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Abstract

Gridding artifacts between observations and predefined grid cells strongly influence the local spatial properties of MODIS images. The sensor
observation in any grid cell is only partially derived from the location of the cell, with the average overlap between observations and their grid
cells being less than 30%. This mismatch between grid cells and observations has strong implications for the use of reference data for the
validation of MODIS products or the training of MODIS algorithms. When generating multidate composites, gridding artifacts introduce bias
when spectral compositing criteria are used. Also, results indicate that the ability to generate consistent long-term remote sensing records is
dependent on both consistent sensing scenarios (spectral bands, view angle distributions, geolocation error) as well as consistent compositing
approaches. The band-to-band registration for the different spatial resolutions of gridded MODIS data can be poor if the different resolutions of
data are gridded before aggregation. In all cases it is imprecise to characterize the subpixel properties of the coarser resolution bands using the
finer resolution bands due to poor correspondence in the areas from which the observations are derived. All of the band-to-band registration
problems are minimized when the MODIS data are aggregated to coarser resolutions. When validating algorithm accuracy, available data on the
observation dimensions and the offsets between the grid cell and the observation should be included to ensure the quality of validation results. If
this information is not available, MODIS data should be aggregated to coarser resolutions to improve the correspondence between the location of
observations and grid cells.
© 2006 Elsevier Inc. All rights reserved.

Index Terms: Moderate resolution imaging spectroradiometer (MODIS); Gridding artifacts; Geolocation; View zenith angle; Triangular Point Spread Function (PSF);
Band-to-band registration; Compositing; Validation

1. Introduction

The moderate resolution imaging spectroradiometer (MODIS)
sensor onboard the Terra and Aqua platforms marked the
beginning of a new era in remote sensing of the Earth, as in
addition to the original data from the sensor there are a whole
suite of derived products made freely available. Some products
are more fundamental and provide radiometric properties (such
as surface reflectance), while others involve more complex
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algorithms to provide estimates of surface properties or processes
and may require inputs beyond the radiometric data from
MODIS, such as climate data. All of the products are produced
on a systematic basis globally and are made freely available
(Justice et al., 2002). What is particularly revolutionary about this
approach is the fact that the derived products are used much more
frequently than the original observations. Since these products
are used widely, it is important to determine their accuracy.
The accuracy of MODIS products is determined primarily
through comparison with field measurements (Liang et al.,
2002; Morisette et al., 2002; Privette et al., 2002; Tan et al.,
2005; Wan et al., 2002; Wang et al., 2004). It should be noted
that there are (at least) two types of validation activities for
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satellite products. The first is to assess the satellite product
accuracy independent of the observations from which they are
derived. In this approach the products are viewed much like
maps and can have both attribute error and locational error and
there is not necessarily any effort to determine the source of the
errors. The errors could be due to a wide variety of sources
including imperfections in the observations, their registration,
and imperfections in the algorithms used to generate the pro-
ducts. In this paper, we refer to this approach as “product vali-
dation.” A second approach is to evaluate the algorithm accuracy.
In this approach an attempt is made to quantify the contribution
to product error arising due to imperfections in the algorithm. In
this paper, we refer to this approach as “algorithm validation.”

For both product and algorithm validations, a pixel-by-pixel
comparison between MODIS data and reference data (which
could be field measurements or fine resolution maps generated
from field measurements and high-resolution satellite data) is
common (Morisette et al., 2002). In previous validation studies,
the misregistration of reference data has been considered. A
patch level comparison rather than a pixel level comparison was
performed to minimize the impact of the misregistration of
reference field data/high-resolution satellite data. (Tan et al.,
2005; Tian et al., 2002; Wang et al., 2004). However, the impact
of misregistration between MODIS products and reference data
has not been quantitatively evaluated. For “product validation”,
this source of misregistration is simply part of the product, and
hence need not be considered separately from other sources of
error. However, for “algorithm validation” it is important to
ensure that the reference data are derived from the same location
as the observations that form the basis of the MODIS products.

Griddling artifacts, first explained by Wolfe et al. (1998), are
one source of MODIS misregistration error. They are introduced
when sensor observations are assigned to the predefined system
of grid cells. The gridding artifacts come from two effects: (a)
the mismatch between the location on the ground from which
MODIS observations are derived and the predefined grid cells
for storing the observations, which is due to the use of a nearest
neighbor resampling method and defined here as “pixel shift”;
and (b) errors in assigning geolocation coordinates to ob-
servations, which are referred to as “geolocation error”. The
geolocation error has been quantified, and is modest (50 m at 1
sigma at nadir) (Wolfe et al., 2002). However, the combined
effect of pixel shift and geolocation error has yet to be quan-
tified and its implications explored. It should be noticed that
pixel shift effects exist in all resampled satellite data regardless
of the resampling method.

Although MODIS was designed to provide near-daily global
coverage, the availability of MODIS data is reduced by the
presence of clouds and atmospheric contamination. A commonly
used approach to remove or reduce such problems is to compo-
site data from multiple days into a single data set (Holben, 1986;
Los et al., 1994). One critical assumption in the compositing
process is that the repeated satellite observations cover the same
area. However, this assumption is compromised by gridding
artifacts that undermine the correspondence between observa-
tions and grid cells. The mismatch between observations and grid
cells increases as view zenith angle increases because the size of

the observations increases while the size of grid cells remains
unchanged (Wolfe et al., 1998). Therefore, the “pixel shift” effect
is primarily due to the size difference between observations and
cells when view zenith angle is significant.

Few studies have investigated the bias in biophysical
parameters resulting from misregistration in composited data.
Moody and Strahler (1994) found that the maximum NDVI
compositing method leads to a positive NDVI bias in
composited AVHRR data. Roy (1997) compared the maximum
NDVI and the maximum surface temperature compositing
method on AVHRR data and found that the compositing
procedure influences significantly the distribution of the NDVI
and surface temperature values. NDVI values are higher using
the maximum NDVI method than from the maximum surface
temperature method. He also indicated that inappropriate
selection of a compositing method may have a significant
impact on the subsequent application of the derived biophysical
parameters.

In this paper, the effect of different compositing methods is
investigated on MODIS data through simulation. The NDVI
values of simulated 8-day composites resulting from different
compositing methods are compared with reference NDVI
values.

MODIS makes observations of the Earth in three at-nadir
spatial resolutions: 250-m (Bands 1-2); 500-m (Bands 3-7),
and 1-km (Bands 8-36). Following the terminology used by
Roy (2000), an observation refers to the measurement made by
a detector and the observed surface size is referred to as the
observation dimensions. The size of the grid cells used to
store the observations matches the size of observations at nadir.
This paper investigates the relationship between gridding
artifacts and MODIS data quality and has three objectives: (1)
to quantify the degree of correspondence between the
predefined MODIS grid cells and the MODIS observations
used to fill them; (2) to evaluate bias in MODIS multidate
composites due to gridding artifacts using various compositing
strategies; and (3) to assess the band-to-band registration
between the different resolutions of MODIS data.

2. Data

To estimate the effects of gridding artifacts, a simulation
approach is used because of the following advantages: (a) the
impact of view zenith angles on MODIS data quality and
gridding artifacts can be quantitatively evaluated; (b) the
baseline data is a precise reference for evaluating MODIS
data quality. In this study, Landsat ETM+ data are used as
baseline data to generate simulated MODIS data.

