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Effect of Orbital Drift and Sensor Changes on the
Time Series of AVHRR Vegetation Index Data
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Abstract—This paper assesses the effect of changes in solar
zenith angle (SZA) and sensor changes on reflectances in channel
1, channel 2, and normalized difference vegetation index (NDVI)
from the advanced very high resolution radiometer (AVHRR)
Pathfinder land data set for the period July 1981 through
September 1994. First, the effect of changes in SZA on channel
reflectances and NDVI is derived from equations of radiative
transfer in vegetation media. Starting from first principles, it
is rigorously shown that the NDVI of a vegetated surface is a
function of the maximum positive eigenvalue of the radiative
transfer equation within the framework of the theory used and
its assumptions. A sensitivity analysis of this relation indicates
that NDVI is minimally sensitive to SZA changes, and this
sensitivity decreases as leaf area increases. Second, statistical
methods are used to analyze the relationship between SZA and
channel reflectances or NDVI. It is shown that the use of ordinary
least squares can generate spurious regressions because of the
nonstationary property of time series. To avoid such a confusion,
we use the notion of cointegration to analyze the relation between
SZA and AVHRR data. Results are consistent with the conclusion
of theoretical analysis from equations of radiative transfer. NDVI
is not related to SZA in a statistically significant manner except
for biomes with relatively low leaf area. From the theoretical and
empirical analysis, we conclude that the NDVI data generated
from the AVHRR Pathfinder land data set are not contaminated
by trends introduced from changes in solar zenith angle due to
orbital decay and changes in satellites (NOAA-7, 9, 11). As such,
the NDVI data can be used to analyze interannual variability of
global vegetation activity.

Index Terms—AVHRR, interannual variability, NDVI, path-
finder data, satellite drift.

I. INTRODUCTION

A data set of normalized difference vegetation index (NDVI)
at 8-km resolution (square pixels) has been produced

with data from the advanced very high resolution radiome-
ters (AVHRR) onboard the afternoon-viewing NOAA series
satellites (NOAA-7, 9, and 11) under the joint sponsorship of
NASA and NOAA Earth Observing System (EOS) Pathfinder
Project [1]. The data processing includes improved navigation,
intersatellite calibration, and partial correction for Rayleigh
scattering. The data are currently available for the period
July 1981 to September 1994 and have been used to study
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interannual variations in global vegetation dynamics. Analysis
of the Pathfinder NDVI data indicates increased photosynthetic
activity of terrestrial vegetation from 1981 to 1991 in a manner
suggestive of an increase in plant growth associated with an
increase in the duration of the active growing season [2]. The
region of greatest increase lies between 45N and 70N, where
marked warming has occurred in the spring time due to an early
disappearance of snow [3]. The satellite data are consistent with
an increase in amplitude of the seasonal cycle of atmospheric
CO exceeding 20% since the early 1970’s and an advance in
the timing of the drawdown of COin spring and early summer
of up to seven days [4].

Conclusions about interannual variability and the biotic ef-
fect of climate change are based on a critical assumption: that
the data collected by AVHRR’s are not contaminated by changes
in measurement error over time. If measurement error changes
over time, the time series collected by the sensor will contain a
deterministic or stochastic trend when none may exist. To avoid
confusing these trends with trends generated by changes in ter-
restrial biota, it is important to identify such errors and cor-
rect for their effects before analyzing the data. In the case of
the Pathfinder data set, both sensor calibration and illumination
variations contribute to measurement error change over time,
and the effect of changing illumination, however, can mitigate
or enhance the artificial trends caused by calibration instability.
The calibration issue has been addressed in numerous scientific
studies, but the illumination issue has not. The illumination ef-
fect is a combination of the effects of absorption and scattering
in the atmosphere and surface anisotropy [5]. In general, proper-
ties of both surface and atmosphere vary during the year, which
makes the problem even more complex [5]. Quantitative charac-
teristics of atmospheric constituents (aerosol and water vapor)
and of the surface are only now becoming available on a global
scale. As discussed by Privetteet al.[6], changes in SZA can af-
fect reflectances by modifying the radiation interactions in the
media. Changes in the optical depth of aerosol particles in the
troposphere and stratosphere (AOD) affect reflectances directly
by changing the reflectivity of the atmosphere [7].

In this paper, we assess the effect of changes in solar zenith
angle on reflectances in channel 1, channel 2, and NDVI from
the AVHRR Pathfinder land data set assembled from NOAA-7,
9, and 11 sensors (the effect of stratospheric aerosol optical
depth is explored in a separate paper). Our assumptions are the
following.

1) Most of the artificial signals caused by calibration resid-
uals have been removed by the calibration methods used
to process this dataset.
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2) Major AOD variations due to volcanic eruptions only
cause significant measurement errors within two rel-
atively short periods compared with our whole study
period.

3) Residual atmospheric effects were minimized by an-
alyzing the maximum NDVI values within a ten-day
interval.

Based on such assumptions, the major signals of changes in
reflectances and NDVI are related to changes in SZA, if any.
This analysis is described in five sections. In Section II, we de-
rive the effect of changes in SZA on channel reflectances and
NDVI from equations of radiative transfer in vegetation media.
Starting from first principles, it is rigorously shown that the
NDVI of a vegetated surface is a function of the maximum pos-
itive eigenvalue of the radiative transfer equation. A sensitivity
analysis of this relation is performed to determine the effect of
SZA changes on NDVI. It is shown that NDVI is minimally sen-
sitive to SZA changes and that this sensitivity decreases as leaf
area increases. The third section describes statistical methods
used to analyze the relationship between SZA and channel re-
flectances or NDVI. It is shown that the use of ordinary least
squares (OLS) can generate spurious regressions because the
distribution of test statistics in regression models is based on
the assumption that time series are stationary, that is, they do
not contain a stochastic trend. To avoid confusion about the rela-
tion between SZA and NDVI that may be implied by a spurious
regression, the notion of cointegration is used to analyze the re-
lation between SZA and AVHRR data. The results of this empir-
ical analysis are described in Section IV, and they are consistent
with the conclusion of Section II. NDVI is not related to SZA
in a statistically significant manner except for biomes with rela-
tively low leaf area. From the theoretical and empirical analysis,
we conclude in Section V that the time series of NDVI gener-
ated from the AVHRR Pathfinder land data set are not contam-
inated by trends introduced from changes in solar zenith angle
due to orbital decay and changes in satellites (NOAA-7, 9, 11).
As such, the NDVI data can be used to analyze interannual vari-
ability of global vegetation activity.

