the principal pathway in which
water is depleted from soil, from the perspective of soil water balance, vegetation-
induced evapotranspiration acts as a negative feedback to help maintain the sta-
bility of the system. For the open-loop model, such equilibrium of the system is
reached only when the incoming water (precipitation) is exactly balanced by the
outgoing water (evapotranspiration), such that soil moisture becomes invariant and
the long-term relationship between vegetation and precipitation is established.
Deviations arising from either precipitation or vegetation anomalies will be re-
strained by this negative feedback process to gradually return to their equilibrium
status. For the closed-loop model, although vegetation prompts the water exchange
between land and atmosphere at long time scales, it also enhances the diffusion of
water to the atmosphere and implicitly removes it from the region. For this reason,
without increases in incoming water (via precipitation), increases of vegetation
(i.e., external disturbances to vegetation) will have negative overall impacts on soil
moisture and precipitation. This result explains why positive vegetation anomalies
at the beginning of the growing season, probably prompted by warmer tempera-
tures, may precede drier conditions later in the summer (W1).

Finally, it is important to note that we do not argue that the model developed in
this paper (as well as the physical mechanisms it represents) is the only way that
vegetation influences precipitation variability. Indeed, because the model is mainly
developed to provide a physically meaningful explanation for the observed in-
traseasonal covariability between vegetation and climate anomalies (W1), it has
simplified many important processes (e.g., through the albedo feedback; Brovkin
et al. 1998) that can significantly influence climate variability at long time scales.
The statistical results and the stochastic model of this study are also restrained by
the methodologies and, in particular, by the datasets used in the analyses. There-
fore, it is recognized that findings of this study need to be further investigated by
dedicated observational and process-based approaches in the future.
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Appendix

Model Derivation
1.1. Objective

The model in the paper was directly developed in the form of linear difference
equations to describe relationships among anomalies of vegetation, soil moisture,
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and precipitation. However, interactions among these fields (their full values) are
known to be nonlinear and are typically studied using physically based models in
the literature. As such, a question naturally arises: Is there a link between the
stochastic model of this study and those physical models? This appendix is in-
tended to address this question.

1.2. The general model

In the first step, we want to show that generally, climate–vegetation interactions
in a semiarid environment may be described by the following form:

dV�dt = −a�V, S�V + b�V, S�S, (A1)

dS�dt = P − c�V, S�S. (A2)

P = �S + fp , (A3)

where V, S, and P represent vegetation (e.g., NDVI), soil moisture, and precipi-
tation, respectively; fp stands for the external forcing of precipitation; and a, b, c,
and � represent the parameters of the system. Note that a, b, and c are treated as
nonnegative functions of vegetation and soil moisture. To keep the model simple,
� is still assumed to be a constant coefficient (see below for discussions).

Equation (A1) describes vegetation dynamics. It is based on the notion that
vegetation growth is determined by the balance between the loss of biomass
(through respiration or metabolism) and the production of vegetation (through
photosynthesis). Because the environment is arid, it is assumed that vegetation
production is mainly regulated by soil moisture (Churkina and Running 1998).
Therefore, the parameters a and b can be interpreted as the rate of vegetation loss
and of production, respectively. This form of the biomass equation is generally
utilized in dynamic vegetation models (e.g., Foley et al. 1996; Dickinson et al.
1998). To illustrate with an example, we rewrite the vegetation model in Zeng et
al. (1999) as follows:

dV�dt = −V�� + ��1 − e−kL�V����S�, (A4)

where � is understood as the time constant of vegetation, � is the carbon assimi-
lation coefficient, k is a photosynthesis coefficient, L(V) is a plant leaf area index
function, and �(S) is a function of soil moisture (Zeng et al. 1999). By comparing
Equation (A1) and Equation (A4), it is clear that the former represents a general
form of the latter.

Equation (A2) describes the balance of soil moisture. This equation is based
upon the assumption that in the arid environment, soil moisture is mainly balanced
by precipitation (P) and evapotranspiration (ET); that is,

dS�dt = P − ET. (A5)

Equation (A5) is generally known as a simple bucket model. Previous studies (e.g.,
Mintz and Serafini 1984; Serafini and Sud 1987; Yamaguchi and Shinoda 2002)
suggest that evapotranspiration may be modeled as
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ET =
PET

f
S, (A6)

where f is some function of the soil properties, and PET represents the potential
evapotranspiration.

Potential evapotranspiration (PET) over vegetated surface can be modeled using
the Penman–Monteith equation (Penman 1953; Monteith 1965); however, this
requires much more information than is available from datasets used here. Instead,
we assume that the ideal PET can be optimally approximated by some function of
vegetation and soil moisture [denoted as c(V,S)]; that is,

PET

f
� c�V, S�. (A7)

The parameter function c can be understood as the turnover rate of soil moisture.
From Equation (A5) to Equation (A7), we get the general equation of soil water
balance, Equation (A2).

