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Abstract

This paper presents the analysis of radiative transfer assumptions underlying moderate resolution imaging spectroradiometer (MODIS)

leaf area index (LAI) and fraction of photosynthetically active radiation (FPAR) algorithm for the case of spatially heterogeneous broadleaf

forests. Data collected by a Boston University research group during the July 2000 field campaign at the Earth Observing System (EOS) core

validation site, Harvard Forest, MA, were used for this purpose. The analysis covers three themes. First, the assumption of wavelength

independence of spectral invariants of transport equation, central to the parameterization of the MODIS LAI and FPAR algorithm, is

evaluated. The physical interpretation of those parameters is given and an approach to minimize the uncertainties in its retrievals is proposed.

Second, the theoretical basis of the algorithm was refined by introducing stochastic concepts which account for the effect of foliage clumping

and discontinuities on LAI retrievals. Third, the effect of spatial heterogeneity in FPAR was analyzed and compared to FPAR variation due to

diurnal changes in solar zenith angle (SZA) to asses the validity of its static approximation.

D 2003 Elsevier Science Inc. All rights reserved.
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1. Introduction

Leaf area index (LAI) and fraction of photosynthetically

active radiation (0.4–0.7 Am) absorbed by vegetation

(FPAR) are two key structural variables required in primary

production models and global models of climate, hydrology,

biogeochemistry, and ecology (Bonan, 1998; Dickinson,

Henderson-Sellers, Kennedy, & Wilson, 1986; Running &

Coughlan, 1988; Sellers et al., 1996). LAI and FPAR

estimates are utilized by the Earth Observing System

(EOS) Interdisciplinary Projects and other studies, typically

in two ways (WWW 1): (1) as an eco-physiological measure

of photosynthetic and transpirational surface within a veg-

etation canopy, and (2) as a remote sensing measure of the

vegetation reflective surface within a canopy. While exten-

sive measurements and studies of LAI and FPAR were made

for small-stature vegetation such as agricultural crops and

plantations, measurements and studies for natural ecosys-

tems on global scale (such as forests and savannas) remain

an open issue.

Remote sensing is a unique method for repetitive and

relatively low-cost global monitoring of vegetation.

Recently launched instruments such as the moderate reso-

lution imaging spectroradiometer (MODIS) deliver a set of

measurements for reliable estimates of vegetation canopy

parameters including LAI and FPAR for use in model

studies. An algorithm for the retrieval of LAI and FPAR

from MODIS surface reflectrances was developed (Knyazi-

khin, Martonchik, Diner, et al., 1998; Knyazikhin, Marton-

chik, Myneni, Diner, & Running, 1998), prototyped prior to

the launch of MODIS with AVHRR, Landsat TM, POLDER

and SeaWiFS data (Tian et al., 2000; Wang et al., 2001;

Zhang et al., 2000), and is in operational production since

June 2000 (Myneni et al.,2002). Currently, an important

activity is validation of this algorithm with field data.

Validation, in general, refers to assessment of the uncer-

tainty of higher-level satellite-sensor-derived products by

comparison to reference data, which is presumed to repre-

sent the target value (Thomlinson, Bolstad, & Cohen, 1999).

A key problem encountered in validation studies is the
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highly discretized nature of land systems, which makes in

situ measurement of coarse and moderate resolution param-

eters difficult. Consequently, evaluation of theoretical

assumptions and parameterization of the algorithm can

provide an initial indication of gross differences and possi-

bly insights in to the reasons for the differences, however is

not a substitute for validation of the product (Justice et al.,

2000).

This paper describes the analysis of radiative transfer

assumptions underlying MODIS LAI and FPAR algorithm

for the case of broadleaf forests. Data collected by Boston

University research group during July 2000 field campaign

at the EOS core validation site, Harvard Forest, MA (WWW

2) were used for this purpose. The data set includes a

detailed sampling of LAI, PAR, canopy spectral transmit-

tances and reflectances, soil and understory spectral reflec-

tances, and leaf optical properties of key species. The

additional information about validation of LAI and FPAR

algorithm over several types of vegetation is provided at

separate publications (Privette et al., 2002; Tian et al., 2002

(a,b); Wang et al., in preparation).

The paper is organized as follows. In the first section, the

Harvard Forest site and the measurements are described.

The next section introduces spectral invariants, central

theoretical assumption of the LAI and FPAR algorithm.

The physical interpretation of those parameters is given and

an approach to minimize the uncertainties in its retrievals is

proposed. The following section introduces representation

of these invariants according to stochastic radiative transfer

theory to account for the effect of foliage clumping and

discontinuities on LAI retrievals. In the last section the

effect of spatial heterogeneity in FPAR was analyzed and

compared to FPAR variation due to diurnal changes in solar

zenith angle to assess the validity of static representations of

FPAR. The conclusions are summarized at the end.

2. The experimental site, instrumentation and

measurements

2.1. Site description

The Harvard Forest is a 3000-acre site, located 42.5382j
North and 72.1714jWest, in Petersham, MA, USA. The site

has a transition land cover dominated by mixed hardwood

and conifer forests, ponds, extensive spruce and maple

swamps. Harvard Forest is well known for its long history

of scientific research of monitoring natural disturbances,

environmental change and human impacts (WWW 3). This

site was selected for several recent major field campaigns

within following projects: BigFoot, Flux Network (FLUX-

NET), Global Landcover Test Site Initiative (GLCTS),

Long-Term Ecological Research (LTER). It is also an

EOS core validation site, selected to provide a focus for

satellite, aircraft, and ground data collection of land product

validation (WWW 1).