II. THEORETICAL ANALYSIS

A. Angular Variation of the NDVI

Data for the spectral reflectance recorded by satellite sensors
usually are compressed into vegetation indices. The literature
describes more than a dozen such indices and these correlate
well with vegetation amount [8], the fraction of absorbed pho-
tosynthetically active radiation [9], unstressed vegetation con-
ductance and photosynthetic capacity [10], and seasonal atmo-
spheric carbon dioxide variations [11]. These correlations are
also supported by theoretical investigations [12]–[15]. This sec-
tion expands these investigations to analyze the relationship be-
tween solar zenith angle (SZA) and NDVI from first principles.

1) Radiative Transfer Problem for Vegetation
Media: Consider a vegetation canopy in the layer 0

. The top 0 and bottom surfaces form its
upper and lower boundaries. The position vectordenotes
the Cartesian triplet ( ) with its origin at the top of the
canopy. Assume that photons interact with phytoelements only.

That is, photon interactions with optically active elements
of the atmosphere inside the layer 0 are ignored.
The radiation field within the layer can be described by the
three-dimensional (3-D) transport equation [16], [17]

(1)

Here, is the monochromatic radiance which depends on
wavelength , location , and direction . The unit vector
is expressed in spherical coordinates with respect to
axis, and and are its polar angle and azimuth.
is the total interaction cross section, which does not depend
on wavelength, and is the differential scattering cross
section. A precise description of these variables can be found
in [18], [19]. In the follwing, the formulation of Myneni [19]
is adopted.

The transfer equation (1) is a statement of energy conserva-
tion in the phase space. The physical meaning of the various
terms in (1) is that the first term characterizes the change in ra-
diance in at , the other terms show whether the changes take
place at the expense of absorption and scattering in the medium
(second term) and at the expense of the scattering from the other
directions (third term).

The magnitude of scattering by elements of the vegetation
canopy is described using the hemispherical leaf albedo

(2)

An individual leaf is assumed to reflect and transmit the inter-
cepted energy in a cosine distribution about the leaf normal. In
this case, the leaf albedo does not depend on the angular
variable and the differential scattering cross section is
a symmetrical function with respect to angular variables [20].
It is assumed that the leaf albedo is independent of the spatial
variable . These assumptions are not essential to the following
analysis. The typical spectral variation of leaf albedo is defined
by three distinct spectral regions [21], i.e., visible (0.4–0.7m),
near-infrared (0.7–1.35m), and mid-infrared (1.35–2.5m).
In general, a green leaf absorbs 90–95% of solar radiation in the
visible region but only 5–10% in the near-infrared. Leaf albedo
in the mid-infrared region is usually smaller than in the near-in-
frared and is controlled by internal leaf structure and absorption
by leaf water [22], [23]. Characteristic water absorption bands
are at 1.43, 1.95, and 2.2m. These properties are inferred from
the spectral behavior of a green, healthy leaf and are quite stable
although the magnitude of reflectance and transmittance may
vary with leaf age and among species. Fig. 1 demonstrates a typ-
ical spectral variation of leaf albedo for broadleaf forests. Leaf
spectral data were obtained from a variety of sources of filed
measurements on different broadleaf trees. The mean and vari-
ance spectra were calculated from a large number of samples.

In this study, the normalized differential scattering cross sec-
tion is used

(3)
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Fig. 1. Mean leaf hemispherical albedo of broadleaf forests and its standard
deviation as a function of wavelength.

It follows from (2) that the integral of over does not de-
pend on the wavelengthand is equal to total interaction cross
section , and that the function is a symmetrical func-
tion with respect to angular variables. The coefficientcan be
assumed to be independent of wavelength [24]. Substituting (3)
in (1) results in

(4)

Let a parallel beam of unit intensity be incident on the upper
boundary. At the canopy bottom , the fraction of radiation
that is reflected back into the canopy by the ground is given by
the bidirectional distribution function of the ground.
This case is given by the following boundary conditions:

(5)

(6)

Here is the direction of the solar parallel beam
, and are solar polar angle and azimuth

angle. is the Dirac delta function, and and denote points
on the upper and lower boundaries, respectively. The solution
of the boundary value problem, expressed by (4)–(6), describes
the radiation field in a vegetation canopy.

The bidirectional reflectance distribution function (BRDF),
, at the spatial point is defined as the ratio of the mean

radiance leaving the top of the plant canopy,
, and the incident radiant energy, i.e.,

(7)

In the above, the angle bracket denotes the mean over the
pixel or a horizontal area of interest. represents the incident
radiation energy, because in (4) is normalized by the
incident radiation. The normalized difference vegetation index
(NDVI) is the difference between near-infrared and red BRDF’s
divided by their sum

NDVI (8)

where and are near-infrared and red spectral wavebands,
respectively.

We investigate the relation between solar zenith angle (SZA)
changes and NDVI using operator theory [25], [26]. Therefore,
we introduce the differential and integral operators as

(9)

(10)

In (9), we represent the spatial pointas . Here,
the point belongs to the upper boundary ifis directed down
(i.e., 0) and to the lower boundary otherwise.denotes the
distance between the pointand the boundary ( 0 or )
along the direction . To describe the boundary condition (6),
a scattering operator is defined on the lower boundary
[27], [28] as

(11)

Using this notation, the boundary value problem (4)–(6) can be
expressed as

(12)

The solution of (12) is represented by the sum of two com-
ponents, viz., , where is the incident direct
radiation that has not undergone interactions in the canopy, and

is the intensity of photons scattered one or more times in the
canopy (the diffuse component). Because 0 for the up-
ward directions, the diffuse component must be specified to
evaluate the BRDF (7), i.e.,

(13)

Using a standard technique [28], the following boundary value
problem for the diffuse component can be derived:

(14)

where

(15)

The probability density function () that a photon in the beam
of direct solar radiation will arrive along without suffering
a collision [19] and [29], can be expressed as

(16)
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The functions and depend on the SZA and determine the
effect of changes in SZA on NDVI.