2.1. Landsat ETM+ data

To investigate the impact of gridding artifacts for different
ground situations, six Landsat ETM+ images were used to
simulate MODIS data — summer and winter (or early spring)
scenes for Harvard Forest (HF), the Konza Prairie LTER (KP), and
Lake Tahoe (LT) (Table 1). The land cover types of these three sites
are mixtures of broadleaf and needle leaf forests, grass and cereal
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Table 1

The information of ETM+ data used in this study

Site Path Row Date Land cover types

Harvard Forest 13 30 2001-09-05 Mixture of broadleaf forests

2002-02-28 and needle leaf forests
2000-04-04 Grasses and cereal crops
2000-07-09

2000-08-19 Needle forests
2001-02-27

Konza Prairie LTER 28 33

Lake Tahoe 43 33

crops, and needle leaf forests, respectively. Each ETM+ subset has
a spatial resolution of 30 m and covers a 147 by 147 km region,
stored in the Universal Transverse Mercator (UTM) projection.
The ETM+ data have six bands — Band 1 (blue, 450—515 nm),
Band 2 (green, 525-605 nm), Band 3 (red, 630—690 nm), Band 4
(near-infrared (NIR), 780—900 nm), Band 5 (1550—1750 nm) and
Band 7 (2090-2350 nm). The images were atmospherically cor-
rected using Dark Object Subtraction (Song et al., 2001).

2.2. MODIS data

Collection 4 Terra MODIS products are used to verify the
simulation results. The Collection 4 MODIS products are
projected on the Sinusoidal 10-degree grid, where the globe is
divided for production and distribution purposes into 36 tiles
along an east—west axis, and 18 tiles along the north—south axis,
each approximately 1200 by 1200 km. The surface reflectance
products and observation pointer products are used in this study.

The Collection 4 MODIS observation pointer products are
produced daily at 250 m, 500 m, and 1 km spatial resolutions.
The 500 m resolution product (MODPTHM) from January 1st
to February 19th of year 2004 in tile h18v04 near Alpilles,
France and tile h12v04 near Harvard Forest, USA were used in
this study. The observation pointer product records the
geolocation relationship between ungridded observations and
the grid cells, including the subpixel scan line offset, subpixel
sample offset, and the intersection area of a grid cell and its
observation (Wolfe et al., 1998). Detailed information on this
product is available at MODIS land quality assessment website
(http://landweb.nascom.nasa.gov/).

3. Methodology

ETM+ data were used as the baseline data to simulate
MODIS data in this study. The key issue in the simulation
process is to apply MODIS sensing characteristics to ETM+
data. Therefore, the MODIS characteristics to be simulated are
introduced first, and then the simulation progress is described in
detail. Lastly, the method used to quantitatively evaluate band-
to-band registration is shown.

3.1. Wide field of view

The across-track scan angle of MODIS ranges from 0 to 55°.
One MODIS scan line is composed of 1354 observations at
1 km, 2708 at 500 m, and 5416 at 250 m (Wolfe et al., 2002).
The curvature of the earth elongates the scan line to

approximately 2340 km (Wolfe et al., 1998) and makes the
view zenith angle larger than the scan angle. At the end of a scan
line, the view zenith angle can be as large as 65°. The obser-
vation dimensions of MODIS data increase as view zenith angle
increases (Fig. 1). The increasing observation dimensions lead
to two effects in MODIS data. First, consecutive scan lines
overlap each other when view zenith angle is larger than 0°.
This overlap increases as the view zenith angle increases to a
maximum of almost 50% at the end of a scan line. This is called
the “bowtie” effect (see Fig. 2 in Wolfe et al., 1998). Second,
individual observations cover several adjacent grid cells at high
view zenith angles because the grid cell size of MODIS images
is fixed at the same dimensions as the observation dimensions at
nadir (Justice et al., 2002). The quality of MODIS data is
degraded at high view zenith angles.

3.2. Triangular point spread function

In the simulation process the PSF of MODIS cannot be
neglected. The sensor PSF includes several components: the
optical PSF, the image motion PSF, the electronic PSF, and the
detector PSF (Schowengerdt, 1997). The image motion PSF,
which is caused by the motion of the scan mirror during the
measurement time integration, determines the observation di-
mensions and is the most important component of the MODIS
sensor PSF in the along-track direction. The PSFs due to optics,
electronics and the detectors will expand the actual observation
area in both along-scan and along-track directions, and smooth
the triangular image motion PSF in the along-track direction
(see Fig. 3 in Barnes et al., 1998). The blurring effect of these
factors and the atmosphere are different for 250 m, 500 m, and
1 km MODIS data and vary as a function of scan angle and earth
curvature. They are not included in this study because their
effects are small compared with the image motion PSF and are
not the primary concern here. It is worth noting that since all the
factors not included would tend to accentuate the magnitude of
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Fig. 1. The observation dimensions as a function of view zenith angles (VZA).
The nominal observation size at nadir is 500 by 500 m. The size changes in the
along-track direction, where the sensor point spread functions (PSF) is
rectangular, are shown as the dot line. In along-scan direction, the size changes
are shown as a dashed line when the sensor PSF is assumed to be rectangular,
and a solid line for the more realistic triangular PSF (derived from Fig. 2 in
Wolfe et al., 1998).
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gridding artifacts such that the results presented here are the
best-case scenario.

What the sensor measures in one observation can be written
as the following (Schowengerdt, 1997):

Fi = / /D w(x,y)fs (x,y)do (1)

where F is the electronic signal collected from one observation
at spectral band A; D represents the observed ground area; o is
the sample area(o € D); w is the sensor PSF function acting as
the weighting function for a spatial convolution; f; represents
the spatial distribution of the radiance from the ground. Both w
and f; depend on the location (x,y) in the observation. Here the
x direction is the along-scan (or across-track) direction and the y
direction is the along-track direction. Eq. (1) can be written as
the following when the observation area is a rectangle with
along-scan dimension iy, along-track dimension @, and the
observation center at (xg, yo):

']

2

Yot+g  pxoty
F,= / / L Wlex0, y=yo)fi(x, y)dudy (2)
g Jng

At nadir, the MODIS detectors receive a signal at any
particular instant from a square area of the Earth’s surface that is
250 m, 500 m, or 1 km on a side. The MODIS sensor PSF would
be approximately rectangular (Fig. 2a), much like the Landsat
ETM+, if the MODIS detectors collected the signal from one
single pixel, then moved to the next pixel. In such a case, w is:

Wiz, y) = { I (x)eD ()

0 otherwise

where D is the rectangle observation area centered at (xq, vo)
with along-scan dimension (i) and along-track dimension (®).
However, this is not the case for MODIS. In the along-scan
direction, the linear dimension of the area sensed is twice as
long as the nominal observation size, and the MODIS sensor
PSF is triangular as shown in Fig. 2b. In the along-track
direction, the PSF is still approximately rectangular (Barnes et
al., 1998; Nishihama et al., 1997). In such a case, w is:

Y—|x—x
i) = {

The triangular PSF results in overlap between adjacent ob-
servations such that 25% of the signal is from adjacent nominal

(x,y)eD
otherwise

(4)

(a)

observation areas, while only 75% comes from the corre-
sponding nominal observation area (Fig. 2b). The observation
size also increases as the view zenith angle increases (Fig. 1).