2.2. Data sampling

The Climate and Vegetation Research Group of Boston

University performed a field campaign at the Harvard Forest,

July 21–25, 2000. The emphasis was on collection of LAI,

PAR, spectral transmittance and reflectance as well as leaf

optical properties of key species for validation of the theo-

retical basis of the MODIS LAI and FPAR algorithm

(Knyazikhin, Martonchik, Myneni, et al., 1998). Data were

collected primarily on a 225� 225-m grid over a relatively

flat terrain just outside the southeast boundary of the Harvard

Forest. This grid was delimited by a matrix of nine rows

labeled ‘‘1–9’’ and nine columns, labeled ‘‘A–I’’, for a total

of 81 points. Thus, each grid-centered point was located 25 m

from its neighbors. The columns were oriented magnetic

north to south, with rows running perpendicularly (cf. Fig. 1).

The grid center is located at UTM coordinates of zone 18,

732,097 m E, 4,712,915 m N. Additionally several measure-

ments were performed along transects of about 100 m. Data

were acquired with ASD, LAI-2000, LI-1800 and AccuPAR

ceptometers at each grid cell (no endorsement of commercial

products intended here or elsewhere).

The LI-1800 Spectroradiometer with a standard cosine

receptor and fitted with a LI-1800-12 External Integrating

Sphere was used to measure leaf spectral hemispherical

transmittances and reflectances. The spectra were measured

in the 400–1100-nm range at 1-nm resolution on leaf

Fig. 1. Schematic plot of the grid site at the Harvard Forest. The site is

delimited by a matrix of nine rows labeled ‘‘1–9’’ and nine columns,

labeled ‘‘A– I’’. Each cell is 25� 25 m resulting in a 225� 225-m grid. The

columns are oriented magnetic north to south, with rows running

perpendicularly. The movement of the sun through the day is indicated.

The data were collected during July 21–25, 2000.
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samples taken from six dominant broadleaf forest species

(sugar maple, red oak, American beech, viburnum, Amer-

ican chestnut, birch).

The ASD-spectroradiometer was used to measure canopy

hemispherical spectral transmittances and soil/undersory

reflectances (each spectrum consisting of 512 measurements

from 282.79 to 1085.72 nm). Measurements were made

using hemispherical fore-optics. The sensor was held hori-

zontal over the ground at a minimum height of 1 m (also

above the local understory) and measurements of spectral

upward and downward fluxes were taken at each grid cell

and in the open area. Every spectrum represents an average

of three separate measurements made in close proximity of

the grid cell centers. The raw DNs were converted to

radiances followed by translation to canopy transmittances

or soil/understory reflectances.

The LAI-2000 plant canopy analyzer was used to meas-

ure the LAI and directional gap fraction. The sensor projects

a nearly hemispheric image on to five detectors arranged in

concentric rings (approximately 0–13j, 16–28j, 32–43j,
47–58j and 61–74j). Radiation above 490 nm is rejected

from analysis. A one-fourth cover cap was placed over both

sensors to prevent operator interference. LAI measurements

were collected early morning and late afternoon under

diffuse sky conditions. The sensor was held above the local

understory at a minimum height of 1 m. Every data point

represents an average of three separate measurements made

in close proximity of the grid cell centers.

AccuPAR ceptometers were used to monitor incident

PAR with observations recorded every 3 min.

Some sample leaf and canopy spectra are shown in Fig.

2. The canopy and soil spectra acquired at different values

of LAI are shown because of high spatial variability of the

measurements. The analysis was done by splitting the range

of observed LAI [0–6.5] into 10 equally spaced bins of

DLAI = 0.65, LAIa{2.9, 3.6, 4.2, 4.9, 5.5, 6.2}. For each

LAI-bin, grid cell(s) with measured LAI values in the bin

were identified, that is, LAIa[LAI*,LAI* +DLAI]. When

each grid cell was associated with a particular bin, the

corresponding bin quantities were then averaged. In this

fashion, we establish typical or standard values for use in

subsequent analysis.

3. Evaluation of spectral invariants and their

uncertainties

The MOD15A2 product (LAI, FPAR, and associated

Quality control) is produced by the MODIS LAI and FPAR

algorithm (Knyazikhin, Martonchik, Myneni, et al., 1998).

The algorithm accomplishes an inverse solution of the three-

dimensional radiative transfer equation using Look-Up-

Tables (Knyazikhin, Martonchik, Diner, et al., 1998; Knya-

zikhin, Martonchik, Myneni, et al., 1998). A key idea to

optimize Look-Up-Tables is the use of eigenvalues derived

in the transport theory to relate optical properties of indi-

Fig. 2. Spectral data collected at the grid site. Panel (a) shows the spectral leaf albedo of six predominant species. Panel (b) shows spectral canopy transmittance

averaged over grid cells of six LAI classes. Panel (c) shows spectral canopy reflectance measured from a fire tower. Panel (d) shows spectral soil and understory

reflectance averaged over six LAI classes.
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vidual leaves to vegetation canopy transmittance and

absorptance. For a vegetation canopy bounded at its bottom

by a black surface, the dependence of canopy transmittance,

t(k), on wavelength, k, is described by (Knyazikhin, Mar-

tonchik, Diner, et al., 1998; Panferov et al., 2001)

tðkÞ ¼ tðkref Þ �
1� pt � xðkref Þ
1� pt � xðkÞ : ð1Þ

Here t(kref) and x(kref) are the canopy transmittance and

leaf albedo at an arbitrary chosen reference wavelength,

kref. The parameter pt is the eigenvalue (normalized by leaf

albedo) of the linear operator that assigns downward radi-

ances at the canopy bottom to incoming radiation, repre-

senting the transmittance process (Panferov et al., 2001).