2) Eigenvalues of the Transport Equation:To determine the
effect of changes in SZA on NDVI, a sensitivity analysis on the
relation between NDVI and the maximum positive eigenvalue
of the transport equation is performed. By definition, the eigen-
value of the transport equation is a numbersuch that there
exists a function that satisfies

(17)

with vacuum boundary conditions

(18)

The function is the eigenvector corresponding to the
given eigenvalue . The set of eigenvalues
and eigenvectors of the transport equa-
tion is a discrete set [26]. The transport equation has a unique
positive eigenvalue that corresponds to a positive eigenvector
[26]. This eigenvalue is greater than the absolute magnitudes of
the remaining eigenvalues. It provides information intrinsic to
the medium (vegetation canopy) and is independent of illumi-
nation geometry.

Methods developed in operator theory can be used to estimate
the maximum positive eigenvalue. In particular, Krasnoselskii’s
[30] results on positive operators will be used in the following.
Let be a positive operator, and letbe a positive function for
which the following inequality holds:

(19)

where and are some positive constants. Under some gen-
eral conditions [30], the sequences

inf sup (20)

converge to the maximum eigenvalue of the operator
from below and above

(21)

Knyazikhin [31] discusses conditions under which this result
is applicable to the transport equation. The next section shows
that the NDVI for a sufficiently dense canopy is a function of
the maximum eigenvalue of the operator . It fol-
lows from (19) and (20) that the maximum positive eigenvalue
equation is independent of illumination geometry. Therefore,
exploring its relation to NDVI provides the proper analysis to
address SZA effects.

B. Dependence of NDVI on SZA in the Case of An Absorbing
Ground

Consider the simplest case: reflectance of the ground below
the vegetation is zero, that is, 0 (
0). The problem of radiative transfer in this case is termed the

“black soil problem.” Results presented in this subsection are re-
quired to extend our analysis to the general case of a reflecting
soil below the vegetation. We use a standard technique devel-
oped in mathematical transport theory [26]–[28] as well as the
result mentioned in the previous section.

The solution of the transport equation (14) can be expanded
in Neumann series [27], [28] and [32] as

(22)

where , are wavelength independent
functions. Substituting (22) into (8) and accounting for (13), we
obtain

NDVI

(23)

Here is the ratio between leaf albedos at red and near-infrared
wavelengths, i.e., . Note that a typical value of
varies by about 0.1 ( Fig. 1). This allows us to neglectfor

in (23), which means we neglect the multiple scattering
at red spectral band while accounting for multiple scattering ra-
diation at near infrared band. Under these conditions, (23) can
be reduced to a rational function whose variation with SZA re-
sults from variation of . Therefore, the following
analysis begins with the justification of this technique.

Consider the following functions:

(24)

(25)

These expressions can be used to represent NDVI as

NDVI (26)

Neglecting the term in (26), the following approximation for
NDVI results:

NDVI (27)

The accuracy of this approximation (27) can be investigated by
the difference NDVI = NDVI - NDVI. Because

NDVI

(28)

Thus, the accuracy of the approximation (27) is proportional to
.
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Fig. 2. Coefficientp, which characterizes canopy structure as a function of
leaf area index (LAI).

The operator is positive [31]. The positivity of
the operator and equation imply the
following inequalities:

(29)

where

(30)

The supremum in (30) is taken over alland , for which
0. This involves the validity of the following trans-

formations:

(31)

These inequalities allow estimation of the functionas

(32)

Substituting this inequality in (28) and accounting for the in-
equality , one obtains

NDVI (33)

It follows from (19) and (20) that the coefficient is an es-
timate of the maximal positive eigenvalue of the operator
(spectral radius of the operator ). This spectral radius can
be estimated as [32]. Here, where is a
wavelength independent constant. Thus,is a coefficient which
depends on canopy structure only. Fig. 2 shows the coefficient

as a function of leaf area index (LAI). Fig. 3 demonstrates
variation of NDVI with respect to for different values of .

Fig. 3. Difference�NDVI between exactly evaluated NDVI and its approxi-
mation as a function of the ratio� between leaf albedos at red and near-infrared
wavelengths for� = 0.1, 0.4, and 0.9.

Fig. 4. Range of variation in NDVI caused by variation in canopy structure
and sun-view geometry for different values of the ratio� between leaf albedos
at red and near-infrared spectral bands.

NDVI is less than 0.02 at the typical value of(about 0.1)
even at the largest 0.9. Compared with the range of NDVI
values in Fig. 4, one can see that (27) approximates NDVI ac-
curately. Therefore, (27) is used to evaluate NDVI.

Thus, variations in the NDVI are caused by variation in the
function , which is the radiance of photons scattered once.
Therefore, the range of variation in NDVI depends on the pro-
portions of and . To estimate this range, the following func-
tion is introduced:

(34)

It follows from (22), (25), and (34) that .
The equation 1 allows to be
expressed as . Substituting and in
(27), we obtain

NDVI (35)
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Fig. 5. Upper and lower bounds of variations of�(r;
) as a function of
LAI for different values of (a) SZA= 15 and (b) SZA= 60. Here,� and
� are maximum and minimum of�(r;
), taken over all possible spatial
points r and directions
. � and � are maximum and minimum of
�(r;
) over pointsr on the upper canopy boundary and upward directions

. ! p is the maximum positive eigenvalue (spectral radius) of the transport
equation. Values of�(r;
) at the upper canopy boundary and in the zenith
view direction are depicted with}.

It follows from (30) that 0 1. That is, the
range of all possible variations indoes not exceed the interval
[0, 1]. Here

(36)

where infinum is taken over all and , for which
0. The relation between NDVI andfor different values of ,
shown in Fig. 4, indicates that the range of variation in the NDVI
is determined by , which varies about 0.1 (see Fig. 1) and.
Note that variations in result from variations in sun-view ge-
ometry and canopy structure. From (35), it follows that NDVI
can never be less than in the case of a completely
absorbing soil. The condition NDVI indicates
that the case when the ground below the vegetation contributes
to the canopy leaving radiation.

