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ABSTRACT: Feedbacks of vegetation on summertime climate variability
over the North American Grasslands are analyzed using the statistical tech-
nique of Granger causality. Results indicate that normalized difference veg-
etation index (NDVI) anomalies early in the growing season have a statistically
measurable effect on precipitation and surface temperature later in summer. In
particular, higher means and/or decreasing trends of NDVI anomalies tend to
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be followed by lower rainfall but higher temperatures during July through
September. These results suggest that initially enhanced vegetation may de-
plete soil moisture faster than normal and thereby induce drier and warmer
climate anomalies via the strong soil moisture–precipitation coupling in these
regions. Consistent with this soil moisture–precipitation feedback mechanism,
interactions between temperature and precipitation anomalies in this region
indicate that moister and cooler conditions are also related to increases in
precipitation during the preceding months. Because vegetation responds to soil
moisture variations, interactions between vegetation and precipitation generate
oscillations in NDVI anomalies at growing season time scales, which are
identified in the temporal and the spectral characteristics of the precipitation–
NDVI system. Spectral analysis of the precipitation–NDVI system also indi-
cates that 1) long-term interactions (i.e., interannual and longer time scales)
between the two anomalies tend to enhance one another, 2) short-term inter-
actions (less than 2 months) tend to damp one another, and 3) intermediary-
period interactions (4–8 months) are oscillatory. Together, these results support
the hypothesis that vegetation may influence summertime climate variability
via the land–atmosphere hydrological cycles over these semiarid grasslands.
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1. Introduction
It is well known that terrestrial vegetation can influence climate through the

exchange of energy, mass, and momentum between the land surface and the
overlying atmosphere (Pielke et al. 1998). As a major pathway through which soil
water is transferred into the atmosphere, vegetation generally promotes the land–
atmosphere water exchange via evapotranspiration (Sellers et al. 1997; Gerten et
al. 2004) and reduces surface temperatures by lowering the Bowen ratio (Bounoua
et al. 2000). These mechanisms are illustrated by model simulations with extreme
vegetation schemes (Fraedrich et al. 1999; Kleidon et al. 2000), which indicate that
a green planet (100% vegetation coverage) has about 200% of the precipitation of
a desert planet (0% vegetation coverage) and is about 8 K cooler than the latter.

However, the above description of vegetation feedbacks is a rather static view,
referring to the mean status of the climate–vegetation system. Depending on
specific regions and spatial–temporal scales under consideration, effects of veg-
etation on climate can be highly variable. For instance, as vegetation transfers
water into the atmosphere, it can also lower soil water storage and dry the soil
(Pielke et al. 1998). At the same time, the water vapor coming into the atmosphere
may be transported out of the local air column, resulting in a net divergence of
water flux from the region (e.g., Shukla and Mintz 1982). These processes may be
particularly important for arid/semiarid regions, where soil water is limited and
rainfall is infrequent. In the Midwest of the United States, for example, evapo-
transpiration exceeds precipitation during the summer months and leads to a net
divergence of water (Shukla and Mintz 1982; Bonan and Stillwell-Soller 1998). In
addition, the long memory of soil moisture may allow vegetation signals to persist
for months before they begin to influence the atmosphere (Pielke et al. 1998). Such
time-scale dependence further increases the complexity of interactions between
vegetation and climate (see below).

Earth Interactions • Volume 10 (2006) • Paper No. 17 • Page 2



The vast grasslands over midwestern North America (Figure 1; hereafter North
American Grasslands) represent a typical semiarid environment in the northern
midlatitudes, where variations of vegetation are closely associated with soil mois-
ture (e.g., Woodward 1987; Churkina and Running 1998). At the same time,
climate model studies (e.g., Koster et al. 2004) have suggested this region is one
of the “hot spots” where soil moisture and precipitation are most tightly coupled
during summer. Given vegetation’s control on the water cycle, this coupling also
implies a strong coupling between vegetation and climate variations (Delire et al.
2004).

Satellite estimates of vegetation [e.g., the normalized difference vegetation in-
dex (NDVI; e.g., Myneni et al. 1998)] may provide an opportunity to detect the
presumed land surface feedbacks upon observed precipitation and temperature
variability over these grasslands. However, identifying the weak effects of veg-
etation on climate variability remains a difficult task for observational studies.
Measurements of vegetation (e.g., NDVI), temperature, and precipitation are the
consequences of the coupled climate–vegetation system, while the corresponding

Figure 1. Domain of this analysis: the North American Grasslands. Shaded region
shows 2° × 2° pixels of Grasslands as aggregated from the land cover map
of Friedl et al. (Friedl et al. 2002), and the black grids indicate the 4° × 4°
boxes that are used to resample the data.

Earth Interactions • Volume 10 (2006) • Paper No. 17 • Page 3



controls remain unknown. For instance, it is difficult to use simultaneous obser-
vations (i.e., observed at the same time) to separate the portion of precipitation
variability that constitutes the “original” climate signal from the portion that is
induced by feedbacks from vegetation. Therefore, detection of causal relationships
(i.e., forcing and feedbacks) from observations relies on the idea of predictability,
that is, how much variance in precipitation (or other climate variables) can be
predicted exclusively by past values of vegetation. The term “exclusively” is
emphasized because information about current precipitation can also be provided
by past values of precipitation or temperature (as well as other variables); however,
we want to ensure that the explanatory power is contributed by vegetation alone.
In this sense, the conventional technique of lagged-correlation analysis cannot
fully answer the question posed here. Instead, this paper uses another methodol-
ogy, namely, Granger causality (Granger 1969; 1980). The notion of Granger
causality was developed in studies of economic time series; nevertheless, because
the methodology has mathematical and physical foundations, it also has desirable
properties for identifying causal relationships in climate studies (e.g., Kaufmann
and Stern 1997; Salvucci et al. 2002; Wang et al. 2004). The concept of Granger
causality and the associated testing techniques are introduced further in the meth-
odology section.