This parameter depends on solar zenith angle, leaf area

index, L, canopy structure, and the ratio of leaf trans-

mittance, tleaf(kref), to leaf albedo, x(kref) at kref. Solving
Eq. (1) for pt yields

pt ¼
tðk1Þ � tðk2Þ

xðk1Þ � tðk1Þ � xðk2Þ � tðk2Þ
¼ const;bk1; k2: ð2Þ

This equation can be used to estimate pt from field measure-

ments of canopy transmittance and leaf albedo. Also, taking

x(kref) = 0 in Eq. (1), one obtains the following relationship

between uncollided radiation arriving at the canopy bottom,

qtu t(x(kref) = 0), and the total transmitted radiation t(k),

qt ¼ tðkÞ � ½1� xðkÞ � pt�;bk: ð3Þ

The product x(k)�pt has fundamental physical meaning: it

defines the portion of collided radiation, t(k)� qt, in total

transmitted radiation, t(k),

tðkÞ � qt

tðkÞ ¼ xðkÞ � pt;bk:

The derivation of Eq. (3) from the radiative transfer equa-

tion is given in Appendix B. In classical radiative transfer

theory, uncollided radiation in a given direction, Q, is

described by the Beer’s law (Ross, 1981). For a horizontally

homogeneous canopy with black (completely absorbing)

leaves above a black soil, uncollided radiation in a given

direction normalized by the incident flux density, under

diffuse illumination conditions is given by,

QðL; hÞ ¼ 1

p
� exp � GðhÞ � L

lðhÞ

� �
; ha

p
2
; p

h i
: ð4Þ

Here l(h) is the absolute value of the cosine of solar zenith
angle, G(h) is the mean projection of leaf normals to the

Fig. 3. Retrievals of the parameter pt. Panel (a) shows example retrieval pt for two grid cells (A2 and G7). Panel (b) shows LAI dependence of pt for six LAI

classes (dots with error bars). Also shown is the dependence of pt on LAI values stored in the MODIS LAI and FPAR algorithm’s Look-Up-Tables. The LUTs

include several pt curves for vegetation illuminated by direct sunlight from different angles (four curves) and an additional curve for diffuse radiation. Panel (c)

shows increase in the accuracy of pt retrieval when spectral screening is applied. Panel (d) shows the space of all possible wavelength locations where pt is

localized accurately (denoted in black).
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direction h and L is the leaf area index. The qt parameter is

hemispherically integrated Q,

qt ¼ 2p �
Z 1

0

QðL; hÞ � lðhÞdl: ð5Þ

We utilize the data collected by the Boston University

research group (leaf albedo from LI-1800, transmitted

radiation from ASD and LAI from LAI-2000) at the grid

site (Fig. 1) to evaluate qt and pt parameters. Given the

spectra of canopy transmittance and leaf albedo (Fig. 2a),

histograms of pt for each grid cell are first evaluated. Two

example histograms are shown in Fig. 3a, for grid cell A-2

(LAI = 3.36, p̄t = 0.80) and G-7 (LAI = 4.67, p̄t = 0.90). The

pt value corresponding to the mean of the distribution for

each grid cell is used to calculate the corresponding qt
histogram and mean value (Fig. 5b). For grid cell A-2,

q̄t = 0.080 and for G-7, q̄t = 0.012. In the ideal case of null

uncertainties, the histograms resemble delta functions in

view of wavelength independence of these parameters.

Comparing histograms of pt and qt parameters, one should

note that pt is better localized and qt is more sensitive to LAI

for the broadleaf forest at Harvard forest.

Eq. (1) states that canopy transmittance at any wave-

length can be evaluated from estimates of canopy trans-

mittance, leaf transmittance and leaf albedo at arbitrary

chosen reference wavelength kref. Fig. 4a shows validation

of this formula for grid cell G-7, for reference wavelength

kref = 714 nm, x(kref) = 0.63 and t(kref) = 0.032 and pt = 0.90.

The fit is uniformly good in the wavelength range 400–800

nm. At 800 nm, the leaf albedo reaches a high value of

0.978 (Fig. 2a), and the relationship between canopy trans-

mittance and leaf albedo becomes undefined (cf. Fig. 4b). In

order to accurately localize a value of pt, the ratio tleaf/x
should be a single-value function with respect to x (Pan-

ferov et al., 2001). This condition is not well obeyed in the

interval 0.1 <x < 0.25 where tleaf/x takes on multiple values

(Fig. 4b).

As mentioned before, the parameters qt and pt depend on

LAI and this can be assessed with the available field data in

the LAI range 3–6. The average spectra of canopy trans-

mittance and leaf albedo (Fig. 2) are used to establish the

relationship t= f(x) between canopy transmittance t and leaf

albedo x. Probable values of qt and pt are then estimated

from the resulting histograms, as described before.

The dependence of pt on LAI is shown in Fig. 3b. The

parameter pt increases with LAI. This parameter is stored in

the MODIS LAI and FPAR algorithm Look-Up-Tables,

separately for diffuse incident radiation and for direct

radiation at different solar zenith angles {22.5j, 37.5j,
52.5j, 70.0j}, which is also shown in Fig. 3b. The param-

eter values evaluated from field measurements are within

the range of values used in the MODIS algorithm. The field-

based pt values are close to theoretical values for diffuse

radiation, which is reasonable, as the transmittance measure-

ments were made under mostly cloudy skies (Fig. 5a).

The dependence of qt on LAI evaluated with canopy

transmittance data, leaf albedo and measured LAI according

to Eq. (3) is shown in Fig. 5c (marked ‘ASD data’). This

parameter can also be evaluated from uncollided radiation

[cf. Eq. (5)] estimated from gap fraction measurements of

LAI-2000. The gap fraction P(h) observed along h is the

ratio of uncollided radiation Q(h) to the incident flux

density,

PðhÞ ¼ QðL; hÞ
1=p

: ð6Þ

Thus, according to Eq. (5),

qt ¼ 2 �
Z 1

0

PðhÞ � lðhÞdl:

The resulting estimation of qt is also shown in Fig. 5c

(marked ‘LAI-200 data’). This curve must be considered as

more reliable because all data were obtained from a single

instrument under identical atmospheric conditions and the

effect of spatial heterogeneity is also minimized.