3.3. The gridding process

The primary source of gridding artifacts is “pixel shift”,
which is introduced in the MODIS gridding process. Gridding is
defined as assigning sensor observations to grid cells (Wolfe
et al., 1998). The coordinates of the grid cells are predefined by
specifying the cell dimensions and the origin and orientation of the
grid cells globally. For MODIS, the grid is defined using a
Sinusoidal projection. The observations from any particular over-
pass and the grid cells are mismatched as they have different
dimensions and are misaligned. We refer to this mismatch as
“pixel shift”. To quantitatively describe pixel shift, Wolfe et al.
(1998) defined the term obscov, which was initially defined as the
ratio of the intersection area (Sy), between the nominal observation
and the grid cell, over the nominal area of the observation (S,):

ObSCOVold = S()/Sz (5)

Using this definition, obscov does not accurately represent
the relationship between a grid cell and its observation due to
the effects of the triangular PSF. Therefore, in the most recent
version (Collection 4) of MODIS data, obscov is redefined as
the integrated response over the observation/grid cell intersec-
tion area divided by the integrated response over the area of the
observation footprint (Yang & Wolfe, 2001):

f fD/W(X_XO,y_yo)dO' (6)

obscov =
ffD W(X_XOJ_)’O)dO'

where D’ is the observation area overlapped by the grid cell.
Obscov is an extremely helpful descriptor of the gridding and
aggregation processes and can be thought of as the proportion of
an observation derived from the area of the grid cell to which it
is assigned.

Two gridding algorithms, simple and complex, are applied
for MODIS products. The simple method stores all observations
from a single day that overlap a cell without changing the
original observation values. The observations are ranked ac-
cording to obscov. The highest ranking observation of each cell
becomes the first layer of the MODIS surface reflectance data,
and the remaining observations for each cell comprise of the

(b)

75%

Fig. 2. Sensor point spread functions (PSF) (examples at 500 m resolution): (a) an idealized rectangular PSF in which the nominal observations agree with the actual
observations; and (b) the triangular PSF which better models that of MODIS, in which the nominal observation area contributes 75% of the actual observation. (Fig. B

is derived from Fig. 2—6 in Nishihama et al., 1997).
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subsequent layers. This method is essentially a nearest neighbor
resampling method (Wolfe et al., 1998). MODIS surface reflec-
tance products (the MODO09 series of products whose native
resolution is 250 m or 500 m) use this algorithm. Collection 5
MODIS land surface temperature products (MODI1 series
products whose native resolution is 1 km) will use this algo-
rithm too, but only the first layer (or the observation with the
highest obscov) value is stored.

The complex method, instead of storing the original
observation values as it comes from the sensor, calculates a
value for a grid cell by weighting all observations overlapping
this cell according to their obscov values. Therefore, only a
single layer results from the complex methods. Collection 4
MODIS land surface temperature products use the complex
method in gridding.

3.4. The aggregation process

In addition to providing MODIS bands at their original
resolutions, the 250 m bands are also provided at 500 m.
Similarly, all bands are provided at 1 km. An aggregation
process is used to create these products. Similar to the gridding
process, the aggregation algorithms can be divided into simple
and complex methods.

The simple method is to average all fine resolution grid cells
in the first layer that fall into a coarse resolution cell. All fine
resolution cells have the same weighting. This is a commonly
used method when users of the satellite data generate coarse
resolution data sets themselves. Therefore, we include this
method in this research though there are no longer any MODIS
products that use this aggregation method.

The complex method utilizes all observations falling into the
fine resolution cells that intersect a coarse resolution cell. The
observations are averaged using a weighting scheme based on
obscov values. The 1 km surface reflectance product, named
MODIS Level 3 1 km Land Surface Reflectance Aggregation
product (MODAGAGG), uses the complex aggregation meth-
od. Bands 1-2 of MODAGAGG are aggregated from native
250 m data, while bands 3—7 are from native 500 m data. In this
process, 4x4 cells of 250 m observations (or 2x2 cells of
500 m observations) from the MODIS L2G surface reflectance
product are aggregated to produce a single reflectance value (for
each band) for the 1 km cell. Observations from different orbits
are aggregated separately to retain consistent sun and view
geometry characteristics.

3.5. Simulation of the MODIS gridding and aggregation
processes

Each of the six ETM+ subsets, 147 by 147 km, was dup-
licated 9 times and mosaiced side-by-side to produce half a
MODIS swath (see Fig. 6). In the along-track direction, the
mosaiced ETM+ scenes cross 147 km. We did not simulate a
full swath because the MODIS swath is symmetrical to its orbit
(Fig. 2 in Wolfe et al., 1998). Therefore, with half a swath the
simulation can represent all the required characteristics of
MODIS data.

To simplify the simulation process, four assumptions were
made: (1) the spatial variability due to the sensor PSF of 30 m
ETM+ pixels may be neglected with respect to the spatial
variability of coarse resolution MODIS data; (2) the PSF of
ETM+ data due to the atmosphere is neglected; (3) the
orientations of the observations and grid cells were in perfect
alignment at nadir; (4) the geolocation error for the observations
in one simulated orbit is constant. Because of assumptions (1)
and (2), ETM+ data may be regarded as ground truth i.e.
punctual surface radiometric data. Assumptions (3) and (4) are
for simplifying the simulation process.

Fig. 3 illustrates the process to generate simulated daily
MODIS data. We simulated a series of steps beginning with the
location of the sensor and its measurements through the pro-
duction of gridded MODIS data. Therefore, the simulation
generates observations first, and then assigns the observations
to a grid of cells according to the following four steps.

The first step is to determine the orbit positions. Initially, one
orbit position is randomly selected in the joint ETM subsets.
The positions of adjacent orbits are determined according to the
distance between two real adjacent orbits at 45° latitude
(approximate 1980 km). The orbit positions for the following
simulated days are determined by the real temporal Terra orbit
pattern (Appendix 1). After determining the orbit position, the
initial satellite position in the along-track direction is randomly
selected through a uniform random function.

The second step is to calculate the center and the dimensions
of each simulated “MODIS” observation. The scan angle of
each “MODIS” observation is derived from the height of the
satellite (705 km) and the known orbit position (determined in
the previous step). The observation dimensions at nadir are
known (250 m, 500 m, and 1 km). Therefore, the center and the
dimensions of each simulated MODIS observation can be de-
rived from observation dimensions at nadir and the scan angle
(Appendix 2). This step generates an “observation layer” that is
intended to simulate what MODIS measures (Fig. 3).

The third step is to generate simulated “ungridded MODIS
observations”. The “observation layer” is overlaid on the
ground truth (ETM+ data as mentioned before) (Fig. 3). For
each simulated observation, the weighted mean of all ETM+
pixels falling into this observation is considered as the observed
value of this simulated MODIS observation. This progress is
described by Egs. (2) and (4) in Section 3.2. The last step is to
place the ungridded MODIS observations into a predefined grid
of cells, a process known as “gridding” in processing real
MODIS data. It should be noted that there are two types of
overlap between scan lines: first, consecutive scan lines from
the same orbit overlap towards high view zenith angles, second
is at the end of scan lines, the observations from different orbits
overlap. At 45° latitude, the scan lines from adjacent orbits
begin to overlap when the scan angle is greater than 47° from
nadir (view zenith angle greater than 55°). The length of the
overlapped area in along-scan direction is approximate 360 km.
Therefore, the grid cells in the overlap area may get their values
from different scan lines’, even different orbits’, observations.
There may be offsets between the observations and cells —
“pixel shift” (refer to Section 3.3). The simple and complex