Overall, this study focuses on the North American Grasslands in order to in-
vestigate vegetation feedbacks on climate variability in a semiarid environment. In
the first part of this study (this paper), we use statistical techniques to analyze 1)
whether lagged vegetation (NDVI) anomalies “Granger cause” summertime cli-
mate variability, 2) what components of intraseasonal vegetation variations con-
tribute to such causal relationships, and 3) how such vegetation variability may be
related to precipitation and/or soil moisture. We also test for causal relationships
between temperature and precipitation anomalies to examine whether they are
compatible with the assumed soil moisture–atmosphere feedbacks in this region.
As will be shown below, answers to these questions provide consistent and co-
herent evidence for a physical mechanism in which vegetation influences climate
variability via its influence on the local hydrological cycling in the semiarid
grasslands. This hypothesized mechanism provides a foundation to develop a
physically meaningful stochastic model to further quantify the observed climate–
vegetation interactions; it is presented in the second part of this study (Wang et al.
2006, hereafter W2).

2. Datasets and methodology
2.1. Datasets

The temperature dataset is from the National Aeronautics and Space Adminis-
tration (NASA) Goddard Institute for Space Studies (GISS) surface temperature
analysis (Hansen et al. 1999). The GISS dataset is produced from collections of
meteorological station records [Global Historical Climatology Network (GHCN)],
and it provides monthly temperature anomalies (relative to the 1951–80 climatol-
ogy) with global coverage at a 2° × 2° spatial resolution. The precipitation dataset
is from the National Oceanic and Atmospheric Administration (NOAA) Climate
Prediction Center (CPC) Merged Analysis of Precipitation (CMAP; Xie and Arkin
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1997). The CMAP dataset is derived from surface gauge measurements, precipi-
tation estimates from multiple satellite-based algorithms, and output of numerical
model predictions. It is available monthly at a 2.5° × 2.5° resolution and is
reprojected to 2° × 2° grids in this study. The NDVI dataset is derived from the
NOAA Advanced Very High Resolution Radiometer (AVHRR) instruments by the
Global Inventory Monitoring and Modeling Studies group (GIMMS; Tucker et al.
2005). This version of the GIMMS NDVI dataset is corrected through a series of
preprocessing steps to alleviate known limitations of the AVHRR measurements
induced by intersensor calibration, orbital drift, and atmospheric contamination
(Vermote and Kaufman 1995; Los 1998; Pinzon et al. 2001). The influences of
the remaining artifacts are expected to be negligible at intraseasonal time scales
(Kaufmann et al. 2000), and values of NDVI are consistent with ground-based
vegetation measures such as tree rings (Kaufmann et al. 2004). For this study,
NDVI data are aggregated to 2° × 2° grid points to match the resolution of the
climate datasets. Because these datasets provide high-frequency (monthly) mea-
surements of the climate–vegetation system with global coverage, they have been
used to investigate issues related to climate–vegetation variability in many previ-
ous studies (e.g., Zhou et al. 2001; Zhou et al. 2003; Kaufmann et al. 2003; Lotsch
et al. 2003).

For all datasets, only data over the North American Grasslands (Figure 1) and
during the period of 1982–2000 are used. A land cover map derived from Friedl
et al. (Friedl et al. 2002) is used to determine the study domain, which identifies
about 51 grid points (boxes) that have the biome type of grasslands that lie within
25°–55°N and 90°–130°W (Figure 1, shaded area). For each of these grid points,
monthly anomalies of all variables are calculated relative to their 1982–2000
climatologies (i.e., long-term mean seasonal cycles). (We emphasize that the
analyses and the results of this study are based on anomalies of these variables; yet
in places where this reference is clear, the term “anomalies” or “variations” may
be omitted in order to avoid lengthy repeats.) Finally, in order to increase the size
of the data sample and thus make it feasible to analyze climate–vegetation inter-
actions month by month, these gridpoint time series are further compiled into two
panels for the North American Grasslands. The first panel uses the full fifty-one
2° × 2° grid points (Figure 1, shaded area), and the second panel consists of 14 grid
points resampled from 14 groups of 2 × 2 adjacent points (Figure 1, 4° × 4° grid
cells). Both panels are used throughout the analyses; however, because the results
obtained with them are qualitatively the same, for simplicity below we mainly
discuss those obtained with data resampled from the 4° × 4° grid cells.

2.2. Granger causality

We illustrate the use of Granger causality by describing the procedures used to
test whether NDVI anomalies Granger cause precipitation variations. Because
causal relationships cannot be determined by concurrent correlations between two
(or more) fields, the idea of Granger causality is based on predictability (Granger
1980). To utilize past information of climate (temperature and precipitation) and
vegetation (NDVI) to “predict” the variability of current precipitation, we use the
following statistical model:
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(1)

where P, T, and N represent anomalies of precipitation, temperature, and NDVI,
respectively; the subscript m indicates the calendar month of interest, and the
superscript i is the index of grid points; l is the lagged month, and s is the
maximum lag length; �, �, �s, �s, and �s are regression coefficients, and they are
assumed to be the same across grid points; � represents the residuals (or errors) of
the regression. The variable “Year” is included in Equation (1) to account for a
possible trend in the variables (Kaufmann et al. 2003).

Equation (1) is usually referred to as the unrestricted model because it specifies
the full set of available information about climate and vegetation. Generally, if the
lagged NDVI anomalies in Equation (1) are necessary for estimating the variability
of current precipitation, the regression coefficients (i.e., �s) associated with them
will be distinct from zero. However, if lagged NDVI anomalies do not have
information about current precipitation variations, or the information contained in
NDVI anomalies is already contained in the lagged values of temperature and
precipitation (i.e., the information is redundant), the values of �s can be set to zero
without reducing the explanatory power of the statistical model. In the latter case,
Equation (1) can be written as

Pm
i = �� + �� × Year + �

l=1

s

��m,l × Tm−l
i + �

l=1

s

��m,l × Pm−l
i + ��,i

m . (2)

Because the lagged values of vegetation are excluded from the information set,
Equation (2) is called the restricted model.

Given the above logic, a test of whether lagged NDVI anomalies Granger cause
current precipitation variations is to compare how estimates of current precipita-
tion by the restricted model [Equation (2)] differ from estimates by the unrestricted
model [Equation (1)]. A statistically significant (p < 0.05) reduction in the ex-
planatory power (measured by the residual sum of squares, e.g.) of the restricted
model suggests a causal relationship from NDVI to precipitation. In other words,
NDVI Granger causes precipitation variability only if past values of NDVI anoma-
lies contain statistically meaningful information about current precipitation varia-
tions that are not provided by other variables in the information set [i.e., past
values of precipitation and temperature in Equation (1)].

