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A stochastic radiative transfer equation for the mean l(
→
X), cosine of polar angle of direction

→
X

d(
→
X2

→
X0), Dirac delta functionfield and its solution for the case of discontinuous vegeta-

tion canopies is discussed in this article. The equation set v(→r ), indicator function
Fdir(k), extraterrestrial solar radiance at the top ofsatisfies the law of energy conservation and is amenable

to numerical solution by the method of successive orders the atmosphere
Fdir1dif(k,

→
X0), extraterrestrial solar irradiance at theof scattering approximations. Special attention is given to

analytical analysis of the effect of spatial discontinuity on top of the canopy
I(→r ,

→
X), radiance (intensity) at spatial point →r andthe radiation field. Research indicates that a complete de-

scription of the radiation field in discontinuous media is in direction
→
X

I(z ,
→
X), mean radiance, averaged over thepossible, using not only average values of radiation over

total space, but averages over space occupied by ab- horizontal plane at depth z
U(z,

→
X), mean radiance, averaged over thesorbing elements is also required. A new formula for ab-

sorbtance, which extends the formula for a homogeneous vegetated portion of a horizontal plane z
SR(x0,y0), cylinder of height H, with vertical axiscase, was obtained for the general case of discontinuous

media. The internal as well as the emergent radiation located at point (x0,y0) and radius R
Tz, area of horizontal plane z, zP[0; H] coveredfields were validated using available radiative transfer

models (one- and three-dimensional) and Monte Carlo by vegetation
Tz(x0,y0), manifold Tz, shifted by vector {x0,y0}model of computer-generated maize canopy. Additionally,

the canopy reflectance simulation is assessed by compari- SR∩Tz, common area of manifold SR, Tz

Mes(S), measure of area Ssons with field data from shrublands. In all cases, the
p(z), horizontal density of vegetation (HDV) atsimulations compare well with both the Monte Carlo re-

level zsults and the field data. Elsevier Science Inc., 2000
uL(→r ), foliage area volume density (FAVD; m2/m3)
k, wavelength
rD(k), spectral hemispherical reflectance of theNOMENCLATURE

leaf
H, total depth (height) of canopy tD(k), spectral hemispherical transmittance of the→
X5{Xx,Xy,Xz}, unit vector of the solid angle leaf→
X0, direction of direct solar radiation x(k), single-scattering leaf albedo

qsoil(k), soil hemispherical reflectance
G(→r ,

→
X), mean projection of leaf normals in the
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visible part of the solar spectrum, where one can restrictHDRF, the hemispherical-directional reflectance
the study of radiation interaction to that scattered oncefactor
from the boundary only. But in the near-infrared (NIR)BHR, the bihemispherical reflectance
region, leaf absorption is weak and scattering dominates,
and the approach of Nilson and Li and Strahler is not

INTRODUCTION accurate. The problem lies in an accurate description of
multiple scattering and propagation of radiation intoAn accurate description of photon transport in vegetation
deeper parts of the canopy. Currently only the Montecanopies is of interest in many branches of contemporary
Carlo method (Marshak and Ross, 1991) and other com-science, such as optical remote sensing of vegetated land
puter graphics rendering methods, such as ray tracingsurfaces, land surface climatology, and plant physiology.
and radiosity methods (Borel et al., 1991) work well atThe development of radiative transfer (RT) theory in
all wavelengths, but they have several disadvantages, in-vegetation canopies shows a gradual evaluation from the
cluding computational expense, difficulty of adaption todescription of simple homogeneous media to complex
user’s specific needs, and lack of analytical analysis.discrete media. When the height of a canopy is small and

Another analytical approach describing leaf clumpingthe vegetation is evenly distributed on the ground (as it
in vegetation canopies is the statistical approach. Of im-is in the case of crops and grasses), the turbid medium
portance is the problem of deriving analytical expressionsapproach of a vegetated canopy is valid, and the standard
or equations for moments, which characterize the sto-1-D RT equation (RTE) is used (Ross, 1975). In this
chastic radiative field in a vegetation canopy. The mostcase, the canopy is treated as a homogeneous gas with
critical is the expression for the first moment of the radi-nondimensional planar scattering centers, which are not
ation field, the mean intensity. The problem of a stochas-spatially correlated with one another. However, the more
tic equation for the mean field has been a highly activecomplex case typically occurs in nature, when individual
research field in recent years (Pomraning and Su, 1995).vegetation units can be distinguished (individual trees in
The first significant attempt to apply a statistical ap-a forest, for example) and the effect of clustering of veg- proach to describe a vegetation canopy was made by

etation elements becomes important. The effect of clus- Menzhulin and Anisimov (1991). The more manageable
tering of vegetation, or the phenomenon that positions of closed system of statistical equations for mean intensity
vegetation elements tend to be correlated, exists simply was derived initially in applications to a medium of bro-
because leaves arise on stems, branches, and twigs. The ken clouds by Vainikko (1973a, 1973b) and later by Titov
extreme example of lateral heterogeneity is shrubland, (1990) and Zuev and Titov (1996). This approach can be
which is characterized by low (0.2) to intermediate (0.6) applied to vegetation canopies with some modifications.
vegetation ground cover (Myneni et al., 1997). The struc- In this paper, an exact stochastic radiative transfer
ture of a vegetation canopy affects the signature of the equation for the mean intensity in a discontinuous vege-
radiation field reflected from the vegetation canopy (as tation canopy is derived. This equation is based on the
measured by satellite sensors, for example), and the re- work of Vainikko (1973a) for broken clouds with classical
trieval of biophysical variables from remote observations parameters of a vegetation canopy originally introduced
requires a precise understanding of the signal-generating by Ross (1975). We obtained a system of integral equa-
mechanism. The turbid medium approximation results in tions, which were solved numerically. The simulated ra-
poor simulations in cases where horizontal heterogeneity diation regime in a discontinuous canopy was validated in
is pronounced, and more precise modeling is required. several ways, including comparison with field data from

The notion of gaps (or voids) between canopy clus- Jornada PROVE (Privette et al., 1999).
ters must be introduced along with precise description This paper is organized as follows. We review the
of topology of the boundary of vegetation to describe the basic concepts of radiative transfer in vegetation media
signature of the radiation field in a discontinuous canopy. and introduce the classical stochastic 3-D radiative trans-
Nilson (1991) and Li and Strahler (1992) introduced a fer equation with the corresponding boundary condi-
geometrical-optical approach to calculate the reflected tions. The derivation of the transfer equation for the
radiance from such vegetation boundaries. They use the mean field using a statistical approach is described. Is-
notion of mutual shadowing (the vegetation unit casts sues resulting from the effect of discontinuity in vege-
shadows on such units) and Bidirectional Gap Probability tated media and analytical description of this discontinu-
(the probability to see radiation reflected by the vegeta- ity (in particular, a new formula for absorptance) are
tion along the direction

→
X if it was illuminated by solar discussed. Then, a numerical method for solving the

radiation along
→
X0) to describe the boundary of the vege- transfer equation for the mean field is outlined, and is-

tation. This approach allows an explanation for the hot- sues related to speed of convergence are presented, fol-
spot effect (the peak in reflected radiance distribution in lowed by a detailed description of important outputs of
the retro-illumination direction, due to the absence of model and comparisons with output from similar RTE

models, with a radiation field in a Maize canopy simu-shadows in this direction). The approach is valid in the
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most cases it is simply a volume), V is a volume of e(→r ),
and Sj is a one-sided leaf area. This integration (“smooth-
ing”) technique provides the convergence process (Knya-
zikhin et al., 1998a) uL(r)→v(→r ) when e→0, and so Eq. (2)
can be taken as an approximation of the structure of the
vegetation canopy. The accuracy of this approximation
depends on size e of the fine cell e(→r ). To our knowledge,
all existing canopy radiation models are based on appox-
imations of Eq. (2) by piecewise continuous functions
(e.g., describing both the spatial distribution of various
geometrical objects like cones, ellipsoids, etc., and the
variation of leaf area within a geometrical figure; Ross,
1975; Li and Strahler, 1992; Li at al., 1995; Nilson, 1977).
Also, we assume that the density of the phytoelements
in the foliated cells is constant, that is [see Eq. (3)]

Figure 1. The coordinate system with vertical axis z
uL(→r )5dLv(→r ) (3)directed down. H is a height of canopy; N is direction

to north;
→
X(h,u) is direction, with h as zenith angle and

where dL is the one-sided leaf area per unit volumeu as azimuth angle.
(in m2/m3).