B. Tan et al. / Remote Sensing of Environment 105 (2006) 98—114 103
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Fig. 3. The simulation process applied in this study. The ETM+ data (30 m spatial resolution) is considered as ground truth. The simulated MODIS observations have to be
matched to a predetermined grid of cells. A cell gets its value from the observation which covers the cell the most (nearest neighbor resampling method). For large view
zenith angles, one observation will be allocated to multiple cells. There may be offsets between the observations and cells (we call this “pixel shift”) depending on the
position of the satellite and the dimensions of the observations. In addition to the “pixel shift” there is also a geolocation error (50 m at 1 sigma, refer to Wolfe et al., 2002).

gridding methods (Section 3.3) are applied to generate two sets
of gridded data sets. At nadir, the nominal observation size is
equal to the dimensions of a grid cell. The magnitude of pixel
shift in along-track/along-scan direction is [-L/2, L/2] (Fig. 3),
where L is the nominal observation dimensions at nadir. Toward
the end of the scan line, the magnitude of pixel shift increases as
the observation dimensions increase (Figs. 1 and 3). On top of
the “pixel shift”, another factor “geolocation error”, introduced
when the sensed observations are geolocated, influences the
gridding process. Geolocation error in MODIS data has been
previously quantified at 50 m at 1 sigma at nadir (Wolfe et al.,
2002). In the simulation, the geolocation error was randomly
selected through a normally distributed random function with
50 m at 1 sigma. This geolocation error was applied to the
location of observations. The relative geolocation errors be-
tween adjacent observations and between consecutive scan lines
were assumed to be negligible. However, the geolocation errors
for the observations/scan lines from different orbits were dif-
ferent. This is because the geolocation error changes with the
viewing geometry and varies with time in the sensor position
and attitude (Roy et al., 1997).

To assess the attributes of multidate composites, eight days
of simulated MODIS data were generated from the same ETM+
data with the previously defined temporal orbit pattern and
gridding artifacts. Three composting methods, maximum Nor-
malized Difference Vegetation Index (NDVI), minimum blue
reflectance, and minimum view zenith angle (VZA) were used
to generate composites from the simulated daily data. In the
MODIS compositing process, the cloud mask is used to eli-
minate poor quality pixels. However, the cloud problem is not
considered in this study because all of the ETM+ data used are
cloud free or include negligible amounts of clouds.

The impact of gridding artifacts on MODIS data is similar for
250 m, 500 m and 1 km data. However, the bow-tie effect

imposes slightly different gridding artifacts in the data with
different native resolutions in the along-track directions be-
tween consecutive scans. In the along-track direction, the over-
lapped dimension between consecutive scan lines begins to be
larger than the observation dimensions when the view zenith
angle (scan angle) is approximate 19° (17°) for 250 m data,
approximate 27° (24°) for 500 m data, and approximate 39°
(34°) for 1 km data. Therefore, towards the end of the scan lines,
the grid cells receiving their observations from consecutive scan
lines happen first in 250 m data, then in 500 m data, and last in
1 km data. In this research, the analyses of daily and 8-day-
composite data quality only use the first layer of simulated 500 m
resolution data as examples. The first layer is used because it has
the best quality and some grid cells in the subsequent layers have
no valid values. The observations with the maximum obscov
value were stored in the first layer and the observations with
progressively smaller obscov values were stored in the sub-
sequent layers (second layer, third layer....) (Wolfe et al., 1998;
Section 3.3). The number of observations per grid cell varies
from nadir to the end of scan lines, and from one scan line to
another depending on the latitude where the data are collected.

To quantitatively assess simulated MODIS data quality, a set
of reference data is generated. The reference data is produced in
seven bands without view geometry and triangular PSF effects.
The spatial resolution of the reference data is the same as the
simulated MODIS data, but without gridding artifacts. In
essence, the reference data represents the best quality satellite
data possible at the spatial resolution of the simulated MODIS
data.

3.6. Quantitative evaluation of band-to-band registration

To investigate the quality of band-to-band registration, the
250 m simulated MODIS data are aggregated to 500 m and
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1 km, and 500 m simulated MODIS data are aggregated to 1 km.
Both the simple and complex methods are separately applied in
aggregation.

In the along-track direction, the sensor PSF is approximately
rectangular. A 1 km observation covers exactly two 500 m
observations and four 250 m observations. The normal
aggregation method of averaging four 250 m observations (or
two 500 m observations) to a 1 km observation is appropriate.

However, the situation in the along-scan direction is not as
straightforward because the sensor PSF is triangular in the
along-scan direction (refer to Section 3.2). Fig. 4a shows the
registration of 250 m, 500 m and 1 km MODIS observations in
the along-scan direction. A single 1 km observation covers the
same area as three 500 m observations and seven 250 m ob-
servations. When aggregating 500 m resolution data to 1 km,
two 500 m observations in along-scan direction are not enough

(a)
1000 m observation
[ ]
F, =T—————1000 m nominal observation
500 m observation
h h, h 500 m nominal observation
. 3
250 m observation
; > . > " : ™=~ 250 m nominal observation
q, 4, q q, 45 A 4,
(b) (c)

Weighting function
h, #q,+q,

q, 4, q,
Weighting function:
h, = q,+2q,+q;

Fig. 4. (a) The registration of 250 m, 500 m, and 1 km MODIS observations. The figures show the PSFs of the various resolutions of MODIS data. The x-axis is simply
distance, and the y-axis is the weighting of the PSF. When viewed from a linear perspective, a 1 km observation covers the same area as three 500 m observations and
of seven 250 m observations. (b) The combination of two 500 m observations cannot be registered with one 1 km observation because they cover different ground
areas. The correct method is shown in panel (c), which utilizes three adjacent 500 m observations with a set of weighting coefficients. Similarly, four 250 m
observations cannot be aggregated to the corresponding 1 km observation. The proper way is to use seven 250 m observations with a set of weighting coefficients. It
should be noticed that a 1 km pixel encompasses 2 * 3 500 m (or 4 x 7 250 m) pixels. In along-track direction, the sensor PSF is a rectangular and various resolutions of
data are registered in a normal way (e.g., | 1 km pixel covers exactly 2 500 m pixels) (This figure is derived from Fig. 2—7 and Fig. 2—9 in Nishihama et al., 1997).



B. Tan et al. / Remote Sensing of Environment 105 (2006) 98—114

because they cover a smaller area than a 1 km observation (Fig.
4b). The correct aggregation method should utilize three 500 m
observations (%, /,, and /3) in the along-scan direction with a
weighting function %, +2h,+hs3 (Fig. 4c), which results in the
same weighting of the surface as a native 1 km resolution
observation. Similarly, the correct aggregation method for
250 m observations should utilize seven observations (g ... ¢7)
with a weighting function g, +2¢,+3¢3+4q4+3q95+2q6¢+q7.

However, this aggregation scheme is not applicable to
gridded MODIS data because the gridding process undermines
the correspondence between coarse and fine resolution obser-
vations. In a gridded MODIS image, a 1 km cell covers 2 x2
500 m cells and 4x4 250 m cells, which conflicts with the
geometry of the observations, as described above. Therefore,
there are two ways to generate MODIS products from data with
different native resolutions: (1) aggregate the fine resolution
observations to the coarser resolution and then grid the aggre-
gated and native observations simultaneously; or (2) grid the
different resolutions of data first, and then aggregate. In this
scenario for example, 4x4 250 m cells or 2x2 500 m cells
would be aggregated to produce a 1 km product. The MODIS
products aggregated prior to gridding (the first approach), such
as MODO9GHK, the 500 m surface reflectance product from
250 m and 500 m data retains perfect band-to-band registration.
However, the products using the second approach, such as the
MODIS Level 3 1 km Land Surface Reflectance Aggregation
product (MODAGAGG), suffer misregistration due to gridding
artifacts.