Two methods are utilized to test for Granger causality in this study. The first
method uses ordinary least squares (OLS) to estimate Equations (1) and (2) and
tests NDVI’s causal relationship with precipitation using a partial F test. The
second method tests the presence of Granger causality by examining the accuracy
of out-of-sample forecasts (Granger and Huang 1997) generated by the unre-
stricted model [Equation (1)] against those generated by the restricted model
[Equation (2)]. Briefly speaking, this method makes out-of-sample forecasts by
using the statistical model to predict the climate–vegetation variability at grid
points that are not used to retrieve model coefficients. As such, it can limit
spurious fits of the statistical models to the panel data (Granger and Huang 1997).
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For simplicity, we leave the details of both methods for appendix A. As described
below, conclusions about the presence of a causal relationship generally are con-
sistent across methods in this study.

The above example of whether vegetation “causes” precipitation variability can
be easily extended to test causal relationships between other pairs of variables. For
instance, a set of unrestricted and restricted equations that specify temperature as
the dependent variable can be used to test for a causal relationship from NDVI to
temperature anomalies. In the same way, we can also test relationships between
temperature and precipitation anomalies. [Note that the causal influence of climate
variables (precipitation, in particular) on vegetation over the semiarid grasslands
will not be discussed in this paper because it is well studied in the literature (e.g.,
Woodward 1987) and is simply confirmed by our algorithm.]

Several issues about the Granger causality algorithm may need further clarifi-
cation. The first is about the choice of the lag length (s) in the statistical models
[Equations (1) and (2)]. Roughly, this parameter determines how much of the
previous climate–vegetation variability is included in the statistical model to pre-
dict its future development. A large s includes more information (i.e., more lagged
terms) in the models and thus may increase their explanatory power of the model.
However, a large s also increases the number of regression coefficients and re-
duces the degrees of freedom of the analysis and hence the statistical significance
of the results. Therefore, empirical approaches to determine s generally balance
between these two considerations (Enders 1995). To reduce the sensitivity of the
analysis to a specific time lag, in this study we repeat the test of Granger causality
using time lags of 1–5 months. This range of time lags allows the seasonal
evolution of vegetation (and soil moisture) to be included in the analysis (see
below).

In addition, it is recognized that interactions between climate and vegetation are
nonlinear in nature; however, in the statistical models [Equations (1) and (2)] these
relationships are described through linear specifications. This simplification is
based on the consideration that anomalies of climate/vegetation variables represent
small deviations from their steady states, and thus their relationships may be
linearly approximated (Glendinning 1994). Such an anomaly-based approach is
commonly used in previous studies of the climate–vegetation system (e.g., Zhou
et al. 2001; Zhou et al. 2003; Kaufmann et al. 2003) as well as ocean–atmosphere
interactions (e.g., Czaja and Frankignoul 1999; Czaja and Frankignoul 2002). In
addition, we provide a more detailed mathematical derivation of linearization of
vegetation–climate interactions for anomalous data in the appendix of the com-
panion paper (W2).

Finally, we recognize that the detection of Granger causality is limited by the
specifications of the statistical model and the quality of the datasets. For example,
the unrestricted model [Equation (1)] includes only information of temperature,
precipitation, and NDVI, while observations of other important variables (e.g., soil
moisture, cloudiness, and so on) are not available at the same spatial and temporal
scales. As a result, the detection of Granger causality does not necessarily imply
that a direct physical mechanism exists between the causal variable and the de-
pendent variable. The actual causal relationship may be driven by a process that is
missing from the information set (e.g., soil moisture). Furthermore, conclusions
about Granger causality also can be influenced by the frequency or time scales of
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the sample data (Wang et al. 2004). Therefore, caution is required in interpreting
the statistical results in a physically meaningful way. Nevertheless, we hope to
show that the method of Granger causality provides guidance in understanding the
interactions within the highly coupled climate–vegetation system.

3. Results and discussion
3.1. Granger causality analysis

We test Granger causal order from NDVI to precipitation and temperature
during the growing season with time lags [s in Equation (1)] from 1 to 5 months.
Results consistently indicate a causal relationship when s is longer than 2 months.
For simplicity, we discuss only the results obtained for s equal to 4 months; similar
results are found when s is set to 3 or 5 months.

With a 4-month lag, the analysis focuses on the period from July to October. For
these months, about 15%–20% of precipitation’s variance is captured by the un-
restricted model (Figure 2a, white bars). The explained portion of the variance of
temperature is generally about 20%–30%, but reaches 50% in August (Figure 2b,

Figure 2. The performance (in terms of r 2) of the statistical models used to predict
(a) precipitation and (b) temperature in July–October. The bars show the
r 2 of 1) the unrestricted model (white), i.e., when the full information set is
used; 2) the unrestricted model (gray), i.e., when NDVI is excluded from
the model; and 3) the difference of r 2 between 1) and 2), which represents
the explanatory power uniquely provided by NDVI (black).
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white bars). For both precipitation and temperature, NDVI alone accounts for
about 5% of the variance (Figures 2a,b, dark bars). Importantly, this contribution
of explanatory power by NDVI is significant in a statistical fashion, as indicated
by multiple testing metrics (Table 1). These results suggest that lagged NDVI
anomalies have a statistically measurable effect on precipitation and temperature
variability during all four months, with the exception of NDVI’s influence on July
precipitation (Table 1).

Because the time lag is long (4 months) and there are correlations (i.e., col-
linearity) among the lagged vegetation anomalies themselves, it is difficult to
determine the nature of the causal relationships directly from the four regression
coefficients associated with NDVI anomalies. Therefore, we try to identify the
major intraseasonal modes of vegetation variability and determine their contribu-
tions to the causal relationship. For this purpose, we use the algorithm of empirical
orthogonal functions [EOFs; also called principal component analysis (PCA);
Kutzbach 1967; Bretherton et al. 1992] to decompose the 4-month evolution of
NDVI during each year and at each grid point into four characteristic EOF com-
ponents representing different modes of intraseasonal evolution; it is important to
note that unlike traditional EOF analysis, we are not identifying spatial patterns
that show similar time evolution but instead are identifying intraseasonal evolution
patterns that are prevalent across grid points and across years. Each of these NDVI
components is a weighted combination of monthly NDVI time series over the
lagged period, with the weights (or loadings) determined by the EOF algorithm
(Kutzbach 1967). The EOF components are ordered such that the first component
accounts for the largest portion of the total intraseasonal variance, the second
component accounts for the second-largest portion of the total variance, and so on.
For this application, the first two EOF components explain more than 75% of the
intraseasonal variance in the lagged NDVI anomalies.