Fig. 4. Panel (a) shows comparison of spectral canopy transmittance retrievals with measured values for grid cell G7. Panel (b) shows the dependence of

spectral canopy transmittance on spectral leaf albedo for grid cell G7 (tcanopy, dotted line). Also shown is the ratio of leaf spectral transmittance to leaf spectral

albedo as a function of leaf spectral albedo (tleaf/x, solid line) for grid cell G7.
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The theoretical relationship between qt and LAI based on

Eqs. (4) and (5), shown in Fig. 5d, is an overestimation. The

empirical relations are steeper, possibly due to clumping,

which is not captured in a homogeneous representation of

the vegetation canopy (cf. next section).

We now address the issue of uncertainties in empirical

estimates of these spectral invariants. There are several

reasons for these uncertainties. One main reason is spatial

heterogeneity, that is, vegetation structural properties vary

significantly even at scales smaller than 1 m in the stand.

Ideally, all measurements required for the estimation of pt
and qt should be measured simultaneously at the same

spatial location. Another reason is undersampling—this is

especially true for leaf optical properties. Several species are

generally present, even at any ‘‘one’’ location, and the ratio

of species is difficult to determine. One generally uses the

properties of the predominant species. Also, Eq. (2) was

derived under the assumption of totally absorbing back-

ground, which is violated at the grid site (cf. Fig. 2d).

Further, instrument errors and numerical approximations

introduce additional uncertainties. Finally, uncertainties in

estimates of qt are significantly higher than for pt, because

the statistics for the histogram of qt contain significantly

fewer points than for pt [N versus N�(N� 1)/2, where N is

the number of spectral measurements, 687].

How to minimize these uncertainties? We discuss this in

the context of estimation of pt [cf. Eq. (2)]. Clearly,

uncertainties arise because the functional relationship

t = f(x) is established in practice always with some level

of noise. Therefore, pt will not be exactly localized from

measurements of all possible wavelength couples, {k1, k2}.
However, a subset of these wavelength pairs {k1, k2} can be

chosen such that the error in the estimation of pt can be

minimized. Consider two estimations of pt, where leaf

albedo is defined with uncertainties Dx [that is uncertainties

in the relation t = f(x)]:

pt ¼
t1 � t2

x1 � t1 � x2 � t2
;

and

pt* ¼ t1 � t2

ðx1 þ DxÞ � t1 � ðx2 þ DxÞ � t2
:

The relative error in the estimation of pt will be

euMax
pt � pt*

pt*

� �
¼ Dx � ðt1 þ t2Þ

x1 � t1 � x2 � t2
: ð7Þ

Now, note that t = f(x) is monotonical, as x increases, t

increases as well (cf. Fig. 4b). Therefore, to minimize

uncertainties in pt, one must consider only those wavelength

pairs for which the leaf albedo, and therefore canopy trans-

mittance, change significantly (larger then variations in soil

reflectance), but the sum of transmittances must be minimal.

One choice would be to select wavelength pairs separated

widely, for instance, one in the visible portion of the

Fig. 5. Retrievals of the parameter qt. Panel (a) shows atmospheric conditions during the day. Panel (b) shows example retrieval of qt parameter for two grid

cells (A2 and G7). Panel (c) shows the dependence of qt on LAI estimated by two methods from field data: (1) the solid line shows estimation based on LAI-

2000 data, (2) the dashed line shows estimation based on ASD data. Panel (d) shows modeling of the qt parameter with classical RT model (dotted line),

stochastic RT (solid line) and qt from LAI-2000 data (dots with error bars).
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spectrum and the other in the near-infrared. Another choice

is to select very nearly spaced wavelength pairs between

700 and 750 nm where spectral properties change signifi-

cantly. This is illustrated in Fig. 3d, where the masked

regions correspond to ‘good’ combinations of wavelengths.

In this region, the relative error e/Dx is 1.45.

4. Improved theoretical representation of spectral

invariants

4.1. Stochastic equations for uncollided radiation

The spectral invariant qt is hemispherically integrated

uncollided radiation, which in classical radiative transfer

theory is described by the Beer’s law. The standard param-

eterization is inadequate for dealing with foliage distribution

discontinuities and clumping of vegetation elements (Sha-

banov, Knyazikhin, Baret, & Myneni, 2000). An accurate

description of uncollided radiation requires stochastic

description. Based on our previous research (Shabanov et

al., 2000), an equation for Q in the case of discontinuous

media can be formulated as,

QUðL; hÞ þ GðhÞ
lðhÞ �

Z L

0

KðL; n; hÞ
pðnÞ � QUðn; hÞdn ¼ 1

p
;

ha
p
2
; p

h i
; ð8Þ

where QU(L, h) is uncollided radiation averaged over that

portion of a horizontal plane occupied by vegetation at

depth L [equivalent to Q(L, h) in classical theory], p(n) is
the probability of finding foliage elements on the horizontal

plane n, and the kernel K(L, n, h) is the correlation between

foliage elements located at L and n along the direction h.
Reliable estimates of G(h) can be derived from field data,

for example, from LAI-2000 angular measurements. The

next section describes one such method, from which it will

be established that G(h) = 0.5 for all angles h.
We adopt a model proposed by Vainikko (1973) for the

kernel, where the medium is assumed to be vertically

homogeneous [ p(n)u p]. The following model of the kernel

describes horizontal heterogeneity,

KðL; n; hÞ ¼ exp � a � AL� nA
lðhÞ

� �
� ð1� pÞ þ p; ð9Þ

where 1/a is the mean radius of correlation between ele-

ments in the medium. For this analytic kernel, the explicit

solution is (Vainikko, 1973)

QUðL; hÞ ¼ 1

p � ðk2 � k1Þ
� ðGðhÞ=p� k1Þ � exp � k2 � L

lðhÞ

� ��

þ ðk2 � GðhÞ=pÞ � exp � k1 � L
lðhÞ

� ��
; ð10Þ

where

k1;2 ¼
GðhÞ=pþ a

2
F

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðGðhÞ=pþ aÞ2 � 4 � a � GðhÞ

q
2

:

ð11Þ

Let a = 0, which corresponds to the case of uniform corre-

lation with distance, that is, points located near each other

are correlated as strongly as with remote points. This could

be the case in heterogeneous media, where it is just as easy

to find clumps of vegetation near a location, or farther away.