A variable, named the matching index (), is introduced here
to quantitatively evaluate the misregistration between two ag-
gregated (or native) observations. It is defined as:

)

where vy, is the integrated PSF of the weighted aggregation of
observation Fj. vy, is the integrated PSF of the weighted
aggregation of observation /;. The integrated PSF can be
thought as the volume of the polygon above the observed
surface with the heights of the vertices given by the product of
the weighting coefficient and the sensor PSF value (derived
from Yang & Wolfe, 2001). VD” is the overlapped integrated
PSF of two aggregations. The parameters o; and fB; are the

é(V§ﬁF/VE/;F+V%ﬁI I/VZah (7)

\%

105

weighting coefficients applied in aggregation for the observa-
tion F; and A, respectively. For the simple aggregation method,
the welghtlng coefficients are equal to 1. In the complex
method, the weighting coefficient for observation F,,, o, is
calculated as obscovy /) obscovy. The weighting coefficient
B, is calculated in a similar way. In essence, the matching index
is the mean percentage of overlap of two aggregated (or native)
observations divided by these two observations. The match
index (&) equals 1 when two aggregations coincide exactly, and
equals to 0 when there is no overlap between the two aggregations.
Fig. 5 presents a simple case (a 1 km observation vs. two 500 m
observations) for calculating €.

4. Results and discussion

4.1. The impact of gridding artifacts on observation-to-grid
cell registration

The first layer of simulated MODIS data (from the simple
gridding method, see Section 3.3), using the ETM+ data for the
Konza Prairie LTER on April 04, 2000, is shown in Fig. 6. The
spatial variability of MODIS data decreases as view zenith
angle increases because the observation dimensions are signi-
ficant greater than the cell size at the end of the scan line, and
one observation value is allocated to as many as eight adjacent
cells (Fig. 7). The observation dimensions at the end of a scan
line are much greater than the observation dimensions at nadir
(Fig. 1). The semivariograms of the reference data and simu-
lated MODIS data from one ETM+ scene near nadir (0°<view
zenith angle <8°) and high view zenith angles (55° <view zenith
angle<65°) are presented in Fig. 8. Semivariograms plot a
measure of variance as a function of distance and provide useful
indications of the spatial variance of data. When comparing image
data for different resolutions over the same area, semivariograms
can be used as an indicator of the spatial information content of
image data. The coarse resolution data has a lower sill value than
the high-resolution data, which means it contains less spatial
information. (Curran, 1988; Tian et al., 2002; Woodcock et al.,
1997). The differences in semivariance related to view angle
indicate a significant loss in spatial information content as view
angle increases. The semivariance for the near nadir sensing
scenario is within 10% of the reference data. However, at high
view angles, the spatial information content of the image (using

V,: Weighting space of one 1 km observation

: Weighting space of two 500 m observations

Overlap space between one 1 km observation

hi+h2*
F1
Vh1+hz
and two 500 m observations
Match index :
£= (Vh1+th + Vh1+h2Nh1+hz) 2

Fig. 5. The definition of the match index (&) is shown in a simple case — a single 1 km observation and two 500 m observations. In other cases, each weighting space

can be the weighted aggregation result of multiple weighting spaces. Therefore, the general format of match index is ¢ =

( %x,h, /Vspr + %M, /Vsuh;)/2- The

quantity o; () is the weighting coefficient for the observation F; (%) applied in the aggregation process.
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o° View zenith angle increasing

Fig. 6. Simulated MODIS data using the ETM+ data of the Konza Prairie LTER in April 04, 2000. The simulated MODIS data are at 500 m resolution. The images are
a false color composite (RGB — near-infrared, red, and green bands, respectively). It can be seen that the image becomes blurred when the view zenith angle increases.
This is because the observation dimensions are significantly greater than the cell dimensions, and one observation value is allocated to a number of adjacent grid cells.
The top image was generated through duplicating the ETM+ image (147 by 147 km) 9 times and mosaicing them side-by-side.

semivariance as a measure of information content) is only about
half of the reference data. As expected, as the observation dimen-

sions increase, spatial variance will decrease, but the drop to 50%
at the end of scan is dramatic.

Frequency, in %

0 1 2 3 4 5 6 7 8
Number of Grid Cells

Fig. 7. The frequency distribution of the number of grid cells in the first layer to
which single observations are assigned. Approximate 41% of the observations
are allocated to multiple adjacent cells. An observation can be allocated to as
many as 8 adjacent cells. Approximately 9% observations are not used in the
output image because of the overlap between consecutive scan lines. A grid cell
can be observed multiple times, but only one observation can be allocated to this
cell. Therefore, some observations are not allocated to any cell.

For MODIS data, an observation in a grid cell is not neces-
sarily sensed from the exact location the cell represents due to
gridding artifacts. The surface area contributing to a MODIS
observation is always larger than the cell size, even at nadir, due
to the triangular PSF (refer to Section 3.2). In the best possible

-—
80 - —— reference :
L - - --0°<view zenith angle<8°
60 - 55%view zenith angle<65° -3
o] o
: .-
£ =
ol |
7’
g ‘, ............................
@ / “ |
20 / |
’
[
) b—— 1 ) | I | | |
0 1 . : 4 5

Distance (km)

Fig. 8. Semivariograms of the reference data and the simulated MODIS data for
the same location for observations near nadir and at the end of scan lines. The
simulation is for Band 4 of the ETM+ data of the Konza Prairie LTER in April
04, 2000. At nadir, the spatial variance (or information content) is about 10%

less than the reference data. At the end of scan, the spatial variability is only half
of the reference image.
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Fig. 9. The frequency distribution of obscov of 50 days of simulated MODIS
data and of the Collection 4 MODPTHKM product in tile h18v04 and h12v04
from January 1st to February 19th, 2004. The similarity between the observed
and simulated obscov distributions helps verify that the simulation is a good
approximation of the real MODIS processing stream.

situation, or when the grid cell coincides exactly with its no-
minal observation (Fig. 2b), the area covered by a grid cell
contributes 75% of signal to the observation assigned to it. The
degree of correspondence between a grid cell and the obser-
vations in it is measured with obscov (Section 3.3). The fre-
quency distribution of obscov for 50 days of simulated MODIS
data is shown in Fig. 9 along with obscov for Collection 4
MODIS 500 m daily products for tile h18v04 and h12v04 from
January 1st to February 19th, 2004. The frequency distributions
of obscov for MODIS data and the simulated data are similar
verifying that the simulation is a good approximation of the
MODIS processing stream. It should be noted that the frequency

L0 e T T T . .