Fig. 5 demonstrates the range [ ] of variation of as a
function of LAI for different values of the SZA. It follows from
(30) and (36) that the upper and lower bounds result from
variation in and ; that is, at any spatial pointin the canopy
and in any direction the values of will never be out of
the range . This interval estimates the spectral radius of
the operator from above and from below [31], [33], [47],

that is, varies about the spectral radius . If one constrains
variations of and by spatial points on the upper boundary
and view directions (that determines measured NDVI values),
the range of variation of becomes essentially nar-
rower. Here, and are determined by (30) and (36), re-
spectively, in which supremum and infinum are taken over all
on the upper canopy boundary and view directions. Fig. 5 also
shows the upper ( ) and lower ( ) bounds as a function of
LAI for different values of SZA. The upper bound varies
about the spectral radius , being only slightly sensitive to
SZA. The sensitivity of the lower boundary to SZA is more
discernable. However, this does not result in significant varia-
tion in NDVI. For example, the maximum range [ 0.4,

0.65] of possible variation in, which corresponds to
the low sun position (SZA 60 ) causes NDVI values to vary
in the interval [0.88, 0.93] if 0.1, and in [0.78, 0.86] if
0.2 (Fig. 4). It should also be noted that values offor the zenith
view direction are close to the upper bound . Thus, in the
case of a vegetation canopy with a dark background, variations
in NDVI are caused mainly by, which describes the optical
properties of an individual leaf, and by the parameter, which
describes canopy structure. Both parameters are independent of
SZA and view angle. Therefore, we conclude that changes in
SZA have no appreciable effect on NDVI.

C. NDVI Variations in the Case of a Reflective Ground

To parameterize the contribution of the surface underneath the
canopy (soil and/or understory) to the canopy radiation regime,
an effective ground reflectance is introduced, namely [15]

(37)

The function w is a wavelength-independent configurable func-
tion that will be specified later in this section. Note that the effec-
tive ground reflectance depends on the solution of the boundary
value problem (4)–(6). However, it follows from the definition
that the variation of satisfies the following inequality:

(38)

That is, the range of variations depends on the integrated bidirec-
tional factor of the ground surface only. Therefore, can
be taken as a parameter that characterizes ground reflectivity.

To account for the anisotropy of the ground surface, an effec-
tive ground anisotropy is used

(39)
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Consider the case when the bidirectional distribution function
can be factorized as . Taking

(40)

the following expressions for the effective ground reflectance
and anisotropy result:

(41)

The integral of over 1. One can see that
the effective ground reflectance and anisotropy do not depend
on the solution of the boundary value problem (4)–(6), which
can be expressed as [15]

(42)

Here, is the solution of the black soil problem discussed
in the previous section. is the downwelling flux at the
canopy bottom for the case of the black surface.and
are radiance and downward flux at the surface level, respec-
tively, generated by the anisotropic source (39) located at the
canopy bottom. The function satisfies the equation

. Here, is the radiance generated by photons in
the anisotropic source (39) located at the canopy bottom that
have not undergone any interactions in the canopy. It satisfies
the equation 0 and the boundary condition
0 ( ); ( ).

Equation (42) includes two extreme situations. The first is
the case of a dense canopy, which transmits a negligible amount
of radiation, i.e., 0. The NDVI is evaluated by (35)
and is minimally sensitive to variations in the SZA. This is
also the case when the surface underneath the canopy is suf-
ficiently dark, i.e., 0. Broadleaf forests are an example
of such a situation. The second situation is characteristic of a
sparse canopy, which transmits almost all incident radiation, i.e.,

1, and scattering from green leaves is negligible. That
is, 0, . In this case, NDVI can be
calculated as

NDVI

(43)

i.e., the effect of changes in the SZA on NDVI is totally deter-
mined by the anisotropy of bare soils.

In conclusion, this analysis indicates that NDVI is minimally
sensitive to changes in SZA when the vegetation canopy is suffi-
ciently dense or the surface underneath the canopy is sufficiently
dark. This sensitivity is determined by canopy structure only and
varies between 1 and (Fig. 4). The sensitivity
of NDVI to SZA may increase with decrease in green leaf area
of the canopy and/or with increase in ground reflectivity. This

process is controlled by the square of canopy transmittance (42),
. That is, the greater its value, the higher the con-

tribution of the ground to the canopy leaving radiation and, as a
consequence, the greater the sensitivity of NDVI to SZA.

III. EMPIRICAL ANALYSIS

In this section, the theoretical formulation described above is
tested with the NOAA-NASA AVHRR Land Pathfinder data set
[1]. First, we describe the preprocessing and compilation of the
satellite data. Next, we describe the statistical techniques used
to analyze the data.

A. Data Processing

The Pathfinder AVHRR data set includes channel 1 re-
flectances (red band, 580–680 nm), channel 2 reflectances
(near-infrared band, 725–1100 nm), and solar zenith angle from
July 1981 to September 1994 at 8 km resolution (square pixels).
The data processing included improved navigation, intersatel-
lite calibration, and partial correction for Rayleigh scattering.
Correction for atmospheric effects requires information on
atmospheric gases, aerosols, clouds, and surface scattering
properties. This information is not available, and therefore the
NDVI data were composited over a ten-day period. NDVI is
calculated from channel 1 and channel 2 reflectances using
(8). NDVI is measured on a scale from1 to 1. For vegetated
surfaces, near-infrared reflectance is always greater than red
reflectance, therefore NDVI always is positive.

The AVHRR sensor covers the global land surface daily. The
quality of these data varies daily due to changes in atmospheric
conditions (e.g. clouds and stratospheric aerosols). The daily
NDVI data are composited over a ten-day period. Residual at-
mospheric effects were minimized by analyzing only the max-
imum NDVI value within each ten-day interval [11] (which gen-
erates 474 observations for the sample period). These data gen-
erally correspond to observations from near-nadir view direc-
tion and clear atmosphere. Compositing the AVHRR data may
cause retention of bad scan lines. However, there are very few
bad scan lines. Furthermore, spatially averaging on the data, as
described below, also helps to reduce the noise caused by these
effects.