Although EOFs do not necessarily relate to physical modes of spatiotemporal
variability (e.g., Richman 1986), the weights for the two shown here (Figure 3)
suggest that they are associated with certain physical characteristics. The first
component has roughly the same weights for the four lagged months (Figure 3a);

Table 1. Results of Granger causality tests using the OLS method (the � statistic) and
the method of out-of-sample forecast (the S2a and the S3a statistics). Values in
boldface or italics indicate that the results are significant at the 95% (p < 0.05) or
90% (p < 0.10) level, respectively. The signs associated with the S2a and the S3a
statistics do not indicate the sign of the causal relationship. See appendix A for a
detailed description about these statistics.

Jul Aug Sep Oct

(a) NDVI Granger causes precipitation
� 1.58 9.00 2.87 7.38
S2a 1.10 −2.08 −1.60 −2.08
S3a 0.58 −1.76 −1.36 −2.12

(b) NDVI Granger causes temperature
Jul Aug Sep Oct

� 2.54 4.66 6.03 8.26
S2a −1.35 −2.08 −0.98 −1.96
S3a −0.84 −2.07 −1.76 −1.53
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Figure 3. Weights for the first two EOF components of lagged NDVI anomalies for
July–October. The calendar month (i.e., July, August, etc.) represents the
current month that the respective lagged 4-month period is related to. For
July, for example, a 1-month lag is related to anomalies in June. The first
two components generally account for >75% of the intraseasonal vari-
ance of NDVI anomalies over the lagged period.
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on the other hand, the weights of the second component are positive for the first
two lagged months but are negative for the third and the fourth lagged months
(Figure 3b). As such, these two components essentially represent the mean (de-
noted as N) and the intraseasonal trend (denoted as N�) of the lagged NDVI
anomalies, respectively. To avoid using the specific weights from the EOF analy-
sis, which can be sensitive to the number of grid points and time series used, we
formulize these two intraseasonal characteristics as follows:

N = �
l=1

4

NDVIm–l�4,

N� = �
l=1

2

NDVIm–l�2 − �
l=3

4

NDVIm–l�2, (3)

where m indicates the current month and l is the time lag.
We repeat the Granger causality tests with lagged NDVI terms in Equation (1)

represented by N and N�. As before, regression results indicate a causal relation-
ship from NDVI to climate variability from July through October; in particular,
both N and N� significantly contribute to this causal relationship (Table 2). The
signs of the regression coefficients associated with them (Table 2) indicate that 1)
during July through September, the causal relationship from N to precipitation
anomalies is generally negative, while the relationship from N to temperature
anomalies is positive; 2) at the same time, the causal relationship from N� to
precipitation anomalies is positive, and the relationship from N� to temperature
anomalies is negative; and 3) in October, N has a negative causal relationship with
both precipitation and temperature anomalies; also, the relationship from N� to
precipitation becomes negative in October (Table 2).

The statistical causal relationships in Table 2 can be interpreted as follows: 1)
higher mean NDVI anomalies (N) from the preceding months tend to be followed
by lower rainfall and higher temperature during July through September; 2) if
NDVI anomalies (N�) show a decreasing trend, the following summer months are
also likely to be drier and warmer; and 3) for October, however, higher NDVI
seems to reduce both rainfall and temperature. (Appendix B provides another
interpretation for the results of Table 2. Both interpretations, however, agree with
one another in suggesting that higher NDVI anomalies earlier in the growing
season may have negative impacts on precipitation variability in late summer.)

Table 2. OLS regression coefficients associated with the two major NDVI compo-
nents, N and N� [Equation (3)]. Values in boldface or italics indicate that the results
are significant at the 95% or 90% level, respectively.

Jul Aug Sep Oct

(a) NDVI Granger causes precipitation
N 1.44 −6.99 −3.54 −2.19
N� 4.44 2.47 2.29 −4.45

(b) NDVI Granger causes temperature
Jul Aug Sep Oct

N 6.85 8.05 8.56 −5.96
N� −4.55 −2.11 −6.13 0.30
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The preceding results may appear to disagree with the common assumption that
in a semiarid environment, higher vegetation anomalies are associated with higher
soil moisture (e.g., Woodward 1987) and are thus related to enhanced rainfall (e.g.,
Koster et al. 2004). To reconcile such apparent discrepancies, however, we should
first emphasize the time scales in this analysis. The results of Table 2 suggest that
positive vegetation anomalies earlier in the growing season may induce lower
rainfall later in summer (July–September). As will be shown later, enhanced
vegetation early in the season does not necessarily indicate higher vegetation
anomalies several months later, nor does moist soil in spring always imply a water
surplus in summer. Instead, if we assume a link between initially enhanced veg-
etation and lower soil moisture later in the season (see below), the results of Table
2 are self-consistent. They suggest that higher NDVI anomalies earlier in the
growing season may generate drier soil later in summer, which in turn induces
drier and warmer climate anomalies (Table 2, the first set of results associated with
N). At the same time, because vegetation tends to decrease in response to drier soil,
decreasing trends of vegetation anomalies are also likely a precursor of reduced
precipitation and increased surface temperature (Table 2, the second set of results
associated with N�). These explanations present a starting hypothesis for the veg-
etation feedbacks detected by the Granger causality algorithm, which we now wish
to develop and verify.

3.2. Seasonal oscillations of NDVI anomalies

An important consequence that follows from the above hypothesized chain of
processes is that higher vegetation anomalies will tend to be followed by lower
precipitation anomalies (and vice versa for the opposite-sign anomalies). Coupled
with the known positive relationship between precipitation and subsequent veg-
etation anomalies, these interactions suggest an oscillatory variability of NDVI,
which we examine in different ways.