The vertical heterogeneity of vegetation canopy is
lated using the Monte Carlo method and with field data described by a variation of horizontal density of vegeta-
from Jornada PROVE. In addition, a numerical study of tion with height, referred to later as HDV (in other
the effect of discontinuity on the radiation field in a veg- words, the probability of finding foliage elements at
etation canopy is presented. depth z) and defined as seen in Eq. (4):

p(z)5
1
S##

x,y

v(→r )dxdy (4)
CLASSICAL 3-D RADIATIVE TRANSFER
IN VEGETATION CANOPIES

Here S means sufficiently large area over the horizontal
Consider a canopy of depth H in a coordinate system plane z. In terms of these notations, the leaf area index
with vertical axis z directed downward (shown on Fig. 1). (LAI) can be expressed as [see Eq. (5)]
We describe the canopy structure with the indicator
function, as shown in Eq. (1): LAI5

1
S#

V

uL(→r )dV5
dL

S #
V

v(→r )dV

v(→r )551, if →rPvegetation
0, otherwise (1)

5dL#
H

0

dn
1
S##

x,y

v(→r )dxdy5dL#
H

0

p(n)dn (5)
→r is the coordinate triplet [→rz(x,y,z)] with its origin at

To described the interaction of canopy elements (leaves)the top of the canopy. The indicator function is treated
with radiation, we use the mean projection of leaf nor-as a random variable. Its distribution function, in the
mals in direction

→
X (Ross, 1975), as shown in Eq. (6)general case, depends on both macroscale (e.g., random

dimensions of the trees and their spatial distribution) and
G(→r ,

→
X)5

1
2p

#
2p1

gL(→r ,
→
XL)| →

X·
→
XL|d →

XL (6)microscale (e.g., structural organization of an individual
tree) properties of the vegetation canopy and includes all
three of its components, absolute continuous, discrete, and the area-scattering phase function [see Eq. (7)]
and singular (Knyazikhin et al., 1998a). It is supposed
that photons interact with phytoelements only; that is, we

1
p

G(→r ,
→
X9→ →

X)5
1

2p
#

2p1

gL(→r ,
→
XL)|→

X9·
→
XL|cL,k(→r ,

→
XL,

→
X9→ →

X)d
→
XL

ignore atmospheric scattering inside the later zP[0,H].
To approximate the canopy structure, a fine spatial (7)

mesh is introduced by dividing the layer [0,H] into non-
Here gL(→r ,

→
XL) is the probability density of leaf normaloverlapping fine cells e(→r ) of size Dx5Dy5Dz;e. Each

orientation over the upper hemisphere and [see Eq. (8)]realization v(→r ) of canopy structure is replaced by its
mean over fine cell e(→r ), the foliage area volume density 1

2p
#

2p1

gL(→r ,
→
XL)d

→
XL51 (8)(FAVD), as seen in Eq. (2).

uL(→r )5
1

Mes[e(→r )] #
e(→

r )

v(→r )d→r5
1
Vo

N

j51

Sj (2) Optical properties of the canopy elements are described
by the leaf-scattering phase function, cLk (Shultis and
Myneni, 1988), as seen in Eq. (9):where Mes(…) means the measure of the cell e(→r ) (in
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istic leaf dimension. Its value was estimated to be be-
tween 1 and 8 based on several sets of experimental data

cL,k(→r ,
→
XL,

→
X→ →

X9)5






1
p

rD(k)·| →
X·

→
XL|, (

→
X·

→
XL)(

→
X9·

→
XL),0

1
p

tD(k)·| →
X·

→
XL|, (

→
X·

→
XL)(

→
X9·

→
XL),0

(9) (Stewart, 1990).
To find a unique solution of Eq. (13), it is necessary

to specify the radiance penetrating into the canopy
through upper (z50) and lower (z5H) boundaries. TheHere rD(k) and tD(k) are the spectral hemispherical re-
canopy is illuminated from above by both direct mono-flectance and transmittance, respectively, of the leaf ele-
directional solar component in direction

→
X0, [l0(

→
X0),0],ment. The leaf scattering phase function integrated over

namely Fdir(k)d(X–X0), as well as by diffuse radiationall exit photon directions yields the single-scattering leaf
from the sky, d̃(

→
X,

→
X0). At the ground, the correspondingalbedo (per unit leaf area), x(k), that is [see Eq. (10)]

boundary condition is the radiation reflected from the#
4p

cL,k(→r ,
→
XL,

→
X→ →

X9)d
→
X95x(k) (10) ground, as seen on Eq. (17)

With this background information, we can compactly 5I(0,
→
X)5Fdir(k)d(

→
X2

→
X0)1d̃(

→
X,

→
X0), l(

→
X),0

I(H,
→
X)5IH(

→
X), l(

→
X).0 (17)

represent the extinction coefficient r(
→
X) and the differ-

ential scattering coefficient rs(
→
X9→ →

X) (Ross, 1975) as The canopy bottom is assumed to be a horizontally ho-
seen in Eq. (11) mogeneous Lambertian surface. in this case the function

IH(
→
X) can be expressed as shown in Eq. (18):uL(→r )G(→r ,

→
X)5dLv(→r )G(→r ,

→
X)5r(

→
X)v(→r )5r̂(→r ,

→
X) (11)

and Eq. (12) IH(
→
X)5

qsoil(k)
p

#
2p

I(H,
→
X)|l(

→
X)|d →

X (18)
uL(→r )

p
G(→r ,

→
X9→ →

X)5
dLv(→r )

p
G(→r ,

→
X9→ →

X) where qsoil(k) is the soil hemispherical reflectance.
The incoming radiation can be parameterized in

5rs(
→
X9→ →

X)v(→r )5r̂s(→r ,
→
X9→ →

X) (12) terms of two scalar values: Fdir1dif(k,
→
X0), total flux defined

as [see Eq. (19)]The radiation regime in such a canopy is described by
the transport equation, shown in Eq. (13) Fdir1dif(k,

→
X0); #

2p2

I(0,
→
X)|l(

→
X)|d →

X
→
X·=I(→r ,

→
X)1v(→r )r(

→
X)I(→r ,

→
X)

5 #
2p2

[Fdir(k)d(
→
X2

→
X0)1d̃(

→
X,

→
X0)]|l(

→
X)|d →

X5v(→r )#
4p

rs(
→
X9→ →

X)I(→r ,
→
X9)d

→
X9 (13)

5Fdir(k)|l(
→
X0)|1 #

2p2

d̃(
→
X,

→
X0)|l(

→
X)|d →

X (19)This equation will be referred to later as the “classical
stochastic radiative transfer equation.” It differs from

and fdir(k,
→
X0) is the ratio of direct radiation incident onnonstochastic [introduced for turbid media by Ross

the top of plant canopy to the total incident irradiance(1975)] by the indicator function v(→r ), which modifies
[see Eq. (20)]the second and third term of Eq. (13).

An important feature of the radiation regime in veg-
fdir(k,

→
X0);

Fdir(k)|l(
→
X0)|

Fdir1dif(k,
→
X0)

P[0;1] (20)etation canopies is the hot-spot effect, which is the peak
in reflected radiance distribution along the retro-illumi-

Equations (19) and (20) explain the following formula fornation direction. The standard theory describes the hot-
incoming solar radiation [see Eq. (21)]spot by modifying the extinction coefficient r(X), namely

Fdir(k)d(
→
X2

→
X0)1d̃(

→
X,

→
X0);Fdir1dir(k,

→
X0)(Marshak, 1989) [see Eq. (14)]

r(
→
X,

→
X0)5r(

→
X)·h(

→
X,

→
X0), (14) 35fdir(k,

→
X0)

|l(
→
X0)|

d(
→
X2

→
X0)1[12fdir(k,

→
X0)]d(

→
X,

→
X0)6 (21)

where h(
→
X,

→
X0) is [see Eq. (15)]

The general boundary value problem [Eqs. (13) and
h(

→
X,

→
X0) (17)] can be split into two simpler subproblems: (1) black

soil (BS) problem, where the soil is assumed to be 100%
absorbing. For this problem we set additionally the up-5





12!G(
→
X0)|l(

→
X)|

G(
→
X)|l(

→
X0)|

exp[2D(
→
X,

→
X0)·k], if(

→
X·

→
X0),0

1, if (
→
X·

→
X0).0

per boundary condition (z50) to be the same as in Eq.
(15) (17), so the problem is defined by Eq. (13) and the

and [see Eq. (16)] boundary condition [see Eq. (22)]

D(
→
X,

→
X0)5! 1

l2(
→
X0)

1
1

l2(
→
X)

1
2(

→
X0·

→
X)

|l(
→
X)l(

→
X0)|

(16)

In the equation above, l(
→
X) denotes the cosine of the







I(0,
→
X)5Fdir1dif(k,

→
X0)5fdif(k,

→
X0)

|l(
→
X0)|

d(
→
X2

→
X0)

1[12fdir(k,
→
X0)]d(

→
X,

→
X0)6, l(

→
X),0

I(H,
→
X)50, l(

→
X).0

polar angle of direction
→
X and k is an empirical parame-

ter, related to the ratio of vegetation height to character- (22)
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The solution of BS problem is referred to later as problem, we should make the following changes to the
formulas shown above (Knyazikhin et al., 1998c): BSIBS

k (r,
→
X); IBS

k (r,
→
X) depends on sun-view geometry, canopy

architecture, and spectral properties of the leaves; (2) problem, no changes; S problem; change boundary con-
dition I(H,

→
X) as follows [see Eq. (28)]soil (S) problem. In this case there is no input of energy

from above, but the source intensity I(H,
→
X) is located at

I(H,
→
X)5

R(
→
X,

→
X0)

p #
2p1

R(
→
X,

→
X0)|l(

→
X)|d →

X
(28)the bottom of the canopy. In the case of Lambertian sur-

face I(H,
→
X)51/p, the S problem is defined by Eq. (13)

and the boundary condition [see Eq. (23)]
here, R(

→
X,

→
X0), is bidirectional soil reflectance factor; in

Eqs. (24) through (27) it is necessary to introduce effec-



I(0,
→
X)50, l(

→
X),0

I(H,
→
X)5

1
p

, l(
→
X).0 (23) tive soil reflectance instead of q(k) as shown in Eq. (29)

qeff(k)5
1
p

#
2p1

R(
→
X,

→
X0)|l(

→
X)|d →

X (29)Similarly, the solution of S problem is referred to later
as IS

k(r,
→
X); IS

k(r,
→
X) depends on the spectral properties of

the leaves and canopy structure only.
The reasons for splitting the problem are as follows.