To reduce the effects of bad scan lines and to compile the data
in a way that is consistent with the biophysical parameters by
which SZA may affect the AVHRR data (leaf area), we process
the Pathfinder AVHRR data (NDVI, Channel 1, Channel 2, and
SZA) over the vegetated areas (pixels with positive NDVI) and
compile them by biome using a global landcover map [34]. This
map identifies 13 biomes (Table I).

The AVHRR data display a significant and relatively con-
stant intrannual seasonality. This pattern is not relevant to the
focus of this analysis (the effect of changes in solar zenith angle
on interannual variability). Therefore, intrannual variability in
the AVHRR and SZA time series is removed as follows. The
data are deseasonalized by calculating anomalies from the mean
value of the composites for each ten-day compositing period.
For example, to calculate NDVI anomalies in the first compos-
ited period of August for broadleaf evergreen forests, we cal-
culated the mean NDVI for broadleaf evergreen forests for the
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TABLE I
BIOME NO. AND BIOME TYPE OF A GLOBAL LANDCOVER MAP

BY DEFRIESet al. [34]

first ten days of August from 1981 through August 1994, sub-
tract this mean from each of the ten-day composited values.
Monthly-averaged anomalies are generated from the ten-day
composite anomalies (which generates 157 observations for the
sample period). Both the ten-day composite and monthly-av-
eraged anomalies are used in the statistical analysis described
below.

B. Statistical Methodology

To validate the sensitivity of NDVI to changes in SZA im-
plied by the physics of radiative transfer described in Section II,
the AVHRR data anomalies are used to estimate the following
models:

Channel SZA (44)

Channel SZA (45)

NDVI SZA (46)

in which Channel 1, Channel 2, and NDVI are derived from the
AVHRR Pathfinder data sets [1], SZA is the corresponding solar
zenith angle, and are regression coefficients, and , and

are normally distributed random error terms. These models
can be estimated using a variety of statistical techniques, in-
cluding ordinary least squares (OLS). When using OLS, the ef-
fect of changes in solar zenith angle on AVHRR data can be
evaluated with a statistic to test the null hypothesis that
0. Rejecting the null hypothesis would indicate that there is a
statistically meaningful relation between solar zenith angle and
the AVHRR data. Such a result would indicate that changes in
solar zenith angle introduce a trend into the AVHRR data.

We use OLS to estimate (44)–(46) to evaluate the relation be-
tween SZA and the ten-day composite AVHRR data described
in the previous subsection. Estimating the relation between SZA
and channel 1 reflectance (model 1), SZA and channel 2 re-
flectance (model 2) from this data set indicates that we reject
the null hypothesis that 0 for nearly every biome (Table II).
These results imply that the data for channel 1 and channel 2
reflectances are influenced by changes in SZA. There is less ev-
idence for a relation between SZA and NDVI (model 3). We
cannot reject the null hypothesis that 0 for about half of

TABLE II
ORDINARY LEAST SQUARES (OLS) REGRESSIONRESULTS FOR

(44)–(46)—t TEST� = 0

the biomes (Table II). These results imply that there may be a
relation between SZA and NDVI.

Using OLS to estimate (44)–(46) is appealing because of its
simplicity. But using OLS to estimate relations between time
series carries a significant danger. The distribution of test statis-
tics generated by OLS is based on the assumption that the data
are stationary. That is, they do not contain a stochastic trend. If
the independent and/or dependent variables in an OLS regres-
sion contain a stochastic trend, the regression residual () often
will contain a stochastic trend. This violates the assumptions
that underline OLS. Such a regression is known as a spurious
regression [35]. When evaluated against standard distributions,
the correlation coefficients andstatistics for a spurious regres-
sion are likely to show that there is a significant relation between
the variables when in fact none exists. The possibility for a spu-
rious regression clouds the interpretation of results generated by
OLS.

To avoid spurious regressions, we use the notion of cointe-
gration to analyze the relation between solar zenith angle and
the AVHRR data. If the data for solar zenith angle contain a
stochastic trend, and if this trend “contaminates” channel 1 re-
flectances, channel 2 reflectances, or NDVI, then SZA will coin-
tegrate with the AVHRR data if the AVHRR data do not con-
tain a separate stochastic trend(s) generated by the terrestrial
biota. Cointegration implies that there exists a linear combina-
tion of the variables that eliminates the stochastic trend in the
data [36]. The linear function(s) that eliminates the stochastic
trend is termed a cointegrating vector (CV). For variables that
cointegrate, standard inference theory can be used for further
hypothesis tests using distributions for cointegrating variables.

The methodology used to examine the relation among SZA
and the AVHRR data is carried out in two steps. In the first
step, we use statistical tests developed by Dickey and Fuller [37]
to determine whether the data for solar zenith angle, channel
reflectances, and NDVI contain a stochastic trend. In the second
step, we use the full information likelihood procedure developed
by Johansen [38], [39] to examine the relation between SZA
and channel 1 reflectances, SZA and channel 2 reflectances, and
SZA and NDVI. We test two aspects of this relation. First, we
ask if there a statistically meaningful relation between SZA and
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Fig. 6. Globally averaged anomalies of deseasonalized solar zenith angle,
channel 1 reflectance, channel 2 reflectance, and NDVI for vegetated areas
(where NDVI is positive) from the Pathfinder data set. There are total of 474
samples from July 1981 to September 1994.

the AVHRR data. Second, if there is one present, we ask what is
the statistical ordering of this relation (do changes in SZA cause
changes in the AVHRR data or vice-versa).

A cursory glance at the time series for SZA indicates that
these data are not stationary (Fig. 6). Furthermore, this non-
stationarity does not appear to be caused by a deterministic
trend. Rather, the data increase fairly steadily over three periods,
which are defined by two sharp drops. These drops correspond
to changes in satellites (NOAA-7 to NOAA-9, and NOAA-9 to
NOAA-11). As such, these changes have a permanent effect on
subsequent values for SZA. This persistence implies that the
data for SZA contain a stochastic trend.