- N :* w -1 -& - .I j

R R e
K-k

AAAAAAA B
h-a Aaa, ABpp
0.8 | A,

A-A-A A—,} A
Ay
~0-0-O-r, A
T—D’D D-O0-g U‘D’U‘U-U._ Aaa
A

O-p,,
0.6 | “oog A,

c
"
;

¢

04 -

0.2 - . D\U\”

0.0 1 1 1 1 1 1 L 1 n 1 n 1
0 10 20 30 40 50 60

View Zenith Angle (degree)

Resolution (km)

—m— 05 —0—1 —A—2 —6—4 —*—8 ——16

Fig. 10. The impact of view zenith angle and spatial resolution on obscov.
Obscov increases as resolution decreases, and decreases with increasing VZA.
The simple aggregation method is used to rescale the fine resolution data to
coarse resolutions. The result shown here is the average of 50 days of
simulations. Note that to have at least 80% overlap between the location of grid
cells and their observations MODIS data needs to be aggregated by a factor of
8 (from 500 m to 4 km in this example) and high view zenith angles avoided.

distributions of obscov from real and simulated MODIS data are
not exactly the same because we use a simplified model that
excludes the following two factors: 1) the misalignment be-
tween the orientations of observations and grid cells, which
limits the maximum possible obscov at nadir; and (2) there are
gaps between two consecutive scan lines in real MODIS data,
which lead to pixels with obscov values of 0.

The low correspondence between grid cells and the obser-
vations in them (mean obscov less than 30%, Fig. 9) has
particularly significant implications for validation of MODIS
algorithms with reference data. Comparison of MODIS data
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Fig. 11. NDVI of reference data versus NDVI of simulated data: (a) near nadir
when obscov values are greater than 0.7; (b) near nadir when obscov values are
less than 0.3; and (c) for high VZA regardless obscov. The cell by cell cor-
respondence between values can be expected to be poor when obscov values are
low. Reference data and simulated MODIS data are generated using the ETM+
data of the Konza Prairie LTER in April 04, 2000.
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Fig. 12. The 8-day composite images from the compositing methods of (a) maximum NDVI, (b) minimum blue, and (¢) minimum VZA. The simulated MODIS data
are derived from the ETM+ data covering 147 by 147 km around the Konza Prairie LTER in April 04, 2000. Notice that the different compositing methods produce
quite different results. Most noticeably, the maximum NDVI approach expands the sizes of the patches of vegetation (the red areas, or dark grey areas in b&W image)
in (a), and the minimum blue approach expands the size of water bodies (black areas) and vegetation patches. The minimum VZA represents the “ground truth” in this

case, as the lack of clouds results in nadir observations always being available.

products with reference data for a cell can be misleading be-
cause they generally will not be from the same location. For
“product validation” (see the definition in Section 1) this issue is
not terribly relevant, as the mismatch between grid cells, ref-
erence data and observations is one of many factors contributing
to product inaccuracy. But for “algorithm validation”, it is
important that reference data and observations match. From the
results shown in Fig. 9, it is clear that in general they do not
match. So other alternatives are required to perform cell-by-cell
comparisons. One possibility is to use the geolocation data
provided with MODIS products to take into account the effects
of pixel shift. This approach has the advantage of improving the
locational accuracy of individual MODIS observations. But it is
important to remember that this approach does not solve this
problem entirely as the effects of geolocation error will still
exist. Another option is to aggregate the data, which tends to
improve obscov (see Fig. 10). It is worth noting that an average
obscov of 80% can be achieved by aggregation to 8 times the
native resolution (or 2 km for the 250 m bands).

Another way to explore the effect of obscov on MODIS data
quality is cell by cell comparison of NDVI values between the
reference data and the simulated MODIS data (Fig. 11). The
cells near nadir with obscov>0.7 or obscov<0.3 are compared
with reference data separately. As expected, there is better
correspondence between reference and simulated MODIS data
(R*=0.83) when obscov values are high (Fig. 11a), and poor
correlation (R*=0.43) when obscov values are small (Fig. 11b).

In MODIS data, the obscov values of adjacent cells can be
quite different. This spatial variability in obscov is due to
misalignment and mismatch between observations and grid

cells. The spatial distribution pattern of obscov differs from one
place to another, and depends on the alignment between the
orientation of observations and grid cells. The comparison
between reference data and simulated MODIS data at the end of
a scan line is shown in Fig. 1lc. The correlation is poor
(R*=0.54). The NDVI dynamic range in the reference data is
larger than in the simulated MODIS data. This “blurring” effect
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Fig. 13. The relative NDVI bias (ANDVI/NDVlIyy,.) in 8-day composite data
using the maximum NDVI, minimum blue, and minimum VZA methods.
Results are shown in six sets of data — Harvard Forest on 09/05/2001 and 02/
28/2002, Konza Prairie LTER on 07/09/2000 and 04/04/2000, and Lake Tahoe
on 08/19/2000 and 02/27/2001. Maximum NDVI and minimum blue
compositing methods lead to positive bias in NDVI, while minimum VZA
shows negligible bias.
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in MODIS is due to the growth of the observation dimensions
near the end of scan lines, as illustrated in Fig. 6.

4.2. The effect of gridding artifacts on compositing

To evaluate the effect of gridding artifacts on different
compositing methods, three methods are investigated in this
study through simulation: (1) maximum NDVI, (2) minimum
blue and (3) minimum VZA. The maximum NDVI compositing
method was selected because it is the legacy method used for
processing AVHRR data (e.g. Maselli et al., 2003; Myneni et
al., 1998). The minimum blue method was used to generate the
Collection 3 8-day composite MODIS surface reflectance pro-
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duct. It was replaced by the minimum VZA method in Col-
lection 4 reprocessing. It should be noted that all ETM+ data
used in this study are cloud free. Therefore, the effects of clouds
and bad observations are not considered here. Fig. 12 shows the
images generated by the three compositing methods. Compar-
ison with the daily nadir image (Fig. 6) reveals the following
trends: 1) the minimum blue and maximum NDVI methods lead
to “blur” in the 8-day composite data because they preferentially
select off-nadir observations (Roy, 2000); 2) the vegetated areas
(the red areas in the image) increased in size in the minimum
blue and maximum NDVI results; 3) the small towns (bright
areas) in the image disappear or shrink in the images using
minimum blue and maximum NDVT for compositing; 4) the water
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Fig. 14. Semivariograms of the near-infrared band of reference data and 8-day composites which are composited by maximum NDVI, minimum blue, and minimum
VZA methods. Results are shown in six sets of data — Harvard Forest on 09/05/2001 and 02/28/2002, Konza on 07/09/2000 and 04/04/2000, and Lake Tahoe on 08/
19/2000 and 02/27/2001. The current method used by MODIS (minimum VZA) seems to be very close to the simulated reference data. The maximum NDVI and
minimum blue composite methods tend to select high view zenith angle data. As mentioned before, since these high view zenith angle data have coarse spatial support
(observation dimensions), their spatial variability decrease with respect to the reference data.
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areas (dark areas) shrink in maximum NDVI result, while the
minimum blue result is more complicated. The water area shrinks
if the water is surrounded by dense vegetation, which has lower
blue reflectance. Otherwise, the water area expands using the
minimum blue criterion; and 5) the minimum VZA compositing
is the best, and keeps most of the ground information.

Fig. 13 shows the NDVI bias, calculated as the difference
between the mean composited NDVI minus the mean reference
NDVI divided by the mean reference NDVI, for the three
compositing methods in six sets of simulated MODIS data. The
true NDVI value is calculated from the reference image. The
results of the maximum NDVI and minimum blue methods
overestimate NDVI, while the result of minimum VZA method
is almost exactly the same as the true NDVI value. The mag-
nitude of the bias depends on the ground conditions. The max-
imum NDVI and minimum blue composites have less spatial
variability (or signal) than the minimum VZA result primarily
due to the blurring effect of tending to select high view zenith
angle data in the composites (see Figs. 8 and 14). For the
simulated data with no clouds, the minimum VZA results are
very close to the reference data but not exactly the same as the
reference data because the view zenith angle for the reference
data is always zero, which is not the case for the simulated data.
It is interesting to note that the magnitude of the NDVI bias and
the degree of blurring (or decrease in spatial variability) related
to the minimum blue and maximum NDVI compositing
methods vary greatly as a function of the spatial fragmentation
(Figs. 13 and 14). The spatial fragmentation varies significantly
in both space and time. It should be noticed that the minimum
VZA results may not closely match the reference data for real
MODIS data and will vary from one multidate composite to
another because the availability of cloud-free observations from
near nadir will vary.