TRANSFER EQUATION FOR THEFirst, we separate the influence of soil; that is, the solu-
MEAN INTENSITYtion of the general case is constructed from soil-indepen-

dent S/BS solutions and effective soil reflectance. This The motivation to find mean intensity of solar radiation
can save computational effort, if we need to solve the interacting with vegetation canopy is simple: sensors
RTE for different soil patterns keeping other parameters aboard satellite platforms measure the mean field ema-
constant. Second, we substitute a complex boundary con- nating from the smallest area to be resolved, from a
dition on the soil boundary in the general case (integral pixel. One possible modeling approach to this problem is
from unknown solution) to simple functions known in to generate the set of stochastic realizations of vegetation
advance at boundaries for both subproblems. Our nu- canopies, solve the classical stochastic RTE [Eq. (13)],
merical procedure to solve mean RTE significantly uses and average the solutions. A highly desirable alternative
this fact [see Eq. (24)] to this computationally demanding process is to derive

a transport equation for the mean field directly. As wasIk(r,
→
X)

mentioned, the closed system of equations describing
mean intensity of radiation was developed for broken≈5IBS

k (r,
→
X)1

qsoil(k)
12qsoil(k)·RS(k)

·TBS(k)·IS
k(r,

→
X)6·Fdir1dif(k,

→
X0)

clouds by Vainikko (1973a, 1973b), and it can be applied
(24) to vegetation canopies.

In this section, we will use Vainikko’s approach tofor reflectance (albedo) [see Eq. (25)]
develop the equations describing the mean intensity of
radiation in the vegetation canopy. We will be interestedR(k)≈RBS(k)1

qsoil(k)
12qsoil(k)·RS(k)

·TBS(k)·TS(k) (25)
in two kinds of mean intensities in vegetation canopies,
defined as follows: (1) the mean intensity over a vege-for absorbtance [see Eq. (26)]
tated area, at the level zP[0,H] [see Eq. (30)]

A(k)≈ABS(k)1
qsoil(k)

12qsoil(k)·RS(k)
·TBS(k)·AS(k) (26)

U(z,
→
X)5lim

R→∞

1
Mes(SR∩Tz)

##
SR∩Tz

I(x,y,z,
→
X)dxdy (30)

and transmittance [see Eq. (27)]

where Tz is part of a horizontal plane z covered by vege-
T(k)≈TBS(k)1

qsoil(k)
12qsoil(k)·RS(k)

·TBS(k)·RS(k) (27)
tation, and Mes(SR∩Tz) denotes the area of plane z cov-
ered by vegetation that is inside of a bounding circle SR,where Ri(k), Ti(k), Ai(k) are the hemispherical reflec-
defined at the same plane; and (2) the mean intensitytance, transmittance, and absorbtance for corresponding
over the total space at the level zP[0,H] [see Eq. (31)]i problem (i5S or BS problem). Note that we can re-

place the approximate equality in the formulas above by
I(z,

→
X)5lim

R→∞

1
pR2##

SR

I(x,y,z,
→
X)dxdy (31)exact equality only for the horizontally homogeneous

special case of mean RTE [mathematically, it means
We assume that the following important property of sto-K(z,n

→
X);p(n)]. In any other cases formulas are only ap-

chastic intensity I(→r ,
→
X) is valid [see Eq. (32)]proximately valid (Knyazikhin et al., 1998b).

It must be noted that in the case of discontinuous
U(z,

→
X)5lim

R→∞

1
Mes[SR∩Tz∩Tn(x1,y1)]

vegetation canopy, the influence of soil can be quite high
due to the presence of gaps in the vegetation. So it is
useful to consider the case of non-Lambertian aniso- 3 ##

SR∩Tz∩Tn(x1,y1)

I(x,y,z,
→
X)dxdy (32)

tropic soil. In this case, using BS/S split of the general
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which simply means that manifold Tz∩Tn(x1,y1) contains
the same percentage of vegetation as the total manifold
Tz). This is the so-called assumption of “local chaotisity
and global order” (Vainikko, 1973a).
The procedure to derive the transfer equation for mean
intensity from the classical approach is the following:
First, the classical stochastic transfer equation is inte-
grated from boundaries [z50 and z5H) to some inner
point zP[0,H] to obtain a linear integral equation, which
still describes a particular random realization of vege-
tated elements. Second, the transfer equation is averaged
over the whole plane z to derive a formula for I(z,

→
X),

which is the mean intensity over the whole horizontal
plane. The equation for I(z,

→
X) depends on U(z,

→
X), as

seen in Eq. (33) Figure 2. Procedure for integration of RTE. Points A and B
correspond to the starting points of integration (located onI(z,

→
X)5f [U(z,

→
X), . . .] (33) boundaries), which is performed along the direction h up to

the inner point C, which has the coordinates (x,y,z). PointsThird, the transfer equation is averaged over part of a
D and F designate any point located on lines AC and BC.

horizontal plane z, which is covered by vegetation The 3-D equation of lines AC and BC is given (the
[v(

→
r )51], to derive the system for unknown U(z,

→
X), parameter, controlling location on the line is n).

which is the mean radiance over the vegetated portion
of plane.

The averaging procedure, as a general rule, results
in equations that contain some parameters descriptive of
characteristic moments for the media (correlation function ment at point M2(l,g,n), which is located along the direc-
and mean value). The equations for I(z,

→
X) and U(z,

→
X) tion

→
X from M1(x,y,z) in the plane n given M1(x,y,z) be-

depend on the following mean statistical functions, which longs vegetation.
must be obtained through corresponding procedure of The detailed procedure to derive the mean RTE is
modeling the vegetation [see Eq. (34)] as follows [we follow the procedure of Vainikko (1973a)].

We start with Eq. (13) and rewrite it in the form shown
in Eq. (38).

q(z,n,
→
X)5lim

R→∞

Mes5SR∩Tz∩Tn3Xx

Xz

(z2n),
Xy

Xz

(z2n)46
pR2

Xx
]I(x,y,z,

→
X)

]x
1Xy

]I(x,y,z,
→
X)

]y
1Xz

]I(x,y,z,
→
X)

]z
5g(x,y,z,

→
X)

(34)
(38)

which is the probability of finding simultaneously the
where [see Eq. (39)]vegetation elements at locations M1(x,y,z) and M2(l,g,n)

along the direction
→
X. In the above [see Eq. (35)] g(x,y,z,

→
X);2v(

→
r )r(

→
X)I(

→
r ,

→
X)1v(

→
r )#

4p

rS(
→
X9→ →

X)I(
→
r ,

→
X)d

→
X9

(39)Mes5SR∩Tz∩Tn3Xx

Xz

(z2n),
Xy

Xz

(z2n)46 (35)

Integration of Eq. (38) from boundaries (z50 and z5H)
shows the part of vegetation located on a horizontal to some inner point

→
r ~(x,y,z), zP[0,H] along the direc-

plane at depth z that will overlap with vegetation located tion
→
X (Fig. 2) results in the system of equations shown

on a horizontal plane at depth n, if the two planes are in Eq. (40)
moved toward one another along

→
X while keeping them

parallel until they collapse. Further [see Eq. (36)]

p(z)5lim
R→∞

Mes{SR∩Tz}
pR2

(36)

is the probability of finding foliage elements at depth z,










I(x,y,z,
→
X)5I(x,y,0,

→
X)1

1
|l(

→
X)|

3#
z

0

g5x1
Xz

Xz

(z2n),y1
Xy

Xz

(z2n),n,X6dn, l(
→
X),0

I(x,y,z,
→
X)5I(x,y,H,

→
X)1

1
|l(

→
X)|

3#
H

z

g5x1
Xx

Xz

(z2n),y1
Xy

Xz

(z2n)n,X6dn, l(
→
X).0

or HDV [as defined earlier at Eq. (4)]. And [see Eq. (37)]

K(z,n,
→
X)5

q(z,n,
→
X)

p(z)
(37)

is the conditional probability of finding a vegetation ele- (40)
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Inserting formulas for the function g(x,y,z,
→
X) [Eq. (39)]

into Eq. (40), we obtain the following system [see Eq.
(41)]:















I(z,
→
X)1

1
|l(

→
X)|#

z

0

r(
→
X)p(n)U(n,

→
X)dn

5
1

|l(
→
X)|#

z

0

dnp(n)#
4p

rs(
→
X9→ →

X)U(n,
→
X9)

3d
→
X91I(x,y,0,

→
X), Xz,0

I(z,
→
X)1

1
|l(

→
X)|#

H

z

r(
→
X)p(n)U(n,

→
X)dn

5
1

|l(
→
X)|#

H

z

dnp(n)#
4p

rs(
→
X9→ →

X)U(n,
→
X9)

3d
→
X91I(x,y,H,

→
X), Xz.0
















I(x,y,z,
→
X)1

1
|l(

→
X)|#

z

0

v(. . .)r(
→
X)I(. . .,

→
X)dn

5
1

|l(
→
X)#

z

0

dnv(. . .)#
4p

rs(
→
X9→ →

X)I(. . .,
→
X9)

3d
→
X91I(x,y,0,

→
X), Xz,0

I(x,y,z,
→
X)1

1
|l(

→
X)|#

H

z

v(. . .)r(
→
X)I(. . .,

→
X)dn

5
1

|l(
→
X)|#

H

z

dnv(. . .)#
4p

rs(
→
X9→ →

X)I(. . .,
→
X9)

3d
→
X91I(x,y,H,

→
X), Xz.0

(47)

The last step is to average the system of Eq. (41) over the
portion of horizontal plane z, zP[0,H], covered by vegeta-
tion, Tz. Now we need the value of v(. . .)I(. . .,

→
X) after

averaging over Tz [see Eq. (48)](41)

where for simplicity the following shortcut was intro- 1
Mes(SR∩Tz)

##
SR∩Tz

v(. . .)I(. . .,
→
X)dxdy

duced [see Eq. (42)]

. . .;x1
Xx

Xz

(z2n),y1
Xy

Xz

(z2n),n (42) 5
1

Mes(SR∩Tz)
##

SR∩Tz∩Tn3
Xx

Xz
(z2n),

Xy

Xz
(z2n)4

v(. . .)I(. . .,
→
X)dxdy

The next step is to average Eq. (41) over the horizontal
plane z, zP[0,H]. The main problem is to average the

5
Mes(S9R∩T9z ∩Tn)/pR2

Mes(SR∩Tz)/pR2

1
Mes(S9R∩Tn)term v(. . .)I(. . .,

→
X). It can be done in a straightforward

manner after shifting manifold Tn by vector 3Xx

Xz

(z2n), 3 ##
S9

R∩T9
z∩Tn

I(x9,y9,n9,
→
X)dx9dy9 (48)

Xy

Xz

(z2n)4, namely [see Eq. (43)]
where T9z5Tz3Xx

Xz

(z2n),
Xy

Xz

(z2n)4. Taking into account [see
1

pR2##
SR

v(. . .)I(. . .,
→
X)dxdy Eq. (49)]

Mes(S9R∩T9z ∩Tn)5Mes5SR∩Tz∩Tz3Xx

Xz

(z2n),
Xy

Xz

(z2n)46
5

1
pR2 ##

SR∩Tn3
Xx

Xz
(z2n),

Xy

Xz
(z2n)4

v(. . .)I(. . .,
→
X)dxdy

(49)

we obtain Eq. (50):

5
Mes(S9R∩Tn)

pR2

1
Mes(S9R∩Tn)

##
S9R∩Tn

I(x9,y9,n9,
→
X)dx9dy9 lim

R→∞

1
Mes(SR∩Tz)

##
SR

v(. . .)I(. . .,
→
X)dxdy5K(z,n,

→
X)U(n,

→
X)
(50)

(43)
Keeping in mind Eq. (50) while averaging Eq. (41) over

where [see Eq. (44)] Tz, we finally have Eq. (51):

S9R5SR3Xx

Xz

(z2n),
Xy

Xz

(z2n)4 (44)

If we recall Eq. (36), as seen in Eq. (45)

p(z)5lim
R→∞

Mes{SR∩Tz}
pR2

(45)

we obtain the next limit [see Eq. (46)]















U(z,
→
X)1

1
|l(

→
X)|#

z

0

r(
→
X)K(z,n,

→
X)U(n,

→
X)dn

5
1

|l(
→
X)|#

z

0

dnK(z,n,
→
X)#

4p

rs(
→
X9→ →

X)U(n,
→
X9)

3d
→
X91I(x,y,0,

→
X), Xz,0

U(z,
→
X)1

1
|l(

→
X)|#

H

z

r(
→
X)K(z,n,

→
X)U(n,

→
X)dn

5
1

|l(
→
X)|#

H

z

dnK(z,n,
→
X)#

4p

rs(
→
X9→ →

X)U(n,
→
X9)

3d
→
X91I(x,y,H,

→
X), Xz.0

lim
R→∞

1
pR2##

SR

v(. . .)I(. . .,
→
X)dxdy5p(n)·U(n,

→
X) (46)

Keeping in mind Eq. (46) while averaging Eq. (41) over
the entire plane z, we finally have [see Eq. (47)] (51)
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The systems in Eqs. (47) and (51) together form a com- where Id(z) is the direct component and Id(z,
→
X) is the

plete set of equations to determine mean intensity of ra- diffuse component of total mean intensity over total
diation in vegetation canopy. space. Combining Eq. (47) and Eq. (55) we obtain equa-

tions for these two functions. The equation for the direct
Direct and Diffuse Components of U(z,

→
X) component, Id(z), is shown in Eq. (56)

To be consistent with boundary conditions [Eq. (17)], the
function U(z,

→
X) can be represented as shown in Eq. (52): Id(z)512

r(
→
X0)

|l(
→
X0)|#

z

0

p(n)Ud(n)dn (56)

U(z,
→
X)5Fdir(k)Ud(z)d(

→
X2

→
X0)1Fdir1dif(k,

→
X0)Ud(z,

→
X)

The system of equations for Id(z,V), the diffuse compo-
nent is shown in Eq. (57);Fdir1dif(k,

→
X0)3fdir(k,

→
X0)

|l(
→
X0)|

Ud(z)d(
→
X2

→
X0)1Ud(z,

→
X)4

(52)

where Ud(z) is the direct component and Ud(z,
→
X) is the

diffuse component of total mean intensity over the vege-
tated area. Inserting Eq. (52) into Eq. (51) we obtain
equations for these two functions. In the equation for
Ud(z), the direct component is [see Eq. (53)]

Ud(z)1
r(

→
X0)

|l(
→
X0)|#

z

0

K(z,n,
→
X0)Ud(n)dn51 (53)

In the system of equations for Ud(z,
→
X), the diffuse com-

ponents are shown Eq. (54):





















Id(z,
→
X)52

r(
→
X)

|l(
→
X)|#

z

0

p(n)Ud(n,
→
X)dn1

1
|l(

→
X)|

3#
z

0

p(n)S(n,
→
X)1Id

o(z,
→
X,

→
X0), l,0

Id(z,
→
X)52

r(
→
X)

|l(
→
X)|#

H

z

p(n)Ud(n,
→
X)dn1

1
|l(

→
X)|

3#
H

z

p(n)S(n,
→
X)1Id

H(z,
→
X,

→
X0), l.0

where:
S(n,

→
X)5#

4p

rs(
→
X9→ →

X)Ud(n,
→
X9)d

→
X9,

Id
o(z,

→
X,

→
X0)5

fdir(k,
→
X0)rs(

→
X0→ →

X)
|l(

→
X)l(

→
X0)| #

H

0

p(n)Ud(n)dn

1[12fdir(k,
→
X0)]d(

→
X,

→
X0), l,0

Id
H(z,

→
X,

→
X0)5

fdir(k,
→
X0)rs(

→
X0→ →

X)
|l(

→
X)l(

→
X0)|

3#
H

z

p(n)Ud(n)dn1IH(
→
X), l.0 (57)

It is interesting to note that formula for I(z,
→
X) [Eq.

(57)] is similar to the system of equation for U(z,
→
X) [Eq.