A stochastic trend is an integrated series of random variables.
A random walk in discrete time, which corresponds to Brownian
motion in continuous time, is a simple example of a stochastic
trend. Stochastic trends are said to be integrated of order one,
symbolized as(1). This terminology indicates that differencing
the series once yields a nonintegrated series(0). An (0) series
is stationary, that is, it does not contain a stochastic or determin-
istic trend. A deterministic trend is an increase or decrease in a
time series that is generated by the passage of time.

We use the augmented Dickey-Fuller (ADF) test [37] to clas-
sify the time series for SZA, channel 1 reflectances, channel

TABLE III
VALUES FOR THEDICKEY-FULLER TESTSTATISTIC USED TODETERMINE THE

TIME SERIESPROPERTIES OF THEAVHRR AND SZA DATA

2 reflectances, and NDVI as(0) or (1). The model for the
Dickey-Fuller test is

(47)

where is the variable under investigation, is the first dif-
ference operator, is a linear time trend (which represents the
possible presence of a deterministic trend), , and are
regression coefficients, and is a random error term. The ADF
test evaluates the t-statistic for(which is equal to the first order
autoregressive coefficient minus one) against a nonstandard dis-
tribution. The null hypothesis is that the series is at least(1).
Under this null, 0. If we can reject this null hypothesis for
the undifferenced series, then that series is(0). If we can only
reject the null hypothesis for the differenced series, then that se-
ries is (1). The number of augmenting lagged dependent vari-
ables ( ) is selected using the Akaike information criterion [40].

The results of the ADF tests for the ten-day data set indicate
that the time series properties of SZA, channel 1 reflectances
and channel 2 reflectances, and NDVI differ (Table III). The
ADF test statistic generated from the levels of SZA fail to reject
the null hypothesis (except for biome 13, lichens and mosses),
which indicates that the SZA data contain a stochastic trend.
Tests on the first difference of the SZA data reject the null hy-
pothesis, which indicate that the SZA data are(1). The results
for the AVHRR data are mixed. The ADF test statistic generated
from the levels of channel 1 reflectances reject the null hypoth-
esis (except for biome 6, woodlands), which indicates that these
data are (0). Similarly, the ADF test statistic generated from
the levels of channel 2 reflectances reject the null hypothesis
(except for biome 2, evergreen broadleaf forests), which indi-
cates that these data are(0). The ADF test statistic generated
from the levels of NDVI are mixed. The test statistic rejects the
null hypothesis for seven of the biomes, and fails to reject the
null hypothesis for the remaining seven biomes.

The results in Table III undermine conclusions about the re-
lation between SZA and the AVHRR data that are obtained by
using OLS. The NDVI data for about half of the biomes have a
stochastic trend. For these biomes, it is not possible to determine
whether the relation between NDVI and SZA indicated by OLS
(Table II) is spurious. For example, OLS indicates that there is
a relation between SZA and NDVI in grasslands (biome 10).
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But the time series for both SZA and NDVI contain a stochastic
trend and therefore, it is not possible to determine whether the
relation between these variables for grasslands introduced by
OLS is statistically meaningful or is spurious.

For other biomes, the data for SZA contain a stochastic trend
while the AVHRR data for NDVI (and channel 1 and channel
2 reflectances) do not. For example, the NDVI time series for
biome 7 (wooded grasslands and shrubs) are(0), while the
SZA time series is (1). These differences are critical because it
is not possible for an(1) variable (SZA) to be related directly
to an (0) variable (most of the channel 1 reflectances, channel
2 reflectances and about half of the NDVI data). Conclusions
about the lack of a statistically meaningful relation may be pre-
mature because the augmented Dickey-Fuller and other tests for
stochastic trends lack power. These tests tend to reject the null
too often when the true data generating process is a random walk
with noise, and the noise is large compared to the signal [41],
[42]. The lower the SNR, the higher the probability of a type I
error (i.e., incorrect rejection of the null of a stochastic trend).
In a finite sample, reducing the SNR increases the probability
that the test will indicate that a variable is trend stationary (that
is, a type error [41]). This conclusion is confirmed by Monte
Carlo simulations [43]–[45].

Cursory examination of the data indicate that the signal to
noise ratio is low (Fig. 6). Fluctuations in channel 1 reflectances,
channel 2 reflectances, and NDVI are large relative to whatever
signal may exist. This noise is damped in the monthly-averaged
data set (results not shown). Nonetheless, the results of the ADF
change only slightly. Reflectances for channel 1 and channel 2
generally are (0), while the NDVI for about half of the biomes
is (1).

To evaluate whether the AVHRR data cointegrate (share a
stochastic trend) with SZA, we use the full information like-
lihood procedure developed by Johansen [38] and Johansen and
Juselius [39] to examine the relation between SZA and channel
1 reflectances, SZA and channel 2 reflectances, and SZA and
NDVI. The procedures to estimate cointegrating vectors are de-
rived from a vector autoregression (VAR) in levels, which can
be represented as

(48)

in which is a vector of variables whose behavior is being
modeled, is the number of lags, the’s and are matrices of
regression coefficients, and are a vector of constants, are
nonintegrated exogenous variables, andis a vector of error
terms, each of which is normally independently and identically
distributed [46]. is a subset of , so that (48) can be a part of
a larger system of equations.

To test for cointegrating relations among variables inand to
estimate the coefficients of the cointegrating vectors, the VAR
is reformulated as a vector error correction model (VECM)

(49)

where is the first difference operator. Equation (49) speci-
fies the first difference of the(1) variables, which is stationary,
as a function of linear lagged values of the first difference of

the nonstationary variables, which also are stationary, and sta-
tionary linear combinations of the nonstationary variables, that
is, the cointegrating relations.

If there are one or more cointegrating relations, the ECM can
be reformulated as follows:

(50)

The term [ ] indicates that a constant and/or deter-
ministic trend may be included in the cointegrating relation.
is the matrix of cointegrating vectors, andis a matrix of co-
efficients that indicates how each cointegrating relation affects
each dependent variable. The significance of coefficients in the
( matrix can be used to infer the statistical ordering in the rela-
tion between variables in the cointegrating relation. The number
of cointegrating vectors, the variables that make-up a cointe-
grating vector, the coefficients associated with these variables,
and the relation between an ECM and the dependent variables,
all can be evaluated using statistics generated by the estimation
process.