First, we calculate autocorrelations of NDVI anomalies for each month between
July and October (Figure 4). For example, the autocorrelation of October with a
5-month lag is the correlation between NDVI anomalies in October and those in
May. Overall, autocorrelations of NDVI decrease as the time lag increases (Figure
4). For all months, autocorrelations are about 0.7 at the first lagged month (Figure
4), which suggests that vegetation anomalies are relatively persistent. However, as
the time lag increases to about 3 months, these autocorrelations start to become
negative (Figure 4). The negative autocorrelations are about −0.2 (significant at the
95% level) after 4 months or longer (Figure 4), which indicates that higher (lower)
NDVI values early in the spring are likely followed by lower (higher) values later
in summer. Together, the positive autocorrelations at shorter time lags and nega-
tive autocorrelations at longer time lags suggest that NDVI anomalies may oscil-
late (around their climatological values) over the course of a growing season
(Enders 1995).

To visualize such oscillations and examine how they are related to climate
variability, we compile indices of monthly NDVI anomalies and seasonal mean
precipitation anomalies by averaging the gridpoint time series over the North
American Grasslands (Figure 5). The mean precipitation anomalies are averaged
from the beginning of the year to the end of the growing season, and therefore
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serve as a qualitative proxy for soil wetness through the season. As shown, the
NDVI index apparently has an oscillatory component at growing season time
scales (Figure 5a), whose evolution appears related to the seasonal mean soil
wetness: in wet years (e.g., 1993), NDVI generally increases first and then de-
creases (producing a “dome” shape); in contrast, in dry years (e.g., 1988), NDVI
often decreases first and then increases (producing a “U” shape).

To further illustrate this feature, we compile monthly NDVI and precipitation
anomalies from all wet years (i.e., years with positive seasonal mean precipitation
anomalies) to form a growing season composite (the “wet” composite; Figure 5b).
For these wet years, the average NDVI starts at slightly negative values in April
and May, reaches its peak in July and August, and then decreases again in Sep-
tember and October (Figure 5b). The trajectory of the NDVI composite clearly
shows a dome shape (Figure 5b). Because the NDVI anomalies are calculated
relative to their climatologies for the observation period, the composite for the dry
years is just the same as Figure 5b but with the opposite sign (not shown).

The evolution of NDVI and precipitation indices in Figure 5b offer a qualita-
tive explanation for the oscillatory adjustments of vegetation anomalies and how
they may feed back to precipitation. If we assume that the mean values of the

Figure 4. Autocorrelation of NDVI for the months of July–October. The maximum lag
length is 5 months. The calendar month (i.e., July, August, etc.) represents
the current month that the respective lagged 4-month period is related to.
The 95% critical value for these autocorrelations is about ±0.13.
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composites of NDVI and precipitation anomalies tend toward a climatological
equilibrium, when precipitation (and hence soil moisture) is initially in surplus
(April), vegetation will tend to grow (Figure 5b). However, as NDVI increases
beyond its equilibrium with precipitation (e.g., in July and August), soil moisture
will change from a water surplus to water deficit, which in turn moves NDVI back
to its seasonal mean value in September and October (Figure 5b). For precipita-
tion, the positive anomalies in June shrink as the vegetation anomalies become

Figure 5. (a) Indices of monthly NDVI anomalies and seasonal mean precipitation
anomalies (averaged over January–October for the given year). Monthly
values of NDVI only shown for the period April–October; (b) Growing sea-
son composites of monthly NDVI and precipitation anomalies for years in
which the seasonal-mean precipitation anomalies are positive (the wet
composites). The two light gray lines show the seasonal mean anomalies
of NDVI and precipitation, respectively. The corresponding “dry” com-
posites are the same as the wet composites but with the opposite signs.
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positive and produce an excess draw-down of soil moisture. Precipitation anoma-
lies continue to decline through the growing season when the NDVI anomalies are
high and then start to increase again as the NDVI values begin to decrease (Figure
5b). While it is expected that vegetation would respond to variations in the pre-
cipitation field, if precipitation were purely a stochastic phenomenon on time
scales longer than a few days, there would not necessarily be a strong intraseasonal
structure to its behavior when composited on seasonal-mean values. Hence the
apparent oscillatory component of precipitation over the course of the season may
reflect interactions with vegetation-mediated soil moisture.

The relationship between the oscillatory components of NDVI and precipitation
anomalies can be quantitatively examined by the spectral characteristics of the
precipitation–vegetation system. If we assume that NDVI anomalies are driven
solely by precipitation variations, the frequency response functions of the system
(the gain function and phase function; Figure 6) can be estimated from the rela-
tionship between NDVI anomalies (output) and precipitation anomalies (input) in
the Fourier spectral domain using the methodology described in Jenkins and Watts
(Jenkins and Watts 1968). Simply speaking, we first calculate the Fourier spectra
of vegetation and precipitation anomalies over every growing season and then
estimate the correlation coefficients between the spectra of vegetation and pre-
cipitation at different frequencies (or periods). Because these correlation coeffi-

Figure 6. (top) The gain function and (bottom) the phase function of the precipita-
tion–NDVI system, estimated based on FFT spectra of growing season
anomalies (April–October; 7 months). The magnitude of the gain function
is in units of NDVI per unit precipitation (mm day−1).
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cients have complex values in general, they contain both magnitude (i.e., the gain
function) and phase relationships between the two fields.

The estimated gain function (Figure 6, top) indicates that the responses of NDVI
anomalies to precipitation forcing are stronger at the 8-month period and at the
climatological time scale, where the magnitudes are about 5 times as high as at the
2-month period. Such “red” responses suggest that NDVI anomalies will have a
strong response component at growing season time scales (as observed in Figure
5), even when they are driven by “white-noise” precipitation. In addition to the
gain function, the phase function (Figure 6, bottom) shows that NDVI anomalies
are in phase with precipitation forcing at long time scales (e.g., the constant
component); however, vegetation signals lag behind precipitation as the frequency
increases. The phase lags at periods of 8, 4, and 2 months are about 75°, 90°, and
180°, respectively (Figure 6, bottom).