(54)]. The following important property of the equation
























Ud(z,
→
X)1

r(
→
X)

|l(
→
X)|#

z

0

K(z,n,
→
X)Ud(n,

→
X)dn

5
1

|l(
→
X)|#

z

0

K(z,n,
→
X)S(n,

→
X)dn1Ud

0(z,
→
X,

→
X0), l,0

Ud(z,
→
X)1

r(
→
X)

|l(
→
X)|#

H

z

K(z,n,
→
X)Ud(n,

→
X)dn

5
1

|l(
→
X)|#

H

z

K(z,n,
→
X)S(n,

→
X)dn1Ud

H(z,
→
X,

→
X0), l.0

where:

S(n,
→
X)5#

4p

rs(
→
X9→ →

X)Ud(n,
→
X9)d

→
X9,

Ud
o(z,

→
X,

→
X0)5

fdir(k,
→
X0)rs(

→
X0→ →

X)
|l(

→
X)l(

→
X0)| #

z

0

K(z,n,
→
X)Ud(n)dn

1[12fdir(k,
→
X0)]d(

→
X,

→
X0), l,0

Ud
H(z,

→
X,

→
X0)5

fdir(k,
→
X0)rs(

→
X0→ →

X)
|l(

→
X)l(

→
X0)|

3#
H

z

K(z,n,
→
X)Ud(n)dn1IH(

→
X), l.0

for U(z,
→
X) and I(z,

→
X) is valid if and only if [see Eq. (58)]

q(z,n,
→
X)5p(z)·p(n) (58)

which results in Eq. (59):

K(z,n,
→
X)5

q(z,n,
→
X)

p(z)
;p(z)·p(n)

p(z)
5p(n) (59)

then the equations for U(z,
→
X) and I(z,

→
X) are identical.

This means that the mean intensity over the vegetated
area is equal to the mean intensity over the whole space.(54)
This corresponds to the turbid medium case where there
is no correlation between the distribution of vegetatedDirect and Diffuse Components of I(z,

→
X)

spaces in the canopy.Similar to the case of U(z,
→
X), the function I(z,

→
X) should

Another important note about the system of equa-be consistent with the boundary condition [Eq. (17)] and
tions for the mean field: the equations do not describecan be represented as shown in Eq. (55):
the hot-spot effect. This is also true for the classical sto-

I(z,
→
X)5Fdir(k)Id(z)d(

→
X2

→
X0)1Fdir1dif(k,

→
X0)Id(z,

→
X) chastic equation [Eq. (13)]. Numerical simulations (de-

scribed later) attest to this. Thus, we use the standard;Fdir1dif(k,
→
X0)3fdir(k,

→
X0)

|l(
→
X0)|

Id(z)d(
→
X2

→
X0)1Id(z,

→
X)4 approach to implement the hot spot; that is, to modify

the extinction coefficient, r(
→
X).(55)
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VEGETATION CANOPY ENERGY BALANCE
5[12x(k)]5#

H

0

dn#
4p

d
→
Xr(

→
X)Id(n,

→
X)

The results obtained earlier for the mean intensity are
necessary for the analysis of energy fluxes in vegetation

1
fdir(k,

→
X0)·r(

→
X0)

|l(
→
X0)| #

H

0

Id(n)dn6 (68)canopies. The standard procedure to trace the energy in-
put and output to and from the system is to integrate
the equation for the mean intensity [Eq. (57)] over the The new formula for absorptance can be derived starting
canopy space and over all directions. The resulting equa- with its physical definition [see Eq. (69)]
tion describes the energy conservation law, Eqs. (60)
and (61):

A;
#
V

#
4p

I(r,
→
X)v(

→
r )r(

→
X)d

→
r d

→
X

#
S

#
2p2

I(z50,x,y,
→
X)|l(

→
X)|dxdyd

→
X

(69)
A1R1[12qsoil(k)]·T51 (general problem) (60)

Ai1Ri1Ti51 (i5BS or S problem) (61) Assuming that the incident radiant energy is normalized
where A is absorptance, R is reflectance, and T is trans- to unity, as in Eq. (70):
mittance for the general problem, defined by Eq. (13) #

pR2

#
2p2

I(z50,x,y,
→
X)|l(

→
X)|dxdyd

→
X5pR2 (70)

and Eq. (17) or Eq. (54) and Eq (57); Ai, Ri, and Ti rep-
resent the same as for BS and S problems. As mentioned

the correct expression for absorptance is as shown inearlier, the solution of the general problem can be ex-
Eq. (71):pressed through BS and S problems [see Eq. (24)

through Eq. (27)], so we need to give the final expres-
A5

1
pR2#

V

#
4p

I(r,
→
X)v(

→
r )r(

→
X)d

→
r d

→
Xsions only for Ai, Ri, and Ti. In the case of BS problem

these quantities are [see Eq. (62), (63), and (64)]

5
1

pR2#
H

0

dz#
4p

d
→
X #

4pR2

v(
→
r )r(

→
X)I(

→
r ,

→
X)dxdyABS(k)5[12x(k)]5#

H

0

dn#
4p

d
→
Xp(n)r(

→
X)Ud(n,

→
X)

5#
H

0

dz#
4p

d
→
Xp(z)r(

→
X)U(z,

→
X) (71)

1
fdir(k,

→
X0)r(

→
X0)

|l(
→
X0)| #

H

0

p(n)Ud(n)dn6 (62)

Note, in the above we have used the limit from Eq. (30)
RBS(k)5 #

2p1

Id(0,
→
X)|l(

→
X)|d →

X (63) [see Eq. (72)]

TBS(k)5 #
2p2

Id(H,
→
X)|l(

→
X)|d →

X1fdir(k,
→
X0)Id(H) (64) lim

R→∞

1
pR2##

SR

I(x,y,z,
→
X)v(x,y,z)dxdy5p(z)U(z,

→
X) (72)

Finally, the new formulation of absorbtance for a generaland for the S problem [see Eqs. (65), (66), and (67)]
discontinuous case collapses to the standard turbid me-
dium definition if [see Eq. (73)]As(k)5[12x(k)]#

H

0

dn#
4p

d
→
Xp(n)r(

→
X)Ud(n,

→
X) (65)

K(z,n,
→
X);q(z,n,

→
X)

p(z)
5

p(z)·p(n)
p(z)

5p(n) (73)Rs(k)5 #
2p2

Id(H,
→
X)|l(

→
X)|d →

X (66)

This formula expresses the absence of correlation be-
Ts(k)5 #

2p1

Id(0,
→
X)|l(

→
X)|d →

X (67) tween vegetated elements located at z and n.

Note that absorptance for both problems is different
NUMERICAL SOLUTION OF THE MEAN RTEfrom that of the turbid medium; that is, the absorptance

is expressed not through the mean intensity over the to- To solve the system of integral equations for mean inten-
tal space, I(z,

→
X), but through the mean intensity over the sities U(z,

→
X) [Eqs. (53) and (54)] and I(z,

→
X) [Eqs. (56)

vegetated area, U(z,
→
X). This is due to the fact that en- and (57)], a model of the vegetation canopy structure is

ergy can be absorbed only by foliage elements, but not required, together with a numerical scheme for solution
by voids between leaves (or between trees). One can of the corresponding transfer equations. Important vari-
compare this result with that for the turbid medium, tak- ables in the equations for mean intensities are the func-
ing the BS problem as an example [see Eq. (68)] tion p(z) and K(z,n,

→
X), which can be obtained from a

model of the canopy structure. Note that p(z) is the
A5#

H

0

dn#
4p

d
→
Xra(

→
X)I(n,

→
X) probability of finding a vegetated area in a horizontal

plane at depth zP[0;H] and K(z,n,
→
X) is the conditional

probability of the presence of vegetated areas in planes5[12x(k)]#
H

0

dn#
4p

d
→
Xr(

→
X)I(n,

→
X)

z and n, where z,nP[0;H]. We used a simple model of
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a vegetation canopy by representing the plants or trees and the source function S(z,
→
X) is Sk(z,

→
X)5 #

4p

rS(
→
X9→ →

X)
as parallelepipeds distributed on the ground with proba-

Jk(z,
→
X9)d

→
X.bility p(H). Further, they do not overlap, and they all

The algorithm to solve the system of equations forhave the same dimensions (height, width, and depth),
U(z,

→
X) is as follows: (1) Find Ud(z,

→
X) from the correspond-and p(z)5const5p(H) is equal to the portion of the

ing Volterra equation [Eq. (53)]; (2) Evaluate R0(z,
→
X);plane covered by vegetation. Function K(z,n,

→
X) was cal-

(3) Solve the Volterra equations [Eqs. (75) and (76)]culated by implementing the definition of K(z,n,
→
X) [Eq.

with R0(z,
→
X) and find J1(z,

→
X); (4) Evaluate S1(z,

→
X)5(37)]. When modeling the vegetation, the important

#
4p

rs(
→
X9→ →

X)J1(z,
→
X9)d

→
X9 with J1(z,

→
X); (5) Evaluate R1(z,

→
X);question about choosing elementary volume/pixel size

arises. It is probably of little interest to reproduce all
(6) Calculate J2(z,

→
X); (7) Repeat the following untilthese random fluctuations on BRF shape. The area of ‖Jn(z,

→
X)‖<e: (a) Evaluate Sk(z,

→
X); (b) Calculate Rk (z,

→
X);averaging (pixel size) should cover the community of veg-

(c) Calculate Jk11(z,
→
X).etation (forest/field) to remove these random fluctua-

The numerical method used to solve the basic equa-tions. The case in our model of vegetation was a commu-
tions is as follows. We start with the parametric Volterranity of randomly located parallelepipeds representing
equation [Eq. (78)]trees/shrubs. This model does not give the hot spot. But

there is still a problem of choosing physical elementary
U(z,

→
X)1

r(
→
X)

|l(
→
X)|#

z

0

K(z,n,
→
X)U(n,

→
X)dn5F(z,

→
X) (78)volume, which can be found in all integrals of mean

RTE. This should be done at the level of leaf aggregates.
In the system of integral equations for I(z,