In this case, the kernel simplifies, K(L, n, h)u 1, and we

have the following expression for uncollided radiation,

QUðL; hÞ ¼ 1

p
� exp � GðhÞ � L

p � lðhÞ

� �
; ð12Þ

which is similar to Eq. (4) derived in standard theory, with

the exception of the probability of finding foliage elements,

p, in the exponent. The classical expression, Eq. (4), was

modified in several works (e.g., Chen, 1996; Chen, Rich,

Gower, Norman, & Plummer, 1997; Nilson, 1971), by

introducing a so-called clumping coefficient on an ad hoc

basis. The coefficient 1/p corresponds to a clumping coef-

ficient. An important question is, what does the LAI-2000

measure? Do the reported LAI values correspond to L or

L/p? The instrument assumes classical representation, that is

Eq. (4), so it reports effective classical LAI, that is

Lclassical = L/p. To obtain the leaf area index, the effective

value should be multiplied by p, p�Lclassical.
The concept of gaps or discontinuities is a key element of

stochastic RT theory in contrast to classical RT theory. In

stochastic theory, LAI is defined as (Shabanov et al., 2000),

L ¼ dL �
Z H

0

pðzÞdz;

where H is the height of canopy, dL is leaf area density, one-

sided leaf area per unit volume (in m2/m3). Assuming that

the probability of finding foliage elements does not depend

on height, p(z) = p,

L ¼ dL �
Z H

0

pðzÞdz ¼ p � dL � Hup � Lclassical:

Consider Fig. 5d, which shows field estimates of qt from

LAI-2000 data, together with those predicted by classical

and stochastic transport theories [cf. Eqs. (5) and (12)]. The

value of p used in these calculations was 0.86, obtained

from best fit to the field data. Thus, the whole procedure of

retrieving LAI is restricted to LAI-2000 data only. Note also

that LAI-2000 data were used as they result in more reliable

estimates of qt compared to ASD data, because the atmos-

pheric conditions were not stable. The dependence of qt on

LAI is modeled better with stochastic theory because

horizontal discontinuities, gaps and clumping are explicitly

included.
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4.2. Retrieval of leaf normal orientation

In the previous section, we have seen that stochastic

equations provide the proper parameterization required for

the description of foliage clumping and its effect on uncol-

lided radiation. Eq. (12) depends on two parameters: (1) p,

the fraction of foliage elements, and (2) the G-function. We

estimated the first parameter from model fits to field data,

assuming that G = 0.5 for all zenith angles at the Harvard

Forest grid site. In this section, this assumption is tested.

Specifically, we formulate a method, consistent with sto-

chastic theory, for estimates of leaf normal orientation

distribution and G-function from measurements of gap

fraction under the canopy.

This approach is based on the method of point quadrats

introduced by Wilson (1960) and further developed by

Miller (1964, 1967). Consider the gap fraction P(h) as seen
from below the canopy. It follows from Eqs. (6) and (12)

that

PðhÞ ¼ exp �GðhÞ � L
p � lðhÞ

� �
: ð13Þ

The mean projection of leaf normals to the direction h, the
function G(h), on the assumption of azimuthally independ-

ent orientation of leaf normals, is given by (Ross, 1981)

GðhÞ ¼ 1

2p
�
Z
2pþ

gLðhLÞ � A
!
X � !XLAd

!
XL; ð14Þ

where gL(hL) is the probability density of leaf normal

orientations over the upper hemisphere, and

1

2p
�
Z
2pþ

gLðhLÞd
!
XL ¼ 1: ð15Þ

The function G(h), importantly, satisfies the constraintZ p=2

0

sinðhÞ � GðhÞdh ¼ 1

2
: ð16Þ

In the case of azimuthally symmetric gL,

1

2p
�
Z
2pþ

gLðhLÞ � A
!
X � !XLAd

!
XL

¼
Z p=2

0

dhLsinðhLÞ � gLðhLÞ
1

2p

Z 2p

0

duLA
!
X � !XLA

¼
Z p=2

0

dhLsinðhLÞ � gLðhLÞwðh; hLÞ; ð17Þ

where (Knyazikhin & Marshak, 1991)

and

u* ¼ arccos½�ctgðhÞ � ctgðhLÞ�:

Substituting Eqs. (14) and (17) into Eq. (13) results in

PðhÞ ¼ exp � L

p � cosðhÞ �
Z p=2

0

sinðhLÞ � gLðhLÞ
"