The spectral analysis approach also provides a better understanding of how
vegetation’s influence on precipitation may change with the time scales consid-
ered. At long time scales (e.g., interannual or longer scales), when NDVI varies in
phase with precipitation (Figure 6, bottom) and has higher magnitudes (Figure 6,
top), it is expected that vegetation feedbacks will enhance precipitation, resulting
in a positive feedback between the two. At high frequencies (e.g., at 2-month
periods), when NDVI varies in the opposite direction of precipitation (phase lag of
180o), vegetation will tend to damp the variability of the precipitation forcing,
resulting in a negative feedback between the two. At intermediate time scales (e.g.,
periods of 4–8 months), because the phase lag is about 90° (Figure 6, bottom),
feedbacks of NDVI will produce oscillatory behavior in the precipitation signal in
which initially enhanced vegetation, related to enhanced precipitation, is followed
by reduced rainfall several months later, as indicated by the Granger causal rela-
tionship analysis (Table 2).

3.3. Soil moisture–precipitation coupling

Above we have assumed a positive relationship between soil moisture and
precipitation over the study region, which has been suggested by climate model
studies (e.g., Shukla and Mintz 1982; Bonan and Stillwell-Soller 1998; Pal and
Eltahir 2001; Koster et al. 2004). This assumption can be tested indirectly by
examining how precipitation variability is related to climate anomalies (i.e., tem-
perature and precipitation) from the preceding months. If there is a relationship
between positive soil moisture anomalies and enhanced rainfall, it is expected that
excess rainfall early in the season will increase soil moisture and therefore have a
positive relationship with its own variations later in the season. At the same time,
it is also expected that positive temperature anomalies early in the season will
enhance evaporation and decrease local soil moisture, which will reduce precipi-
tation later in the season.

We use the Granger causality algorithm to test the above hypothesis.1 The
results generally indicate statistically measurable causal relationships from lagged

1 Here by saying that lagged precipitation anomalies Granger causes current precipitation
variability, we simply mean that the former contains information about the latter that is not
provided by other lagged variables (e.g., temperature and vegetation) as discussed above.
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anomalies of precipitation and temperature to current precipitation variability
(Table 3, for time lags of 2 months). The nature of these relationships is given by
the signs of the regression coefficients associated with the mean precipitation/
temperature anomalies over the lagged period. Generally, the causal relationship
from lagged precipitation to current precipitation variability is positive, and the
relationship from lagged temperature to current precipitation variability is negative
during summer but positive at the beginning and the end of the growing season
(Table 3).

The nature of the above causal relationships is further illustrated by the corre-
sponding lagged correlations (Figure 7). Overall, correlations between current
precipitation and its preceding mean anomalies are positive (about 0.15 on aver-
age) through the year (Figure 7a), although there are two major troughs in April–
May and October when the correlations drop below zero, and a minor trough in
July when the correlations become trivial (Figure 7a). On the other hand, corre-
lations between current precipitation anomalies and the preceding mean tempera-
ture anomalies are negative (about −0.13) during May through September, but
positive (about 0.14) in the other months, with the only exception in December
(Figure 7b).

Together, Table 3 and Figure 7 indicate that in summer precipitation anomalies
have a positive relationship with their previous variations, while the relationships
between precipitation and the preceding temperature anomalies are negative.
These results are consistent with the soil moisture–precipitation feedback de-
scribed earlier and with other previous studies (e.g., Trenberth and Shea 2005;
Zeng et al. 2005). It is also noted that there is a switch of the sign related to
temperature’s effect on precipitation in winter and early spring, when temperature
anomalies have positive correlations with precipitation variations in the following
months (Figure 7b). It is possible that during these times of year higher tempera-
tures may increase the atmosphere’s capacity to hold more moisture and thus lead

Table 3. Granger causal relationships from lagged anomalies of (a) temperature
and (b) precipitation to current precipitation variability. Results shown are calcu-
lated with 2-month time lags. The sign of the relationship is determined from the
regression coefficients associated with the mean temperature/precipitation
anomalies over the lagged period. The statistics of �, S2a, and S3a are the same as
in Table 1. Values in boldface or italics indicate that the results are significant at the
95% or 90% level, respectively.

Mar Apr May Jun Jul Aug Sep Oct

(a) Temperature Granger causes precipitation
Sign + + − − − − + +
� 4.51 5.58 2.68 0.64 2.38 1.37 0.79 7.59
S2a −1.59 −0.70 −2.61 −2.74 −1.34 −0.32 −0.95 −2.86
S3a −1.83 −0.48 −2.46 −2.08 −1.22 0.44 −1.73 −2.45

(b) Precipitation Granger causes precipitation
Mar Apr May Jun Jul Aug Sep Oct

Sign + + − + − + + −
� 9.76 1.33 2.40 5.11 0.01 0.06 2.03 3.78
S2a −1.21 −0.19 −0.83 −1.59 2.48 −2.61 −0.83 −1.72
S3a −1.79 −0.03 −0.36 −1.22 2.34 −2.05 −0.73 −1.85
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Figure 7. Lagged correlations (r ) between current precipitation anomalies and
mean anomalies of (a) precipitation and (b) temperature from the pre-
ceding 1–3 months. The abscissa (“month”) indicates the current calen-
dar month. The 95% and the 90% critical values for these correlations are
about ±0.13 and ±0.10, respectively.
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to higher precipitation (Trenberth and Shea 2005); further investigation of this
relation, however, is beyond the scope of this paper.

3.4. Discussion of physical hypothesis
The results presented in this paper, although only based on statistical analysis,

allow us to propose a physical mechanism for land–atmosphere interactions over
the North American Grasslands. In particular, we argue that higher vegetation
anomalies at the beginning of the growing season may reduce soil moisture faster
than normal and initiate drought conditions later in summer, which in turn reduces
vegetation productivity. The negative relationship between the seasonal mean
vegetation anomalies (N) and precipitation variations (Table 2) is in agreement
with this hypothesis; the positive relationship between the seasonal trend in veg-
etation anomalies (N�) and precipitation variations (Table 2) is also consistent with
this hypothesis. The oscillatory variations in vegetation, which are captured by the
autocorrelation analysis (Figure 4), the composite plots (Figure 5), and the spectral
analysis (Figure 6), further support the proposed interactions of vegetation with
soil moisture. Finally, the causal relationship between temperature and precipita-
tion (Table 3) is consistent with the implied role of soil moisture in mediating the
land–atmosphere exchanges of moisture and energy in this region. Together, all of
these findings strongly suggest that vegetation, through its impact upon soil mois-
ture, can modulate local climate.