→
X) and Here

→
X is a parameter of the equation. The correspond-

U(z,
→
X), one needs to solve only the system for U(z,

→
X). ing discrete scheme is shown in Eq. (79)

The evaluation of I(z,
→
X) is a straightforward numerical

integration of U(z,
→
X). To solve the system for U(z,

→
X), the U(k,

→
X)1

r(
→
X)

|l(
→
X)|o

i5k

j51

Wk,jK(k,j,
→
X)U(j,

→
X)5F(k,

→
X) (79)

method of successive orders of scattering approximations
(SOSA) was used (Myneni et al., 1987). The nth approxi- where Wk,j is the weight, which depends on the numeri-
mation to the solution is given by Eq. (74): cal scheme used for approximating the integral. Then,

U(1,
→
X)5F(1,

→
X), when k51, and when kP[2,Nz11] [seeUn

d(z,
→
X)5J1(z,

→
X)1J2(z,

→
X)1. . .1Jn(z,

→
X) (74)

Eq. (80)]
The functions Jk(z,

→
X), k5 1, 2, . . . , n are the solutions

of the system of two independent equations [see Eq. (75)
U(k,

→
X)1

r(
→
X)

|l(
→
X)|Wk,kK(k,k,

→
X)U(k,

→
X)and (76)]:

Jk(z,
→
X)1

r(
→
X)

|l(
→
X)|#

z

0

K(z,n,
→
X)Jk(n,

→
X)dn5Rk21(z,

→
X), l,0 5F(k,

→
X)2

r(
→
X)

|l(
→
X)| o

j5k21

j51

Wk,jK(k,j,
→
X)U(j,

→
X), (80)

(75)

Jk(z,
→
X)1

r(
→
X)

|l(
→
X)|#

H

z

K(z,n,
→
X)Jk(n,

→
X)dn5Rk21(z,

→
X), l.0 ⇒U(k,

→
X)5

F(k,
→
X)2

r(
→
X)

|l(
→
X)| o

i5k21

j51

Wk,jK(k,j,
→
X)U(j,

→
X)

11
r(

→
X)

|l(
→
X)|Wk,kK(k,k,

→
X)

(81)

(76)

where [see Eq. (77)] Another important method used in this algorithm is
the method of Sn quadratures of Carlson (Bass et al.,

R0(z,
→
X)5

fdir(k,
→
X0)rS(

→
X0→ →

X)
|l(

→
X)l(

→
X0)| #

z

0

K(z,n,
→
X)Ud(n,

→
X)dn 1986) to evaluate angular integrals. This scheme belongs

to the method of Gauss quadratures. The quadrature is
1[12fdir(k,

→
X0)]d(

→
X,

→
X0), l,0 built as follows. The octant is divided into n·(n12)/8

parts of equal area, w054p/n·(n12) using latitudes, de-
R0(z,

→
X)5

fdir(k)rS(
→
X0→ →

X)
|l(

→
X)l(

→
X0)| fined as l5l,11⁄2, ,50, 1, . . .,

n
2

and longitudes, defined

3#
H

z

K(z,n,
→
X)Ud(n,

→
X)dn1IH(

→
X,

→
X0), l.0 as u5u,,m11⁄2, m50, 1, . . .,

n
2

2,11. The coordinates of

the boundaries of each layer are shown in Eq. (82):
Rk(z,

→
X)5

1
|l(

→
X)|#

z

0

K(z,n,
→
X)Sk(n,

→
X)d

→
X, l,0, when k>1

l,61⁄2512
(n22,12)·[n22(,2161)]

n·(n12)
(82)

Rk(z,
→
X)5

1
|l(

→
X)|#

H

z

K(z,n,
→
X)Sk(n,

→
X)d

→
X, l.0, when k>1

and the coordinates of the centers of layers are shown
in Eq. (83)(77)
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bertian reflector under monodirectional illumination
l,512

[n22,12]2

n·(n12)
(83) (Knyazikhin et al., 1998b) [see Eq. (87)]:

The nodes of quadratures are shown in Eq. (84) BRF5
Ik(

→
r top,

→
X,

→
X0)

1/p #
2p2

Ik(
→
r top,

→
X,

→
X0)| →

X·
→
n top|d →

X
(87)






l,5l,1f·l,21⁄2, ,50,1, . . .,
n
2

u,,m5
p
23

2m21
n22,12

An1
1
2
(12An)4, m51,2, . . .,

n
2

2,11
and (2) absorbtance, transmittance, and reflectance. We
calculate two types of hemispherical reflectance, BHR
and DHR, defined as follows: The bihemispherical re-

(84) flectance (BHR) for nonisotropic incident radiation (both
direct and diffuse components) is the ratio of the meanand the coefficient f and An are determined from condi-
radiant exitance to the incident radiance (Knyazikhin ettion to give exact expressions for spherical integrals with
al., 1998b) [see Eq. (88)]integrand function 1, l and l2.

Generally, about 30 iterations are sufficient to obtain
a relative accuracy of 1023. The physical interpretation of BHR5

#
2p1

Ik(
→
r top,

→
X,

→
X0)| →

X·
→
n top|d →

X

#
2p2

Ik(
→
r top,

→
X,

→
X0)| →

X·
→
n top|d →

X
(88)

the method of successive orders is obvious: the function
Jk(z,

→
X) is the mean radiance of photons scattered k

and the directional hemispherical reflectance (DHR) istimes. The rate of convergence of this method, qc, has
defined similar to BHR, except that the incident radia-been defined by Vladimirov (1963) and Marchuk and
tion has only the direct component. Below, we presentLebedev (1971) as shown in Eq. (85):
the results of comparison of the model of Mean RTE‖I2In‖<qc5[12exp(2k0·H)]·g·n (85)
with similar RT models, with Monte Carlo simulations of

where k0 is a certain coefficient and effective single scat- the radiation field in a maize canopy and with field data
tering albedo g [see Eq. (86)]: from Jornada PROVE. Issues related to the effect of veg-

etation clumping on the radiation regime are discussed
g5 sup

0,z,H

sup
XP4p

rS(
→
X0→ →

X)
r(z,

→
X)

(86) later.
The 3-D dynamic architecture model of maize pro-

From Eq. (85) it follows that SOSA should be used in posed by España et al. (1999) was utilized for Monte
the case of small optical depth of the layer or in the case Carlo simulations. This model allows the description of
of small g. If g≈1 and the optical depth is large, the the maize canopy from emergence to male anthesis. Be-
method becomes tedious. cause maize is planted in rows and for each vegetation

unit the leaves are obviously clumped around the stem,
the assumption of a random leaf spatial distribution is

EVALUATION OF THE MODEL not valid. The driving parameter of the model is the phe-
nological stage, which is defined by the number of leavesTo illustrate the characteristics of the model of mean

RTE described here, the numerical results of the calcu- produced since emergence and not totally hidden in the
top leafy cone. The model describes the dynamics of thelations of important quantities, such as directional reflec-

tance (BRF) in the principal plane, and energetic quanti- dimensions, height, senescence, curvature, and insertion
angle of the leaves, as well as the temporal evaluation ofties [absorbtance, transmittance, reflectance (DHR/

BHR)] are presented in this section. The input variables the stem dimensions. Linear equations were developed
to describe the growth of the leaf size, stem diameterof Mean RTE model are: (1) solar illumination vari-

ables—solar angle
→
X0 and the ratio of direct-to-total inci- with change of leaf stage, and so on. The inputs to the

3-D model are: (1) leaf stage (which describes time); (2)dent flux; (2) canopy geometry, including height H, and
horizontal dimensions of individual vegetation units plant density, including seeding pattern (row spacing and

orientation, plant spacing); (3) leaf area cumulated over(trees, shrubs), d; (3) statistical moments of the ensemble
of vegetation units, namely, functions p(z) and K(z,n,

→
X) the fully developed plant, including leaves that senesced;

and (4) final height of the canopy. The maize canopydefined earlier by Eqs. (36) and (37); (4) characteristics
of leaves—density of leaves uL(

→
r ), leaf normal orienta- architecture model was calibrated and validated with

three sets of experiments, two of which were performedtion distribution (uniform, planophile, erectophile, etc;
Ross, 1975), hemispherical reflectance, and transmit- in Avignon, France (INRA-90, plant density of 12,

plants·m22, canopy measured when the fourteenth leaftance spectra of leaves rD(k), tD(k); and, (5) soil hemi-
spherical reflectance spectra qsoil(k). Model outputs are appeared, and INRA-97, plant density of 8.5 plants·m22,

measurements performed at two phenological stages,(1) the directional reflectance or the bidirectional reflec-
tance factors (BRF) defined as the surface-leaving radi- namely, 13 and 17 leaves). The third experiment was

performed in Alpilles, France (Alpilles-97 plant densityance, divided by radiance from a conservation Lam-
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Table 1. Physical Characteristics of six Growth Stages of Carlo model requires a maximum of 48 hours to gener-
Maize Canopy ate radiances for the whole spectra at all azimuthal direc-

tions on a SUN 20 workstation. The CPU consumptionPhenological Leaf Plant Height Cover
Stage Stage LAI (m) Fraction of mean RTE is highly dependable on the value of LAI

and leaf albedo x(k). For small LAI (,3) and small leaf1 4 0.25 0.085 0.06
2 8 0.86 0.195 0.19 albedo (,0.7) it takes up to 5 minutes to generate radi-
3 12 1.64 0.407 0.35 ances at 40 directions of quadrature for the upper hemi-
4 16 2.34 0.820 0.45 sphere on an SGI O2 workstation. If both LAI and x(k)
5 18 3.01 1.800 0.55

are high [LAI.8, x(k).0.95], it can take up to 45 min-6 24 6.25 2.200 1.00
utes, because we should significantly decrease the step

From España (in press).
of discritization.