� wðh; hLÞdhL;
#
; ð19Þ

or

Z p=2

0

w̃ðh; hLÞ � g̃LðhLÞdhL ¼ ln
1

PðhÞ

� 

; ð20Þ

where w̃(h, hL) =w(h, hL)�sin(hL)/cos(h) and g̃L(hL)=(L/
p)�gL(hL). Eq. (20) is a Fredholm integral equation of first

kind with respect to the unknown function g̃L(hL) and the

kernel w̃(h, hL). Solving this equation results in the leaf area

index L and leaf normal distribution gL(hL), taking into

account the normalization of gL(hL) (Eq. (15)), that is,

L

p
¼

Z p=2

0

sinðhLÞ � g̃LðhLÞdhL; ð21Þ

gLðhLÞ ¼
g̃LðhLÞ
L=p

: ð22Þ

The critical step is to find an appropriate method to solve

Eq. (21) numerically. A straightforward matrix approxima-

tion of Eq. (20) gives poor solutions, irrespective of the

order of quadrature used to approximate the integral. The

reasons are: (1) solution of the Fredholm integral equation

of the first kind is an ill-posed problem; the corresponding

linear operator has no bounded inverse; (2) errors in the

estimation of the right-hand side of Eq. (20). Therefore, we

adopt a regularization approach (Tikhonov & Arsenin,

1977) for solving Eq. (20). We rewrite Eq. (20) in operator

form as

Âf ¼ g;

where (Â)ij =wiwij (i, j = 0,. . .n) is the discrete form of the

left-hand side of Eq. (20) and gi is the discrete form of the

wðh; hLÞ ¼
AcosðhÞ � cosðhLÞA; if ActgðhÞ � ctgðhLÞA > 1

2
p � sinðhÞ � sinðhLÞ � sinðu*Þ þ cosðhÞ � cosðhLÞ � 2�u*

p � 1

� 
����
����; ifActgðhÞ � ctgðhLÞA < 1

8><
>: ð18Þ
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right-hand side. Because g is known in practice only with a

certain level of uncertainty, we have in effect

Âf ¼ g þ e:

The problem is solved by introducing a regularization

operator and searching for the smoothest solution, fsmooth,

fsmooth ¼ ðÂ þ c � B̂Þ�1g;

where for (i, j= 0,. . .n), the matrix (B̂)ij defined as follows

(Phillips, 1962),

ðB̂ÞijuðÂ�1Þj�2;i � 4 � ðÂ�1Þj�1;i þ 6 � ðÂ�1Þj;i � 4

� ðÂ�1Þjþ1;i þ ðÂ�1Þjþ2;i;

and

ðÂ�1Þ�2;i ¼ �ðÂ�1Þ0;i;

ðÂ�1Þ�1;i ¼ 0;

ðÂ�1Þnþ1;i ¼ 0;

ðÂ�1Þnþ2;i ¼ �ðÂ�1Þn;i:

Note, similar technique was implemented by Norman and

Campbell (1989), but without considering clumping. The

choice of the regularization parameter c is somewhat arbi-

trary as the solution is not very sensitive to c. Generally, c is
related to uncertainty e in g. In our calculations, we choose

c = 0.5. In general, an important source of error associated

with LAI and leaf normal distribution retrieval from numer-

ical solution of the Fredholm equation is due to sparse

angular sampling of P(h) (polar angles 7, 23, 38, 53, 68, in
degrees, in the case of LAI-2000).

We evaluate the proposed scheme by comparing the

retrieved LAI with that obtained from the Miller’s (1967)

formula currently used by the LAI-2000. Miller’s formula

can be obtained by extracting G(h) from Eq. (13) and

substituting into Eq. (16),

L

p
¼ 2 �

Z 1

0

ln
1

PðhÞ

� 

� lðhÞdl: ð23Þ

Note that the Miller’s formula combined with Eq. (16) does

not provide a reliable estimate of G(h) [substituting LAI

from Eq. (23) into Eq. (13) and inversion for G(h)]. This is
because the Fredholm equation-based method incorporates

the entire set of angular information for retrieval of G(h) and
while the Miller’s method does not.

We implemented a numerical scheme for the solution of

the Fredholm equation, with gap fractions from the LAI-

2000 measured at the grid experiment in the Harvard Forest.

The retrievals obtained by the Fredholm and Miller’s

equations are shown in Fig. 6. The retrieved LAI values

compare quite favorably (Fig. 6a) and so do the distributions

Fig. 6. The Fredholm integral equation method for LAI and leaf normal orientation retrieval. Panel (a) is one-to-one comparison of LAI retrieved by the

Fredholm integral equation method and the standard method utilized by LAI-2000 (Miller’s formula). Panel (b) shows the distribution of LAI values derived by

two methods. Panel (c) shows estimation of leaf normal orientation function, gL(h) (average over all grid data). Panel (d) shows the mean projection of leaf

normals to direction h, G(h) (average over all grid data).
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(Fig. 6b). The retrieved leaf normal distribution, gL(hL) has
minimal variability through all grid site cell locations (Fig.

6c); and has low sensitivity to input parameters to Fredholm

method. The mean projection of leaf normals exhibits the

same property (Fig. 6d) and is approximately equal to 0.5

for the whole range of polar angles h, which in classical

theory corresponds to a spherical leaf normal distribution.

However, according to standard RT theory gL(hL) = 1 in for

spherical leaf normal distribution, which conflict with our

retrievals; consequently, we cannot call the observed leaf

normal distribution spherical.

5. Variation of FPAR with SZA in heterogeneous

vegetation canopies

Most models of primary productivity run on a monthly

time step to simulate seasonal patterns in net plant carbon

fixation, biomass, nutrient allocation and litterfall (Melillo et

al., 1993; Patron et al., 1993; Prince, 1991). In recent

decades, satellite data were extensively used to obtain global

estimates of variables descriptive of terrestrial primary

productivity. The normalized difference vegetation index

(NDVI) from the advanced very high-resolution radiometer

(AVHRR) has been used to estimate net primary production

(NPP) and seasonal exchanges of CO2 between the atmos-

phere and the terrestrial biosphere (Fung, Tucker, & Pren-

tice, 1987; Heinmann & Keeling, 1989; Tucker, Fung,

Keeling, & Gammon, 1986). Many of the fundamental

questions about the global carbon cycle (its spatial variation,

trends, quantification of sources and sinks) can be addressed

using simulations models that operate on a scale that links

remote sensing, spatial data bases of climate and soils and

mechanistic understanding of atmosphere–plant–soil bio-

geochemistry. For instance, the Carnegie–Ames–Stanford

approach (CASA), estimates spatially (1j) and temporally

(monthly) averaged net ecosystem productivity on the basis

of FPAR retrieved from the AVHRR NDVI data, climato-

logical data sets (temperature and precipitation) (Potter et

al., 1993). However, it is well known that FPAR changes

with solar zenith angle (SZA), but most algorithms (such as

the MODIS LAI and FPAR algorithm) retrieve instantane-

ous estimates of FPAR. A question arises as to how the

remote sensing FPAR compares with FPAR estimate

required by these models? Also, how do uncertainties

associated with diurnal variation in FPAR compare to

uncertainties from spatial variations in FPAR within coarse

resolution pixels?