Equation (A3) describes the soil moisture–precipitation feedbacks in the model.
It is based upon the notion that precipitation over large regions is supplied by the
influx of water vapor from outside the given region [i.e., fp in Equation (A3)], and
by the local water flux evapotranspirated from the soil (Rodrigues-Iturbe et al.
1991a). Therefore, the parameter � in Equation (A3) can be interpreted as the
proportion of soil moisture that contributes to local precipitation. Because this
parameter describes only a statistical relationship, and because ultimately we want
to represent such a relationship in a linear form, we assume � is a constant
coefficient to keep the equation simple. (In other cases we can use the techniques
described below to linearize this equation.)

1.3. Linearization

To linearize the general model proposed above, we rewrite the system variables
as sums of their long-term means (i.e., climatologies) and deviations from the
means (i.e., anomalies), that is,

�
V = V + V�

S = S + S�

P = P + P�

fp = fp + f�p,

(A8)

where V, S, P, and fp represent the climatologies of the system variables, and V�,
S�, P�, and f�p represent the corresponding anomalies. Generally, it is assumed that
there is an equilibrium among the climatologies of the system, such that

�
dV�dt = −a�V, S�V + b�V, S�S = 0

dS�dt = P − c�V, S�S = 0

P = �S + fp.

(A9)
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This assumption can be made because, simply speaking, once the external climate
forcing (e.g., fp) takes its climatological value, the rest of the system variables
would be expected to reach their climatological values as well.

Based on Equation (A8), we also rewrite the general model Equation (A1)–
Equation (A3) as follows:

�
d�V + V���dt = −a�V + V�, S + S���V + V�� + b�V + V�, S + S���S + S��

d�S + S���dt = �P + P�� − c�V + V�, S + S���S + S��

�P + P�� = ��S + S�� + �fp + f�p�.

(A10)
The basic method to linearize Equation (A10) is to 1) expand the parameters a,

b, and c as linear functions around their climatological values (V, S); 2) neglect all
the second-order anomaly terms (V�, S�, and P�); and 3) eliminate the long-term
equilibrium relationships [Equation (A9)] from the equations. The first step can be
done with

�
a�V + V�, S + S�� � a�V, S� +

�a

�V�V,S
V� +

�a

�S�V,S
S�

b�V + V�, S + S�� � b�V, S� +
�b

�V�V,S
V� +

�b

�S�V,S
S�

c�V + V�, S + S�� � c�V, S� +
�c

�V�V,S
V� +

�c

�S�V,S
S�.

(A11)

Following the steps described above, these equations give

dV��dt = − aV� + bS�, (A12)
dS��dt = P� − cSS� − cVV�, (A13)

P� = �S� + f�p, (A14)
where a, b, cS, and cV are constant coefficients (i.e., the Jocobians; Glendinning
1994), and are given by

�
a = a�V, S� +

�a

�V�V,S
V −

�b

�V�V,S
S

b = b�V, S� +
�b

�S�V,S
S −

�a

�S�V,S
V

cS = c�V, S� +
�c

�S�V,S
S

cV =
�c

�V�V,S
S

. (A15)

Therefore, Equations (A12), (A13), and (A14) represent the linear form of the
general model, which describes interactions among anomalies of the system vari-
ables.
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1.4. Difference equations

To facilitate the discussion, the model derived in the paper (in difference equa-
tions) is rewritten here as

V�t = �V�t−1 + �S�t−1, (A16)

S�t = �S�t−1 + P�t −
1

�
V�t, (A17)

P�t = �S�t−1 + �t . (A18)

The correspondence between Equation (A16)–Equation (A18) and Equation
(A12)–Equation (A14) is apparent. However, there are also some subtle differ-
ences. For instance, the coefficients of the difference equations are generally
different from those of the original differential equations because coefficients in
the discrete time domain implicitly include information about the data-sampling
periods [i.e., the “dt” term in Equations (A12)–(A14)]. Also, Equation (A17)
introduces some instantaneous effects of precipitation and vegetation on soil mois-
ture, which are not exactly described by Equation (A13). In addition, the time lag
of the soil moisture term in Equation (A18) is adjusted. Such adjustments are made
because the observational data are generally smoothed over a fixed time period,
which may affect the time sequences of the relationships among them. For ex-
ample, the instantaneous relationships commonly seen in statistical models are
rarely described by differential equations. Generally, these adjustments allow the
model to better describe the statistical relationships among the observational data
and at the same time to preserve the physical meaning of the model and its
parameters.
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