Figures 3, 4, and 5 present the results of compari-
son. We should note that not all of the parameters re-of 7 plants·m22, measurements performed when the fif-
quired to parameterize the model of Mean RTE wereteenth leaf was appearing).
available; for example, ground cover and horizontal di-The maize canopy was simulated using computer
mensions of maize leaves were not available. Therefore,graphic techniques as an assembly of leaves and stems.
these parameters were estimated from description of theSix phenological stages of the maize canopy were simu-
maize canopy, or in some cases interpolated using avail-lated, corresponding to LAI values of 0.25, 0.86, 1.64,
able data. Figure 3 shows simulations of the BRF in the2.34, 3.01, and 6.25 (Table 1). Optical properties of the
principal plane for the case of dry soil, chlorophyll con-leaves were determined at three chlorophyll a and b con-
centration of 50 lg·cm2 (Cab50) at RED (630 nm) andcentrations, Cab30, Cab50, and Cab70, which corre-
NIR (845 nm) wavelengths, and for three LAI values—sponded to 30, 50, and 70 lg·cm2 concentrations of chlo-
low (LAI50.86), intermediate (LAI52.34), and highrophyll a and b. The optical properties for the case of
(LAI56.25). Other parameters are listed in Table 1. TheCab50 were used in our validation studies (Table 2).
incoming radiation was a monodirectional flux with a po-Dry and wet soils with corresponding optical proper-
lar angle of 458. In Figure 3, it can be seen that the char-ties were considered (Baghdadi, 1998). Soil reflection
acteristic shape of BRF changes dramatically from an in-was assumed to be Lambertian; soil hemispherical reflec-
verted bowl to a bowl shape. This provides antances are given in Table 2. To validate the Mean RTE
opportunity to validate the Mean RTE model.method, results of simulations from a Monte Carlo ray-

Using simple physics, we can explain the changes intracing method in a maize canopy were utilized (Bagh-
radiance. The following formulas cannot be considereddadi, 1998; España et al., 1999). A total of three million
as asymptotic ones, and they do not consider complexphotons were simulated. The incoming photon flux, cor-
phenomenon such as the hot spot. They represent quali-responding to direct solar illumination, was constrained
tative analysis. When the total amount of radiation re-to have a constant zenith angle of 458, and 150 azimuthal
flected by the vegetation back to the atmosphere isdirections were simulated (in intervals of 2.48, where 08
higher than that reflected by bare soil under the canopy,corresponds to the direction perpendicular to the rows).
the BRF will have a characteristic bowl shape and theEach of these 150 directions was simulated using twenty
measured quantity, the radiance is [see Eq. (89).thousand photons. There were 360390532,400 viewing

directions (steps of 18 along both the zenith and azi-
I(h,u)z

U

X·A·cos(h)
(89)muth). The simulations were carried out at 10 wave-

lengths: 430, 500, 562, 630, 692, 710, 740, 795, 845, and
here U denotes flux, X the solid angle, and A is an area882 nm.
of surface emanating from this flux in direction

→
X. ThisThe model of mean RTE was run with the same set

formula is a definition of radiance using the standard no-of input parameters. It is interesting to compare the
CPU time required to run both models. The Monte tion of flux. Because of the chaoticity of distribution of

Table 2. Optical Properties of the Maize Leaves and the Soil

Wavelength, nm

430 500 562 630 692 710 740 795 845 882

Leaf refl., Cab50 0.0512 0.0636 0.1403 0.0798 0.0646 0.2248 0.4222 0.4574 0.4581 0.458
Leaf trans., Cab50 0.0086 0.04 0.1526 0.0791 0.0557 0.2625 0.4787 0.5185 0.5187 0.519
Dry soil hem. refl. 0.1118 0.1359 0.1657 0.1976 0.2192 0.2262 0.2399 0.2579 0.2720 0.2794
Moist soil hem. refl. 0.0469 0.0557 0.0673 0.0825 0.0943 0.0983 0.1064 0.1177 0.1268 0.1316

From España (in press). Cab50 designates chlorophyll a and b concentration of 0.5 g·m2.
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Figure 3. Comparison of BRF in
the principal plane simulated by
Mean RTE (solid line) and Monte
Carlo (dashed line) methods. In all
cases soil is “dry,” Cab550, and
SZA5458.

reflecting elements (leafs) along all directions, the flux U The next set of plots, Figure 4, presents validation of
has a weak angular dependence; thus I(h,u) changes with the estimated parameters. Here, we used the “dry soil”
h as cos(h)21. The situation is similar to the distributed simulations to estimate the full set of parameters, and
isotropic energy sources on the top of the canopy. In then we ran the Mean RTE model for case of “wet soil,”
contrast to this case, there is significant contribution to changing only the soil reflectance, which was known
BRF from isotropic sources located on the soil surface, from measurements (Baghdadi, 1998). In both cases LAI
when vegetation is sparse and soil reflection predomi- is 1.64, chlorophyll concentration of 50 lg·cm2, and RED
nates. In this case, the above formula is applicable not and NIR wavelengths were used. The general comment
to the top of canopy, but to the soil surface. But before to Figure 3 and Figure 4 is that while the model of mean
the radiation emitted by the surface will reach the top RTE simulates quite well most of the shapes of BRF, its
of the canopy, it will be attenuated by a factor exp[-a / performance is poorer near the direction of the hot spot,
cos(h)] (Beer’s law, where a is some characteristic coeffi- because the hot-spot model considers only single scatter-
cient of media). Thus, we have Eq. (90): ing. Figure 5 represents another attempt at validation of

the RTE model in general and the set of estimated pa-
I(h,u)z

F·exp[2a /cos(h)]
X·A·cos(h)

(90) rameters in particular. The idea was to compare hemi-
spherical reflectance (DHR) of the Monte Carlo meth-
ods with the mean RTE simulations, under identical setwhere results in I(h,u) decreasing as h→908.
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Figure 4. Comparison of BRF in
the principal plane simulated by
Mean RTE (solid line) and Monte
Carlo (dashed line) methods. In all
cases LAI51.64, Cab550, and
SZA5458. The “dry” soil case was
used to estimate parameters, and
the “wet” soil case was used for
validation.

of parameters. We ran the Mean RTE model for the
DIz

1
12x(k)exp(LAI·k)

(91)case of “wet” and “dry soil,” with chlorophyll concentra-
tion of 50 lg·cm2 (Cab50) at the 10 available wavelengths The performance of the Mean RTE model was also stud-
(Table 1). For the case of dry soil, five values of LAI ied in comparison to similar RTE models. We used the
were used (LAI50.86, 1.64, 2.34, 3.01, and 6.25), and 1-D model (Shultis and Myneni, 1988) “TWOVEG,” and
three for the case of wet soil (LAI51.64, 3.01, and 6.25), the 3-D model “DISORD,” which are numerical meth-
which results in 50 points for dry soil and 30 points for ods of solution of one- and three-dimensional radiative
wet soil. The most significant difference (18%) is seen in transfer equations in plant canopies modeled as turbid
NIR wavelengths, where reflectance is high, and in the media using the discrete ordinates method. Figures 6
case of a dense canopy (LAI of 6.25). One source of dis- and 7 presents the results of comparison between the
crepancy is the numerical scheme of evaluating DHR three models at two wavelengths, RED (645 nm) and
from Monte Carlo angular intensities of at least 3%. NIR (841 nm). The incident radiation was 80% direct
Also, the error in the numerical solution of the transfer and 20% diffuse isotropic sky light, and the solar zenith
equation increases at NIR and in dense canopies as angle was 308. The soli hemispherical reflectance was set

to 0, so the BS problem was studied. Only the case ofshown in Eq. (91)

Figure 5. Comparison of DHR sim-
ulated by Mean RTE and Monte
Carlo methods for “dry” and “wet”
soil cases. Fifty values of DHR
were compared in the case of “dry”
soil and 30 values for “wet” soil.
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Figure 6. BHR, absorptance, and
transmittance as a function of LAI
at red (left) and near-infrared (right)
wavelengths evaluated with Mean
RTE (solid line), TWOVEG (dashed
line), and DISORD (dotted line).
In all cases SZA5308.

a homogeneous canopy was considered, so as to include for BHR, especially between the Mean RTE and DIS-
ORD at RED, for absorbtance versus solar zenith angleTWOVEG also in the comparison. Figure 6 presents the

BHR, absorbtance, and transmittance versus LAI. All at both RED and NIR, and for transmittance versus so-
lar zenith angle at RED. This may be attributed to vari-models show the general tendency of absorbtance to in-

crease and transmittance to decrease with an increase in ous simplifying approximations used in the numerical so-
lution schemes. Nevertheless, comparison of mean RTELAI. The increase of BHR with LAI is due to the com-

pletely absorbing soil; as LAI increases, the leaves hide with the 1-D (TWOVEG) model gives good agreement,
which is the more valuable result, because the 1-Dthis perfect absorber, and hence the increase in BHR.