We specify the VECM (49) to estimate the relation between
SZA and channel 1 reflectances (model 1), SZA and channel
2 reflectances (model 2), and SZA and NDVI (model 3). We
use no lags ( 1) on the assumption that measurement er-
rors caused by changes in SZA appear in the current measure
of channel 1 reflectances, channel 2 reflectances, and NDVI. A
VECM is estimated for each of the 13 biomes and global data
(biome 14). This implies a total of 42 VECM’s.

For each VECM, we determine the number of cointegrating
vectors, that is, the number of columns inusing the
and statistics [38], [39]. The statistic tests the null
hypothesis that the number of cointegrating vectors is less than
or equal to against a general alternative that the number of
cointegrating vectors is greater than. The statistic tests
the null hypothesis that the number of cointegrating vectors is
against the specific alternative of+ 1 cointegrating vectors.

The number of cointegrating vectors is used to determine in
part the presence of a relation between SZA and channel 1,
channel 2, or NDVI. If there is no relation between SZA and
the AVHRR data, the and statistics will not allow
us to reject the null hypothesis that there are zero cointegrating
vectors. Alternatively, the lack of at least one cointegrating re-
lation could indicate that SZA and the AVHRR data share a sto-
chastic trend, but no cointegrating relation is present because the
AVHRR data contain a stochastic trend that originates from the
terrestrial biota that is not present in the data for SZA. Rejecting
this null hypothesis would indicate that there are one or more
cointegrating vectors. This result also signals two possibilities:
1) there are one (or more) linear combinations of SZA and the
AVHRR data that are stationary, or 2) the AVHRR and/or SZA
data are (0). The first possibility implies that there is a statis-
tically meaningful relation between SZA and the AVHRR data.
The second possibility may imply that there is no relation. By
definition, there is one cointegrating vector for each stationary
variable in . So if either the SZA or AVHRR data are(0), that
time series alone could make up a cointegrating relation.

To distinguish between these two possibilities, we use exclu-
sion tests to evaluate restrictions onthat eliminate SZA or the
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AVHRRvariable from the cointegrating vector. If there is a single
cointegrating vector, and the exclusion tests allow us to reject re-
strictions that eliminate the SZA and the AVHRR variable from
the cointegrating relation, both variables are needed to form the
cointegrating relation. This result would imply that there is a sta-
tistically meaningful (at a specified threshold for statistic signif-
icance, 0.05) relation between SZA and the AVHRR vari-
able. On the other hand, if there is a single cointegrating rela-
tion and we cannot reject restriction that eliminates either SZA or
the AVHRR variable from the cointegrating relation, this would
indicate that the cointegrating relation consists of a single(0)
variable—the variable that cannot be eliminated from the coin-
tegrating relation. In this case, there is no statistically significant
relation between SZA and the AVHRR variable.

If there is a relation between SZA and the AVHRR variable,
we can determine the statistical ordering of this relation from the
statistical significance of the elements of. The elements of
indicate whether a cointegrating relation affects (loads into) the
equation for the first difference of SZA or the AVHRR variable.
A statistically significant value for the element of( 0.05)
indicates that disequilibrium in the long run relation between
variables in the cointegrating relation affects the first difference
equation. If there is a cointegrating relation between SZA and
NDVI, we would expect that the element of that loads this
cointegrating relation into the equation for the first difference of
NDVI would be significant. That is, disequilibrium in the long
run relation between SZA and NDVI should affect the first dif-
ference of the NDVI time series. On the other hand, we would
expect that the element of that loads the cointegrating rela-
tion between SZA and NDVI into the first difference of the SZA
equation would be insignificant. Disequilibrium in the long run
relation between SZA and NDVI should not affect the first dif-
ference of the SZA time series.

IV. RESULTS

Conclusions about the number of cointegrating relations in
models 1–3 are similar. Both the and statistics
indicate that assigning a rank of zero are rejected strongly for
all biomes and all models (Table IV). This allows us to reject the
possibility that SZA and the AVHRR variable share a stochastic
trend, but this cointegration cannot be detected because the
AVHRR data also contain a stochastic trend that is introduced
by the terrestrial biota (and therefore is not shared by the SZA
data). Nearly all models have only one cointegrating relation.
Both the and statistics indicate that assigninga
rank of 1 cannot be rejected for all models and biomes except
biome 13 (mosses and lichens). For this biome, the results of
the and statistics indicate that assigninga rank
of less than 2 can be rejected. Together, these results imply that
the variables in model 1, model 2, and model 3 for biomes other
than mosses and lichens contain one cointegrating relation.

Restrictions that eliminate channel 1 reflectances from the
single cointegrating relation are rejected strongly in all biomes
(Table V). There are ten biomes for which we can reject the
restriction that eliminates SZA from the cointegrating relation
(Table V). For these ten biomes, there is a statistically mean-
ingful relation between SZA and channel 1 reflectances. This

TABLE IV
LAMBDA STATISTICS FORCHOOSING THERANK OF �

TABLE V
TESTS� (1) OF EXCLUSION RESTRICTIONS ON THECOINTEGRATING

RELATIONS

relation is consistent with the analysis in Section II, which indi-
cates that channel 1 reflectances are functions of view and illu-
mination geometry.

For these ten biomes, the nature of the relation between SZA
and channel 1 reflectances is indicated by the statistical signif-
icance of the elements of. The statistical significance of the
element of indicates that the cointegrating relations that in-
clude SZA and channel 1 reflectances generally load into the
equation for the first difference for channel 1 reflectances and
generally do not load into the equation for the first difference
for SZA (Table VI). This result is consistent with the physical
notion that changes in SZA should affect channel 1 reflectances,
but changes in channel 1 reflectances do not affect SZA.