We address these questions by starting with the definition

of FPAR (Knyazikhin, Martonchik, Myneni, et al., 1998)

FPAR ¼

Z 700 nm

400 nm

aðkÞ � E0ðkÞdkZ 700 nm

400 nm

E0ðkÞdk
;

where E0(k) is the solar irradiance spectrum, a(k) is canopy
absorptance. Taking into account the law of energy con-

servation, absorptance can be calculated from measurements

of top of canopy reflectance r(k) and bottom of canopy

transmittance t(k) as a(k) = 1� t(k)� r(k). Thus, it is con-

venient to rewrite the above as

FPAR ¼ 1�

Z 700 nm

400 nm

ðrðkÞ þ tðkÞÞ � E0ðkÞdkZ 700 nm

400 nm

E0ðkÞdk
: ð24Þ

Note that the absorptance, reflectance and transmittance,

and consequently FPAR, depend on LAI and the solar

zenith angle, SZA. The latter introduces diurnal variations

in FPAR. This dependence complicates estimation of

FPAR and its validation with field data. According to

our measurements at the Harvard Forest, the dependence

of FPAR on solar angle was dominated by variations in

FPAR due to spatial heterogeneity in the forest (depend-

ence on LAI). Canopy FPAR was approximated from

Fig. 7. Panel (a) shows FPAR estimated at different solar zenith angles

(SZA) and spatial locations (grid site and transect data). Panel (b) shows the

modeled dependence of FPAR on SZA for different values of LAI. FPAR

variations due to LAI changes are comparable to variations due to SZA for

grid site.
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measured above understory canopy transmittance (Fig. 2b)

and top of canopy reflectance (Fig. 2c) according to Eq.

(24). We are neglecting here small contribution to FPAR

from reflected by understory PAR (Goward & Huemmrich,

1992). The transmittances were not simultaneously meas-

ured at all the grid cells but at substantially different times,

that is, under varying SZA. The FPAR for different

sampling locations is shown in Fig. 7a as a function of

SZA. For instance, one set of grid measurements were

taken when SZA was 32j (cells A1–G6) and others when

SZA was 65j (cells G7–I9). We see that the mean FPAR

differs very little between these two measurements.

The relative influence of LAI and SZA on FPAR can be

demonstrated with the help of a radiation model. FPAR was

calculated with a stochastic model (Shabanov et al., 2000)

for SZA varying from 0j to 70j, and a set of LAI values,

2.9, 4.2, 4.9 (at the grid site, the LAI varied from 3 to 6 and

SZA varied from 25j to 72j). The optical properties of

leaves used in the model correspond to that of the dominant

species, sugar maple (Fig. 2a); the soil reflectance corre-

sponds to averaged values, observed at the grid site for the

corresponding values of LAI (Fig. 2d). The ratio of direct to

total incident radiation was 0.5. Function G was set to 0.5,

based on analysis presented previously (Fig. 6d). The

results, shown in Fig. 7b, support the hypothesis that

variations in FPAR due to spatial heterogeneity, that is

due to variations in LAI, are larger or comparable to

SZA-related variations. The SZA effect is considerably

weaker in dense heterogeneous canopies. If this is a gen-

erally valid result, the use of remote sensing estimates of

FPAR in ecosystem models, which typically have long time

steps (weeks and months), is justified. However, these

models need to address the issue of sub-pixel FPAR

heterogeneity.

6. Conclusions

The research described in this paper is aimed at

investigating the validity of the radiative transfer assump-

tions underlying of the MODIS LAI and FPAR algorithm

for the case of broadleaf forests. Data collected at the

EOS core validation site, Harvard Forest were used for

this purpose. The parameterization of the algorithm is

grounded on the concept of spectral invariants of transport

equation ( pt and qt parameters). These parameters can be

evaluated from field measurements of vegetation canopy

transmittances and leaf optical properties. The physical

interpretation of these parameters was established. The pt
parameter is the portion of uncollided radiation in total

transmitted radiation, normalized by leaf albedo. An

approach to minimize the uncertainties due to spatial

heterogeneity of natural vegetation in the retrievals of

spectral invariants was detailed. Next, the theoretical basis

of the algorithm was refined by applying stochastic

concepts to radiative transfer to describe the qt parameter.

This approach accounts for the effect of foliage clumping

and discontinuities, which has significant impact on LAI

retrievals. The clumping coefficient was found to be

inversely proportional to the probability of finding foliage

elements. Finally, the effect of spatial heterogeneity was

further analyzed in application to FPAR. Numerical sim-

ulations and analysis of the field data indicate that

variations in FPAR due to dependency on solar zenith

angle are comparable to the uncertainties in field measure-

ments of FPAR due to spatial heterogeneity. This result

supports a static representation of FPAR over broadleaf

forests in large-scale ecosystem modeling.
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Appendix A. Nomenclature

Appendix B. Derivation of the qt parameter

In the derivations below, we follow Zhang, Shabanov,

Knyazikhin, and Myneni (2001). Consider the 1-D radiative

H total height of canopy (m)

l(h) absolute value of the cosine of direct solar radiation

L Leaf area index

dL one-sided leaf area per unit volume (m2/m3)