Figure 7 illustrates dependencies of BHR, absorbtance, model is designed specially to simulate homogeneous
canopy, and we perform comparison when mean RTEand transmittance with respect to solar zenith angle at a

constant LAI of 5. The general tendency of absorbtance also simulates a homogeneous case.
The critical validation of any model is comparisonto increase and transmittance to decrease with an in-

crease in solar zenith angle is correct, because the path with field data. We utilized data from the Jornada field
campaign distributed by the grassland PROVE (PROto-length increases as the solar zenith angle increases, and

the probability of the solar rays to be intercepted also type Validation Exercise) team (Privette et al., 1999). This
experiment took place from April 30 through May 13 ofincreases. Bihemispherical reflectance also increases with

an increase in solar zenith angle, because at oblique sun 1997 in Jornada (a large valley near Las Cruces, New
Mexico, USA). The area is slowly undergoing a landcoverangles, more energy is reflected from the boundary and

there is correspondingly less penetration into the deepest change from a grassland to a shrubland (predominately
mesquite). It is a very arid area, so shrubs and grassesparts of the canopy. From Figures 6 and 7 it can be seen

that the largest discrepancy between model estimates is are sparse (ground cover is 34.562%, average LAI,0.5).
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Figure 7. BHR, absorptance, and
transmittance as a function of solar ze-
nith angle at red (left) and near-infra-
red (right) wavelengths evaluated with
Mean RTE (solid line), TWOVEG
(dashed line), and DISORD (dotted
line). Homogeneous canopy is simu-
lated. In all cases LAI55.

The data we used were from a transitional site (mixed lengths (1,020 nm and 870 nm). Because the data were
noisy, it was difficult to perform detailed comparison, butgrassland and shrubs) and consisted of 75% mesquite

and 25% yucca and morman tea. The measurements it appears that the agreement is reasonable. One excep-
tion is the comparison for 870 nm at SZA of 408, wherewere performed on a 26-m tall tower using a CIMEL

sunphotometer, which has 4 channels. We used data the simulated BRF is a significant overestimate. There
are indications that the data may have been a problemfrom two of these channels, 870 nm and 1020 nm. Re-

lated parameters at the Jornada transition site are as fol- in this instance: from other plots it is clear that the mean
BRF for both channels is approximately the same at alows (for mesquite): mean height, 1.2860.54 m; LAI,

1.71; leaf reflectance at 870 mm—0.432, leaf transmit- given value of SZA. The plot under consideration is an
exception.tance at 870 mm—0.395; leaf reflectance at 1,020 nm—

0.442; and leaf transmittance at 1,020 nm—0.399. For Finally, we discuss one important feature of the
model of mean RTE, which allows for description of can-yucca: mean height, 0.5960.16 m; LAI, 1.38; leaf reflec-

tance at 870 nm—0.432; leaf transmittance at 870 nm— opy heterogeneity (i.e., mixing of voids with clusters of
vegetation elements). The clustering effect has an impor-0.107; leaf reflectance at 1,020 nm—0.426; and leaf

transmittance at 1,020 nm—0.096. Soil reflectance was tant influence on the radiation regime in a vegetation
canopy; for example, the hot-spot effect and change in0.349 (at 870 nm) and 0.380 (at 1020 nm). We assume

a Lambertian surface in our model. Figure 8 presents the proportions of BHR, absorbtance, and transmittance.
We have already mentioned that heterogeneity leads toBRF comparisons (field data simulated by the Mean

RTE) in the principal plane for three values of solar ze- a new analytical formula for the absorbtance, for which
we must not use the mean intensity over all space, butnith angle (208, 408, and 708) and at two available wave-
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Figure 8. Comparison of BRF sim-
ulated by Mean RTE with Jornada
PROVE field data at 1020 nm and
870 nm for three values of SZA:
208, 408, and 708.

the mean intensity over only the vegetated portion of the crease as groundcover decreases and transmittance in-
creases. The same tendency is observed for BHR,canopy space [Eqs. (53) and (54)]. Figures 9 and 10 illus-
absorbtance, and transmittance versus solar zenith angletrate the influence of clumping on BHR, absorbtance,
(Fig. 10). The above tendency corresponds with clump-and transmittance for the case of a black soil problem
ing vegetation in clusters, which means increasing theand for a direct-to-total incident flux ratio of fdir(k,

→
X0)5

amount of voids; the probability of solar radiation pene-0.8. To introduce voids, we varied the groundcover pa-
trating deep into the canopy without interactions in-rameter and ran the Mean RTE for p(z)51.0 (which cor-
creases, thus resulting in increased transmittance and de-responds to the turbid medium case), p(z)50.75, and
creased absorbtance. The quantitative effect of clumpingp(z)50.5 (as p decreases, clumping increases). Figure 9
is, for example, at LAI53, SZA5508, at RED, DBHR;presents the relationship between BHR, absorbtance,
|{BHR(p51.0)2BHR (p50.5)/BHR (p5 1.0)|≈42.3%;and transmittance with LAI (SZA is fixed and is equal to
similarly, DAbsorbtance≈30% and DTransmittance≈150%.308). Figure 10 presents the same, but with changing so-

lar zenith angle at a constant LAI of 5. The qualitative
effect of voids on the radiation regime is similar at NIR

CONCLUSIONSand RED wavelengths. From Figure 9 it is clear that for
similar input parameters, in particular LAI, but at differ- The main goal in this paper was to address the problem

of accurately describing the influence of discontinuity inent values of groundcover, the BHR and absorbtance de-
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Figure 9. Influence of clumping on
the radiation regime in vegetation
canopy at red (left) and near-infra-
red (right) wavelengths. BHR, ab-
sorptance, and transmittance as a
function of LAI evaluated at three
values of groundcover, representing
varying degree of clumping: p51.0
(dashed line), p50.75 (dotted line),
p50.5 (solid line). In all cases
SZA5308.

vegetation canopies on the radiative regime. The pres- and was solved numerically using the method of succes-
sive orders of scattering approximations. The influenceence of gaps in vegetation canopies introduces correc-

tions to energy fluxes, comparable to the values of fluxes of discontinuity on the radiative regime in a vegetation
canopy is such that a complete description of the radia-for the homogeneous case, and consequently results in

large errors in the retrieved biophysical parameters of tion field in the canopy is possible, using not only mean
radiance over the whole space, but also averages overvegetation, such as LAI, FPAR, etc. Among the many

current models, those based on geometrical-optical ap- space occupied by absorbing elements is also required.
This approach allows for a correct formulation of ab-proaches are valid for discontinuous vegetation canopies,

but they approximate radiative fluxes and multiple scat- sorbtance, which extends its classical definition for ho-
mogeneous media to nonhomogeneous cases. Using atering of photons; others, based on the classical RT equa-

tion, are accurate but applicable only to simple homoge- simple model of vegetation as input to mean RTE, we
studied the effect of lateral discontinuity on the relation-neous cases of crops and grasses.

The proposed approach, based on a statistical formu- ship between BHR/absorbtance/transmittance and (1)
LAI and (2) solar zenith angle. The model was validatedlation of RTE, is specially designed to accurately evaluate

radiation fluxes in discontinuous vegetation canopies. first using similar RTE models (1-D and 3-D); second
using Monte Carlo simulations in a computer-generatedSpecial attention was given to deriving analytical results.

Specifically, the following major tasks were accom- maize canopy; and finally, using field data from the Jor-
nada PROVE field campaign. The general agreement isplished. A system of integral equations for mean field for

the transport of monochromatic radiation in spatially het- good. The major drawback of the model is an approxi-
mate description of the hot-spot effect. The numericalerogeneous canopy was formulated. The resulting system

of integral equations satisfies the energy conservation law simulations of Mean RTE showed that this equation, as
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Figure 10. Influence of clumping
on radiation regime in vegetation
canopy at red (left) and near-infra-
red (right) wavelengths. BHR, ab-
sorptance, and transmittance as a
function of solar zenith angle evalu-
ated at three values of groundcover,
representing, varying degree of
clumping: p51.0 (dashed line),
p50.75 (dotted line), p50.5 (solid
line). In all cases LAI55.
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