The results of model 2 indicate a relation between SZA
and channel 2 reflectances, but this relation is present in
fewer biomes than the relation between SZA and channel 1
reflectances. For model 2, restrictions that eliminate channel 2
reflectances from the cointegrating relation are rejected strongly
in all biomes (Table V). Restrictions that eliminate SZA from
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TABLE VI
ELEMENTS OF� USED TODETERMINE THE STATISTICAL ORDERING OFCOINTEGRATING RELATIONS

the cointegrating relation are rejected in seven biomes. For
these seven biomes, there is a statistically meaningful relation
between SZA and channel 2 reflectances. Again, this relation is
consistent with the analysis in Section II, which indicates that
channel 2 reflectances are functions of view and illumination
geometry. Consistent with this result, the statistical significance
of the elements of indicate that changes in SZA affect channel
2 reflectances, but changes in channel 2 reflectances generally
do not affect SZA (Table VI).

The results for model 3 indicate that the relation between SZA
and NDVI is less prevalent than the relation between SZA and
the channel reflectances. Exclusion tests indicate that we can re-
ject the restriction that eliminates NDVI from the cointegrating
relation for each of the individual biomes and the global data.
Tests indicate that we can reject restrictions that eliminate SZA
from only four of the individual biomes. For the remaining nine
biomes and the global data, we cannot reject restrictions that
eliminate SZA from the cointegrating relation. Together, these
results indicate that there is no statistically meaningful relation
between SZA and NDVI for nine of the biomes and the global
data. Conversely, there is a statistically meaningful relation be-
tween SZA and NDVI for four biomes. The four biomes in
which there is a statistically meaningful relation between SZA
and NDVI is slightly less than the six biomes indicated by the
models estimated using OLS. This implies that the relation be-
tween SZA and NDVI indicated by OLS for two biomes, ever-
green broadleaf forests and bare ground, is spurious as defined
by [35].

The four biomes for which there is a statistically meaningful
relation between SZA and NDVI are consistent with the theo-
retical analysis described in Section II. The cointegration anal-
ysis indicates that there is a statistically meaningful relation

between SZA and NDVI in wooded grassland/shrub, closed
bushlands, open shrublands, and bushes. None of these biomes
are present in the northern latitudes to invalidate the result pub-
lished in Myneniet al.[2]. Each of these biomes has a relatively
sparse canopy. A sparse canopy is one of the conditions under
which the theoretical analysis indicates that there may be a re-
lation between SZA and NDVI. Thus, the empirical analysis
supports the potential for a relation between SZA and NDVI in
biomes with spares canopies indicated by the analysis of radia-
tive transfer.

The statistical significance of the elements ofis consistent
with the causal order between SZA and NDVI implied by
theory. For the four biomes in which there is a relation between
SZA and NDVI, the elements of that represent the effects
of disequilibrium in the relation between SZA and NDVI on
the first difference of NDVI is statistically significant. This
indicates that changes in the long run relation between SZA
and NDVI affects NDVI. Conversely, the elements ofthat
represent the effect of this disequilibrium on the first difference
of SZA are insignificant. This indicates that changes in SZA
‘cause’ changes in NDVI, but changes in NDVI do not cause
changes in SZA.

We obtain similar results when we analyze the relation
between SZA and monthly averaged AVHRR data (results not
shown for brevity). The same four biomes have a statistically
meaningful relation between SZA and NDVI: wooded grass-
land/shrub, closed bushlands, open shrublands, and bushes.
Similarly, the statistical significance of the elements of
indicate that changes in SZA cause changes in NDVI but
changes in NDVI do cause changes in SZA. Together, these
results indicate that data frequency do not affect conclusions
about the relation between SZA and NDVI.
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V. CONCLUSIONS

The results of the empirical analysis of the AVHRR data are
consistent with the relation between SZA and the AVHRR data
indicated by theory. Equations that describe the physics of radia-
tive transfer in a plant canopy imply that SZA will affect channel
1 and channel 2 reflectances measured by the AVHRR. Consis-
tent with this result, using OLS to estimate model 1 and model
2 indicate a strong relation between reflectances and SZA, re-
gardless of frequency and geographic region. These relations are
only slightly weaker when the variables in model 1 and model 2
are examined for cointegration using the full information max-
imum likelihood procedure developed by Johansen [39].

A physical interpretation of our results is that the NDVI dif-
ferences with changes in SZA are primarily a soil-induced effect
since they become greater with lighter colored soils and they are
minimal with very dark soils [47]. In case of dense vegetation
canopies, which have high NDVI values, the influence of the
soil-induced effect is minimal.

Equations that describe the physics of radiative transfer in a
plant canopy imply that the relation between SZA and NDVI
should be relative weak. The strength depends on the reflecting
surface such that the effect of SZA on NDVI will decrease
as leaf area in the canopy increases and the ground under the
canopy darkens. The empirical analysis indicates that these
conditions are satisfied in a limited number of biomes such
that there is a statistically meaningful relation between SZA
and NDVI in wooded grassland/shrub, closed bushlands, open
shrublands, and bushes. In other biomes, there is no statistically
meaningful evidence for a relation between SZA and NDVI.
For these biomes, our results imply that the data for NDVI
are not contaminated by trends introduced by changes in SZA
due to orbital drift and changes in satellite. As such, data for
NDVI can be used to analyze interannual variability in the
productivity of terrestrial ecosystems.

The presence of a cointegrating relation that includes NDVI
only seems to contradict arguments [2] regarding changes in
peak greenness and the length of the growing season. A cointe-
grating relation that includes NDVI only implies that these data
do not contain a stochastic trend. Without a stochastic trend,
there may be no signal for an elongation in the growing season
and an increase in peak greenness. But this seeming contradic-
tion can be resolved by looking at the data examined by [2].
They argue for changes during the growing season only, but
this analysis looks for a stochastic trend shared by NDVI and
SZA during the entire year. As such, this analysis cannot de-
tect a shared stochastic trend that carries over from one growing
season to the next. If such changes are real, such innovations
may persist by affecting the amount of biomass that is available
at the next growing season. The stochastic trend that would re-
sult from such a relation could be detected with the estimation
techniques used in this analysis, but would require a different
specification. This specification is the focus of future efforts.
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