The validity of the mechanism proposed here will be further assessed in the
companion paper (W2). To give a brief description, W2 constructs and analyzes a
stochastic model in which vegetation and precipitation interact via soil moisture to
produce damped, enhanced, and oscillatory behavior of the vegetation–climate
system at time scales similar to those found in the observations. It details the
climatological parameters that generate the oscillatory behavior (compared to a
stable, damped evolution). Furthermore, W2 shows that only when feedbacks of
vegetation upon soil moisture and precipitation are included in the stochastic
model can it properly simulate the observed Granger causality. This latter result
suggests that the observed vegetation–climate interactions analyzed in this paper
are not an artifact of the statistical analysis itself.

Now we want to further discuss how this proposed mechanism, part of which
has also been suggested by previous studies (e.g., Heck et al. 1999; Heck et al.
2001), relates to previous findings in the literature. While we recognize that the
results of this study (based on monthly anomalies) may not be directly comparable
to some of the studies that examine the steady state of the climate–vegetation
system, these previous studies highlight physical mechanisms that link the climate
and vegetation subsystems that may also be relevant on intraseasonal time scales.

First, the regulation of soil moisture on vegetation growth and the positive
coupling between soil moisture and precipitation, as required by our proposed
hypothesis, are well known (e.g., Woodward 1987; Churkina and Running 1998;
Shukla and Mintz 1982; Koster et al. 2004). The negative effect of vegetation on
soil moisture (i.e., the depletion effect) also can be inferred from the soil water
budget, which is balanced by the input from precipitation and the loss through
evapotranspiration and runoff (e.g., see Bonan 2002, chapter 5). For an arid/
semiarid environment (e.g., the North American Grasslands), water loss through
runoff is generally negligible (Feteke et al. 2000), and thus the balance of soil
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moisture is largely maintained by precipitation and by evapotranspiration associ-
ated with vegetation (Wever et al. 2002). As such, the depletion of soil moisture
by vegetation is known to become an important component of the hydrological
cycle in semiarid regions (Montaldo et al. 2005), as argued here.

Second, the effects of vegetation upon precipitation suggested by our statistical
results are also supported by coupled climate–vegetation model studies. For in-
stance, Heck et al. (Heck et al. 1999; Heck et al. 2001) report that increasing
vegetation in a regional climate model leads to moister and cooler spring condi-
tions but drier and warmer summers in the Mediterranean region, which is ex-
plained by a similar mechanism as proposed above. Delire et al. (Delire et al. 2004)
report that in the fully coupled National Center for Atmospheric Research (NCAR)
Community Climate Model version 3 and the Integrated Biosphere Simulator
(CCM3–IBIS) model simulations, dynamic vegetation cover tends to enhance the
long-term (e.g., decadal or longer) variability of precipitation but damp it at shorter
(e.g., interannual) time scales; in particular, such vegetation–precipitation interac-
tions are most significant over ecological transition zones that include the North
American Grasslands. Although mechanisms for the long-term vegetation–
atmosphere interactions in the coupled CCM3–IBIS are different from (and much
more complicated than) the intraseasonal interactions discussed in this paper, both
studies are consistent in that they argue that the nature of vegetation feedbacks can
change with various time scales.

Third, our results indicate that NDVI anomalies over the North American Grass-
lands contain a distinct oscillatory component during the course of a growing
season. These results are in agreement with other studies (e.g., Wu et al. 2002) that
report similar intraseasonal variability in root zone soil moisture over adjacent
Illinois. In addition, from an ecological perspective, the conditions of life over
these grasslands are known to be severe (Weaver 1954); as such the oscillatory
behavior discussed here may be induced by the fact that plants may “overshoot”
their equilibrium conditions in order to gain advantages in competing for available
water, although this requires further investigation.

Finally, the hypothesized mechanism and the spectral analysis of this study are
also consistent with literature indicating that vegetation feedbacks can enhance
precipitation at long time scales (e.g., Fraedrich et al. 1999; Kleidon et al. 2000).
Here we note, however, that such “positive” feedbacks between vegetation and
precipitation are not directly indicated by the results of the Granger causality test
(i.e., Table 2). This may be because the long-term positive feedback process
requires a persistence of the precipitation anomalies, while the Granger causality
algorithm is specifically designed to identify climate variation not found in the
preceding values of the climate parameters themselves. Although the Granger
causality test may not be an appropriate tool for analyzing long time-scale varia-
tions, the frequency response function analysis does indicate that similar long
time-scale interactions exist in the observed system.

4. Summary
This paper analyzes feedbacks of vegetation on climate variability over the

North American Grasslands. Results indicate that NDVI anomalies early in the
growing season have statistically significant Granger causal relationships with
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anomalies of precipitation and temperature in late summer (July–October). The
nature of the relationship indicates that higher mean values and/or decreasing
trends of NDVI anomalies from the preceding months may lead to (or Granger
cause) lower rainfall but higher temperatures in July through September. Com-
bined with the positive influence of precipitation–soil moisture on subsequent
NDVI anomalies, these results suggest that interactions between vegetation and
soil moisture may generate oscillations at intraseasonal time scales.

The oscillatory variability of NDVI anomalies and its association with precipi-
tation is further analyzed in the frequency domain. Empirical estimates for system
functions indicate that the magnitude of NDVI’s responses to precipitation forcing
becomes higher toward lower frequencies, while the phase lag of NDVI (relative
to precipitation) increases with frequency. Such frequency characteristics indicate
that vegetation feedbacks enhance precipitation variability at lower frequencies,
but have the opposite effect at higher frequencies, and will tend to produce oscil-
lations at intermediary time scales.