FPAR fraction of photosynthetically active radiation

absorbed by the vegetation

E0(k) solar irradiance spectrum (W�m� 2�Am� 1)

t(k) spectral canopy transmittance

r(k) spectral canopy reflectance

x(k) spectral leaf albedo

P(h) gap fraction observed along the direction h
gL(hL) probability density of leaf normal orientation (sr� 1)

G(h) mean projection of leaf normals to direction h
Q(L, h) uncollided radiation (radiance, normalized by

incoming flux; sr� 1)

QU(L, h) uncollided radiation, averaged over the vegetated

portion of a horizontal plane L (radiance,

normalized by incoming flux; sr� 1)

p(n) probability of finding foliage elements on a

horizontal plane n
K(L, n, h) correlation between foliage elements located at L

and n along the direction h
qt spectral invariant, hemispherically integrated

Q(L, h) or QU(L, h)
pt spectral invariant, eigenvalue derived in transport

theory
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transfer equation for light propagation in a vegetation

canopy

lð!X Þ � BIðk; L;
!
X Þ

BL
þ GðL;!X Þ � Iðk; L;!X Þ

¼ xðkÞ �
Z
4p

CðL;!XV! !
X Þ

p � xðkÞ � Iðk; L;!XVÞd!XV; ðB:1AÞ

with boundary conditions

Iðk; Ltop ¼ 0;
!
X Þ ¼ dð!X Þ; lð!X Þ < 0;

Iðk; Lbottom;
!
X Þ ¼ 0; lð!X Þ > 0:

8<
: ðB:2Þ

Here Iðk; L;!X Þ is the radiance, L is LAI, Ltop and Lbottom are

LAI at the upper and lower boundary of the vegetation,

respectively, k is wavelength,
!
X is direction, lð!X Þ is the

cosine of solar zenith angle (not absolute value as in the

main text), Gð!X Þ is the mean projection of leaf normals to

the direction
!
X, and x(k) is leaf albedo. It will be convenient

to introduce the following operator notation with the differ-

ential D̂ and integral Ŝ operators defined as

D̂Iðk; L;!X Þ ¼lð!X Þ � BIðk; L;
!
X Þ

BL

þ GðL;!X Þ � Iðk; L;!X Þ; ðB:3AÞ

ŜIðk; L;!XVÞ ¼
Z
4p

Cð!r;!XV! !
X Þ

p � xðkÞ � Iðk; L;!XVÞd!XV: ðB:3BÞ

Eq. (B.1A) can thus be rewritten as

D̂Iðk; L;!X Þ ¼ xðkÞ � ŜIðk; L;!X Þ: ðB:1BÞ

In the following derivations, we assume that the ratio of leaf

transmittance to leaf albedo, f, to be independent of wave-

length. Spectral variation of operator Ŝ is expressed through

f; consequently, the operator is also wavelength independ-

ent. Note that the operators do not depend on leaf albedo.

The solution Iðk; L;!X Þ of Eqs. (B.1A,B) and (B.2) can

be represented as the sum of two components, Iðk; L;!X Þ ¼
QðL;!X Þ þ uðk; L;!X Þ. The first term multiplied by Alð!X ÞA,
the wavelength independent function Alð!X ÞA � QðL;!X Þ, is
the probability density that a photon in the incoming beam

will arrive at the lower boundary of vegetation along the

direction
!
X without suffering any collisions. It satisfies the

equation

D̂QðL;!X Þ ¼ 0; ðB:4Þ

and boundary conditions specified by Eq. (B.2). The second

term describes photons scattered one or more times in the

canopy. It satisfies D̂uðk; L;!X Þ ¼ xðkÞ � Ŝuðk; L;!X Þ þ
xðkÞ � ŜQðL;!X Þ and zero boundary conditions. By letting

T̂ = D̂� 1Ŝ, the latter can be transformed to

uðk; L;!X Þ ¼ xðkÞ � T̂uðk; L;!X Þþ

xðkÞ � T̂QðL;!X Þ: ðB:5Þ

Substituting uðk; L;!X Þ ¼ Iðk; L;!X Þ � QðL;!X Þ into this

equation results in an integral equation for Iðk; L;!X Þ,

Iðk; L;!X Þ � xðkÞ � T̂ Iðk; L;!X Þ ¼ QðL;!X Þ: ðB:6Þ

Because QðL;!X0Þ does not depend on the leaf albedo, the

left-hand side of Eq. (B.6) is independent of the leaf albedo,

i.e.,

Iðk1; L;
!
X Þ � xðk1Þ � T̂ Iðk1; L;

!
X Þ

¼ Iðk2; L;
!
X Þ � xðk2Þ � T̂ Iðk2; L;

!
X ÞuQðL;!X Þ: ðB:7Þ

Multiplying Eq. (B.7) by Alð!X ÞA, integrating over all

downward directions and considering the solution at the

lower boundary of vegetation, we obtain a spectral invariant

which involve transmittances t(k),

tðk1Þ � xðk1Þ � pt � tðk1Þ ¼ tðk2Þ � xðk2Þ � pt � tðk2Þuqt;

ðB:8Þ

where pt is a constant and

qtu
Z
2p�

Alð!X ÞA � QðL;!X Þd!X ðB:9Þ

is the wavelength independent parameter of interest. The

physical meaning qt is as follows: it denotes the probability

density that a photon incident on the upper boundary of the

vegetation will arrive at the lower boundary without suffer-

ing any collisions at all. Note, Q is defined for the so-called

black soil problem, i.e., perfectly absorbing background.

Appendix C. WWW sites

WWW 1: EOS science plan, http://eospso.gsfc.nasa.gov/

science_plan/index.php.

WWW 2: EOS core validation sites, http://modarch.gsfc.

nasa.gov/MODIS/LAND/VAL.

WWW 3: Harvard Forest site, http://lternet.edu/hfr/.
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