Fig. 15 presents the cell by cell comparisons of NDVI
between reference data and simulated 8-day composite MODIS
data for the different compositing methods. The results of
maximum NDVI and minimum blue are poorly correlated with
the reference data (R*=0.42 and 0.35 respectively) due to the
“blurring” effect of the compositing process. The result of
minimum VZA correlates best with the reference data (R*=0.62).
The overestimates of the maximum NDVI and minimum blue
results can be seen from these scatter plots. Similar to the daily
data (Section 4.1), a better correlation between 8-day composite
data and reference data can be expected at coarser resolutions.
However, the overestimates of the maximum NDVI and
minimum blue methods cannot be eliminated by aggregation.

The advantage of using spectral criteria for compositing
derives from the ability to avoid clouds and bad observations.
However, bias in the data and spectral indices like NDVI is an
important shortcoming for such methods as it dramatically
reduces the utility of the data for temporal comparisons. If
accurate cloud masks are available, a spectrally independent
compositing criterion, such as view zenith angle, will minimize
bias in composited data.

In essence, to directly compare composited data over time to
monitor global change requires consistency in the following: (1)
sensing scenarios (view angle distribution and sensing frequen-

cy), (2) compositing methods, and (3) cloud frequency. Changes
in any of these factors will complicate the ability to track
changes in metrics like NDVI through time as sensing and
processing artifacts will be convolved with possible change in
surface conditions.

4.3. Impact on band-to-band registration
As mentioned in Section 3.6, the band-to-band registration

across the native resolutions of MODIS data is strongly
influenced by whether or not the finer resolution data are
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Fig. 15. NDVI of the reference data versus NDVI of 8-day composites generated
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Fig. 16. The frequency of the match index (&) in half a swath area of (a) native
1 km data and 1 km data aggregated from 250-m, and (b) native 500 m data and
500 m data aggregated from 250 m. Both the simple and complex aggregation
methods are presented. The aggregations using the complex method have a
higher & than those using the simple method. However, it should be noted that
the band-to-band registration across resolutions for MODIS data is poor
compared to conventional multispectral observations.

gridded prior to aggregation. If the aggregation occurs prior to
gridding and the weighting indicated in Section 3.6 is used, then
there is a perfect band-to-band registration across resolutions.
However, if the finer resolution data are gridded prior to ag-
gregation, there will be some degree of mismatch between the
different resolutions of imagery. To explore the magnitude of
this effect, two aggregation methods, the simple and complex
methods (explained in Section 3.4), are applied on the multi-
layer data produced by the simple gridding method. The
frequencies of the matching index (&) (Section 3.6) in half a
swath of four situations are shown in Fig. 16: native 500 m data
from the simple and complex methods vs. aggregated 500 m
from 250 m data by both the simple and complex method, native
1 km data from simple (complex) method vs. aggregated 1 km
from 250 m data by simple (complex) method. The mean & of
four situations ranges from 0.52 to 0.65. Values of & from the
complex method are slightly higher than those from the simple
method. Such low values for the matching index indicate that:
(1) the native coarse resolution MODIS products are not directly
comparable to the aggregated MODIS products from gridded
finer resolution MODIS data; (2) fine resolution MODIS
products should be used with care to analyze the subpixel

dynamics of coarse resolution MODIS products as the fine
resolution observations do not come from the same locations as
the coarse resolution observations.

The semivariograms of the 1 km aggregated data of the near-
infrared band using nadir (high view zenith angle) data are
shown in Fig. 17. At nadir, the 1 km data aggregated from
250 m and 500 m contain similar amounts of spatial infor-
mation. However, at high view zenith angles the 1 km data from
native 500 m data contain approximate 30% less spatial
information than the 1 km data from native 250 m data.

4.4. Discussion

The gridding artifacts together with the effects of viewing
geometry undermine the local spatial properties of MODIS data
and have implications in many domains. For validation of
MODIS algorithms, direct comparison of reference data on a
pixel-by-pixel basis with MODIS products will introduce error
unrelated to the algorithm (Figs. 9 10 and 11). Two alternatives are
recommended to reduce the effect of gridding artifacts. The first is
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Fig. 17. The semivariograms of 1 km resolution data, which are aggregated from
250 m and 500 m data, at nadir and high VZA. Panel a shows results from the
simple method, while panel b is from the complex method. At nadir, the 1 km
data aggregated from both 250 m and 500 m data contain the same amount of the
spatial information. However, for high VZAs, the 1 km data resulting from
aggregation of 250 m data contain approximate 30% more spatial information
than the 1 km data from native 500 m data. The results of the complex method
contain slightly less spatial information than the results of simple method due to
the blurring effect of weighted averaging.
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to utilize the detailed geolocation information about MODIS
observations stored in MODIS level 2 products, including the
obscov value, the dimensions of the observation and the offset
between the grid cell and the observation. The ground area
covered by an observation can be more accurately located using
this information than the location of the grid cell. In such a way,
the comparison between field data and MODIS products is more
reliable. However, it is important to note that using this approach
will not allow for perfect alignment of ground reference data and
MODIS observations as geolocation error will still be present.
The second approach, when detailed data are not available, is to
compare them at a coarser resolution (e.g. patch level) rather than
the native resolution. For this approach, the validation site should
be large to minimize the effect of gridding artifacts and to
minimize the noise associated with individual observations.

Gridding artifacts also bring to light some of the difficulties
associated with multidate compositing, as bias can be intro-
duced through the use of spectral criteria for selection of the
best observations (Figs. 13 and 15). These problems influence
not only validation but also other applications of MODIS
products. The spatial and/or spectral biases reduce the utility of
MODIS products. The bias changes as a function of the spatial
fragmentation (Figs. 13 and 14). The relationship between
compositing bias and fragmentation could be characterized
through analysis of enough ETM+ scenes to capture the full
range of spatial fragmentation conditions. This is a direction of
future studies.

The concept of a multispectral vector, in which observations
from different wavelengths are collected for the same location,
is central to remote sensing. However, this concept is under-
mined in some MODIS products due to the poor band-to-band
registration (mean matching index of about 0.6) between the
bands whose native resolutions are different if the data were
gridded prior to aggregation (Fig. 16). This problem also limits
the ability to use the fine resolution MODIS data (e.g. 250 m) to
study the subpixel properties of the coarse resolution MODIS
data (e.g. 1 km).

One of the key limitations with MODIS data concerns the
increasing observation dimensions with increasing view zenith
angle (Fig. 1). This problem can be minimized if a pushroom
sensor is used rather than a scanner. The Charge Coupled
Device (CCD) of the pushroom sensor should be designed such
that the angular field of view decreases toward to the edge of the
CCD and the pixel size on the ground remains constant. In such
a way, a constant observation area on the ground can be
achieved regardless of the view geometry. The use of a push-
broom sensor would also remove the complications and prob-
lems associated with a triangular PSF, as illustrated in Fig. 2a.
However, it should be noted that this kind of sensor will still
suffer from the effects of gridding artifacts unless repeat obser-
vations can be guaranteed over the exact same area, which is
improbable using current technology.