Finally, to test whether the influence of NDVI variations on climate variability
discussed above are consistent with the expected soil moisture–precipitation feed-
backs identified by Koster et al. (Koster et al. 2004), causal relationships between
anomalies of precipitation and temperature are examined. The variability of sum-
mer precipitation is positively related to its own anomalies over the preceding
months but is negatively related with those of temperature, as expected for a
semiarid region in which soil moisture plays an important intermediary role in
constraining both the land–atmosphere energy and water exchanges (e.g., Tren-
berth and Shea 2005; Zeng et al. 2005). While these results are focused on the
North American Grasslands, they may have broader implications for vegetation–
climate interactions in other water-limited regions as well as for vegetated regions
that become water stressed as a result of long-term, larger-scale climate changes.
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Appendix A

Algorithms to Test Granger Causality
To facilitate discussion, Equations (1) and (2) are rewritten here as Equations

(A1) and (A2):

Pm
i = � + � × Year + �

l=1

s

�m,l × Tm−l
i + �

l=1

s

�m,l × Pm−l
i + �

l=1

s

�m,l

× Nm−l
i + �m

i and (A1)
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Pm
i = �� + �� × Year + �

l=1

s

��m,l × Tm−l
i + �

l=1

s

��m,l × Pm−l
i + ��,i

m . (A2)

1.1. Ordinary least squares

As discussed in the methods section, the null hypothesis here is that eliminating
the lagged values of NDVI from Equation (A1) does not reduce its explanatory
power in a statistically meaningful fashion. To test this hypothesis, a statistic is
constructed as follows:

� =
�RSSr − RSSu��s

RSSu��L − k�
, (A3)

where RSS represents the residual sum of squares, while the subscripts r and u
refer to the “restricted” and the “unrestricted” model [i.e., Equations (A2) and
(A1)], respectively; s is the number of coefficients restricted to zero in Equation
(A2); L is the number of total observations (i.e., L � 14 × 19); and k is the number
of regressors in Equation (A1). The test statistic (�) can be evaluated against an
F distribution with s and L − k degrees of freedom in the numerator and denomi-
nator, respectively. High values of � that exceed the 5% threshold indicate that
NDVI anomalies “Granger cause” precipitation variability.

1.2. Out-of-sample forecast

First, we use the following procedure to make out-of-sample forecasts for the
observed precipitation variations:

(i) Eliminate one box (e.g., j) from the panel, which subsequently decreases
the size of the panel by 1 (i.e., 14 – 1).

(ii) Use data from the remaining boxes (I � 1 – 14, i 	 j) to estimate the
regression coefficients for Equations (A1) and (A2), respectively.

(iii) Use the regression coefficients estimated in (ii) to make a forecast for the
box of j. The forecasts generated with Equations (A1) and (A2) are
denoted as P̂ j

m,U and P̂ j
m,R, respectively.

(iv) Repeat the above processes for each of the boxes in the panel.

Next, we compare the accuracy of the two sets of out-of-sample forecasts, by the
unrestricted model Equation (A1) and by the restricted model Equation (A2), using
the following metric:

I + �dt� = �1, dt 
 0

0, otherwise
, (A4)

where

dt = �Precipm
i − P̂m,U

i �2 − �Precipm
i − P̂m,R

i �2. (A5)
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To test the null hypothesis that the out-of-sample forecasts are statistically
equivalent, two statistics (Diebold and Mariano 1995) are constructed as follows:

S2a =
�
t=1

L

I + �dt� − 0.5L

�0.25L
, (A6)

S3a =
�
t=1

L

I + �dt�rank��dt�� − L�L + 1��4

�L�L + 1��2L + 1��24
, (A7)

where L is the number of total observations (i.e., L � 14 × 19). The S2a and S3a
statistics can be evaluated against a Student’s t distribution with degrees of free-
dom equal to (L − 1). Note that if the forecast errors generated by the unrestricted
model [Equation (A1)] are smaller than those of the restricted model [Equation
(A2)], the test statistics will be negative. Therefore, only negative values of S2a and
S3a that are lower than the 5% threshold (which itself is negative) indicate the
presence of Granger causality.

Appendix B

Complementary Explanations for Table 2
In determining the major components of vegetation variability and their causal

relationships with climate variations, we estimated the mean (denoted as N) and
the intraseasonal trend (denoted as N�) of the lagged NDVI anomalies, respectively
[Equation (3)]. However, it is noted that vegetation information contained in N and
N� can also be represented in other ways. For instance, if we define N1,2 as the
mean NDVI anomalies over the first two lagged months, and N3,4 as the mean
NDVI anomalies over the third and the fourth lagged months, that is,

N1,2 = �
l=1

2

NDVIm–l�2,

N3,4 = �
l=3

4

NDVIm–l�2, (B1)

then Equation (3) can be rewritten as follows:

N = �N1,2 + N3,4��2,

N� = N1,2 − N3,4. (B2)

Equation (B2) suggests that N1,2 and N3,4 are equivalent to N and N�. In fact, any
linear combination of N and N� can always be represented in terms of N1,2 and N3,4.
To see this, suppose a1 and a2 are two constant coefficients (e.g., regression
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coefficients) associated with N and N�, respectively. From Equation (B2), the
following relationships can be derived:

a1N + a2N� = a1�N1,2 + N3,4��2 + a2�N1,2 − N3,4�

= �a1�2 + a2�N1,2 + �a1�2 − a2�N3,4. (B3)

Equation (B3) indicates that the regression coefficients of N1,2 and N3,4 can be
directly calculated from those of N and N�. In particular, when a1 and a2 have
opposite signs (as in Table 2), they will reinforce each other to make the regression
coefficient associated with N3,4 larger (in absolute values). To some extent, this
implies that more importance is put on N3,4 as compared to N1,2.

To verify the above relation, we test Granger causal relationships from N1,2 and
N3,4 (instead of N and N�) upon both precipitation and temperature variability
(Table B1). By comparing the results of Table B1 with Table 2, it is easy to verify
that the regression coefficients in Table B1 and Table 2 satisfy the relationships
described by Equation (B3). Also, Table B1 indicates that the causal influences of
N3,4 on climate variability are statistically more significant than those of N1,2, and
the signs associated with these coefficients suggest that higher vegetation anoma-
lies earlier in the growing season (at lags of 3 or 4 months) may induce lower
rainfall and higher temperature anomalies in late summer (July–September). As
such, these results provide a complementary explanation for those of Table 2.
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