Most of the issues addressed in this paper result from the inherit
properties of the MODIS sensor, and cannot be improved by
changes in the processing stream. The teams responsible for
designing, implementing, and modifying the processing stream
have done an excellent job and deserve recognition. Of particular

note in this regard is their change to minimum VZA compositing
and modification to obscov. However, the poor band-to-band
registration of MODIS data can be minimized with improved
processing procedures. If the ungridded observations in different
resolutions are gridded independently, the band-to-band registra-
tion across resolutions suffers due to gridding artifacts (e.g.
MOAGAGG). A better method is to aggregate the ungridded
observations from fine resolution to coarse resolution before
gridding them (e.g. MODO9GHK). This approach results in
perfect band-to-band registration between ungridded observations
whose native resolutions are different (Fig. 4). The fine resolution
ungridded observations can be aggregated to the coarse resolution
without decreasing the precision of band-to-band registration
(Section 3.6, Fig. 4). Then the aggregated and native coarse
resolution data are gridded simultaneously. In such a way, the
band-to-band registration problem can be minimized. However,
the data with different resolutions are still not comparable because
the band-to-band registration is degraded by the gridding process.
It is impossible to find the original fine resolutions observations
that correspond to a single coarse resolution observation.

5. Conclusions

The gridding process for MODIS data unavoidably results in
a significant pixel shift effect that when combined with
geolocation error results in a weak relationship between the
location of grid cells and their observations. The mean obscov
for a single date of MODIS data is less than 0.3. This
relationship is particularly problematic at high view zenith
angles where obscov can be as low as 0.05. These gridding
artifacts have the following effects: First, direct comparison of
reference data such as field measurements with MODIS data at
the pixel scale is problematic because there will be a spatial
mismatch between the locations of the observations and the
reference data. There are two ways to maximize the correspon-
dence of the ground area covered by both the field data and the
MODIS data: 1) including obscov, the observation dimensions,
and the offsets between the grid cell and the observation in
validation analysis to retrieve a more accurate representation of
observation coverage; or 2) aggregate MODIS data to improve
the correspondence between the location of grid cells and the
observations assigned to the cell. Second, the use of multidate
compositing criteria based on spectral properties results in
significant biases due to gridding artifacts. Third, under the
practice of independent gridding of the various spatial reso-
lutions of data, the band-to-band registration of bands with
different native resolutions is poor (a mean matching index of
about 0.6). This problem plagues some MODIS products and
can be mitigated by a change in the processing procedure such
that fine resolution bands are aggregated prior to gridding.

The results presented are based on simulations that capture
the primary effects involved in gridding artifacts. However, the
simulation process is not perfect and run only for 45° latitude.
Because of the assumptions in the simulation (Section 3.5), the
magnitude of the effects due to the gridding artifacts will be
slightly underestimated. Exploring the effects of gridding
artifacts as a function of latitude is a future research direction.



B. Tan et al. / Remote Sensing of Environment 105 (2006) 98—114 113

Acknowledgements

The authors thank Robert E. Wolfe and Eric F. Vermote at
University of Maryland, Kamel Didan at University of Arizona,
and Zhengming Wan at University of California at Santa
Barbara for providing detailed MODIS algorithm and proces-
sing descriptions. We are also grateful for valuable comments
from Jeffrey L. Privette of NASA GSFC, and two rounds of
thorough anonymous reviews.

Appendix A. Calculation of the temporal orbit pattern of
Terra

The period of the Earth rotation is approximately 86,164.1 s
(23 h, 56 min, 4.1 s). The period of EOS Terra is about 5920 s
(1 h, 38 min, 48 s). Therefore, the longitude distance (in
degrees) between adjacent orbits is

5920

=24.
86164.1 779

3604 x

We assumed the satellite begins at 4 degrees longitude.
When EOS Terra finishes n full periods, the longitude
coordination (H) is:

H=h+nx24.77

This approach is used to estimate the temporal orbit pattern.
The distance D (km) between two longitude coordinates (lon;
and lon;) for a given latitude is derived as:

D = (lon;—lony) x p

where p is the distance of 1° longitude for the given latitude.

Appendix B. Calculation of the observation dimensions/
observation bounding coordinates according to the scan
angle

This Appendix shows how to calculate the observation
dimension/observation bounding coordinates according to the
scan angle, assuming 1) the Earth is a perfect sphere with a
radius 6378.1 km. 2) the Earth curvature is reasonably ignored
within an observation (the dimension ranges from 0.5 km by
0.5 km at nadir to approximately 4 km by 2 km at the end of a
scan line). The field of view (FOV) in along-track/along-scan
direction is calculated as:

dimenSionobserve—at—nadir/2

FOViack = FOVgean = 2 X arctan -
helghtsatellite

where dimensiongpgserve-atnadir 1S the spatial resolution of
simulated MODIS data (250 m, 500 m, or 1 km); heightg,eriite
is 705 km. The following figure shows an off-nadir observation
(EFGH) which is collected by the sensor. The known
information in this figure is:

A the satellite position,
B the center of the Earth is B,

C the center of the observation boundary EF,
(0] the point sensed by the sensor center,

CD is perpendicular to 4B at point D,

ZBAO the scan angle,

EF is perpendicular to the plane ACB,

A, O, C, D are in the same plane.

The length of 4B equals the sum of the radius of earth
(6378.1 km) and the height of the satellite (705 km).

E, F, G, H, G, O, C are on the surface of the Earth, which
means BE=BF=BH=BG=BC=6378.1 km

"." EF is perpendicular to the plane ACB, and CD C Plane 4¢3

“EFLCD

*." Cis the mid-point of EF and O the point sensed by the center
of the sensor,

LCAO = %FOV
/ BAC = / BAO—/CAO = scan_angle—%FOV

AB x sin/ BAC
BC
(/L ACB is always larger than 90%)

/ ACB = m—arcsin

s LABC=n—£ACB— «BAC
" CDL1AB
~. CD=BCx*sin£ZABC

CD
C= sin/BAC

W ACLEF

CE = AC x tan/ EAC = AC X tan<;FOV>7

EF =2 x CE, AE = \/AC? + CE2

Similarly, we can derive AF, AG, AH, and HG. Then FG
and EH can be calculated as:

FG = \/AF? + AG?-2 x AF x AG x cos L FAG(/L FAG = FOV),

EH = \/AE2 + AH?-2 x AE x AH x cos /L EAH(/ EAH = FOV).

With the observation dimensions, the bounding coordinates
for all pixels in a scan line could be calculated from the
following method. In the simulation, the scan angle increases
from 0 to 55° with a step of FOV. Here the observation
corresponding to the scan angle of n steps is named as the nth
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observation. The observation bounding coordinates of the nth
observation are derived from the observation dimensions of the
nth observation and the observation bounding coordinates of the
(n— 1)th observation because (z— 1)th and nth observations are
adjacent and there is no gap between them. The bounding
coordinates for the observation at nadir (»=0) is calculated from
the at-nadir observation dimensions and the position of the
satellite. Then, the observation bounding coordinates are
calculated in succession from nadir to the end of a scan line.

A
..

B

Fig. Calculation of the observation dimensions (EFGH ) as a
function of scan angle.
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