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Yuhong Tian, Yu Zhang, Yuri Knyazikhin, Ranga B. Myneni, Joseph M. Glassy, Gerard Dedieu, and
Steven W. Running

Abstract—This paper describes results from prototyping of
the moderate resolution imaging spectroradiometer (MODIS)
radiative transfer-based synergistic algorithm for the estimation
of global leaf area index (LAI) and fraction of photosynthetically
active radiation (FPAR) absorbed by vegetation using land
surface reflectances (LASUR) and Landsat data. The algorithm
uses multispectral surface reflectances and a land cover classifi-
cation map as input data to retrieve global LAI and FPAR fields.
Our objectives are to evaluate its performance as a function of
spatial resolution and uncertainties in surface reflectances and
the land cover map. We analyzed reasons the algorithm can or
cannot retrieve a value of LAI/FPAR from the reflectance data
and justified the use of more complex algorithms, instead of
NDVI-based methods. The algorithm was tested to investigate the
effects of vegetation misclassification on LAI/FPAR retrievals.
Misclassification between distinct biomes can fatally impact the
quality of the retrieval, while the impact of misclassification
between spectrally similar biomes is negligible. Comparisons of
results from the coarse and fine resolution retrievals show that the
algorithm is dependent on the spatial resolution of the data. By
evaluating the data density distribution function, we can adjust
the algorithm for data resolution and utilize the algorithm with
data from other sensors.

Index Terms—Fraction of photosynthetically active radiation
(FPAR), land surface reflectances (LASUR), LANDSAT, leaf
area index (LAI), moderate resolution imaging spectroradiometer
(MODIS).

I. INTRODUCTION

T HE importance of vegetation in studies of global cli-
mate and biogeochemical cycles is well recognized [1].

Presently, most ecosystem productivity models, carbon budget
models, and global models of climate, hydrology and bio-
geochemistry require vegetation parameters to calculate land
surface photosynthesis, evapotranspiration and net primary
production [2]–[6]. Therefore, accurate estimates of vegetation
parameters are increasingly important in the carbon cycle, the
energy balance and environmental impact assessment studies.
Two of these parameters are green leaf area index (LAI), a
canopy structural variable, and fraction of photosynthetically
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active radiation (0.4–0.7m) absorbed by vegetation (FPAR),
a radiometric variable. In order to quantitatively and accurately
model global vegetation dynamics and differentiate short-term
from long-term trends, as well as to distinguish regional from
global phenomena, these two parameters must be collected
often for a long period of time and should represent every
region of the Earth’s lands [7].

These two parameters are estimated from remote sensing
data using empirical relationships between values of LAI/FPAR
and vegetation indices which include near-infrared (NIR) to
red (RED) band ratios and the normalized difference vegetation
index (NDVI) [9]–[15]. The limitations of such methods
are well known [16]–[18]. No unique relationship between
LAI/FPAR and vegetation index is applicable everywhere and
all the time [19]–[21] because the reflectances of plant canopies
depend on a number of other factors, such as, measurement
geometry and spatial resolution. These empirical relationships
are site- and sensor-specific, and are unsuitable for application
to large areas or in different seasons [19]. A physically based
model to describe the propagation of light in plant canopies and
its use in retrieval of biophysical parameters is the preferred al-
ternative. In the context of the Earth Observing System (EOS),
the land discipline group of the moderate resolution imaging
spectroradiometer (MODIS) Science Team is developing
algorithms for the determination of landcover, LAI, albedo,
etc. to be operationally generated from data from one or more
of satellites [22].

One of these algorithms is the synergistic algorithm for the es-
timation of global LAI/FPAR from MODIS [7]. At the present
time, the algorithm has been developed and theoretically justi-
fied, but no evidence of its functionality has been presented. The
purpose of this paper is to evaluate the physical functionality and
performance of the algorithm by prototyping with the land sur-
face reflectances (LASUR) data derived from the advanced very
high resolution radiometer (AVHRR) data and Landsat data.
Specifically, we would like to know: What is the effect of un-
certainties in surface reflectances on the quality of retrieved
LAI/FPAR? When and why the algorithm does/does not retrieve
a value of LAI/FPAR from the reflectance data? How can an
assessment of the algorithm accuracy be made? What is the
behavior of the algorithm as a function of spatial resolution?
In this paper, first we describe the concepts of the algorithm,
the physical meaning of the bidirectional reflectance distribu-
tion functions (BRDF) equation, and the method to adjust the
look-up table (LUT). Then the spectral signatures of LASUR
and Landsat were analyzed, followed by a series of algorithm
prototyping results discussed in the later section.
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Results from prototyping are a valuable means of testing the
physics of the algorithm and also constitute an important first
step toward improving the algorithm. At the most general level,
this research contributes to an improved understanding of the
algorithm behavior. A more practical benefit is to provide a basis
for improved retrieval of surface parameters from satellite data.

II. A LGORITHM

A. Statement of the Problem

The inverse problem of retrieving LAI and FPAR from atmo-
spherically corrected BRDF is formulated as follows. Given sun

and view directions, vegetation type, BRDF’s
at spectral bands and their uncertainties
, find LAI and FPAR. The retrievals are performed

by comparing observed and modeled BRDF’s for a suite of
canopy structures and soil patterns that cover a range of ex-
pected natural conditions. All canopy/soil patterns for which the
magnitude of residuals in the comparison does not exceed un-
certainties in observed and modeled BRDF’s, i.e.,

(1)

are treated as acceptable solutions to the inverse problem. Here
, , are modeled BRDF’s, and

[canopy, soil] denotes a canopy/soil pattern, which is unknown
and will be discussed later. For each acceptable solution, a value
of FPAR is also evaluated. Mean values of LAI and FPAR aver-
aged over the set of acceptable solutions are taken as solutions
of the inverse problem. A mathematical justification of this pro-
cedure is presented in [7]. Its application to the retrieval of LAI
and FPAR from multi-angular observation is discussed in [23].

B. Radiation Transport in a Canopy

For MODIS LAI/FPAR algorithm, a three-dimensional
(3–D) radiative transfer model is used to derive spectral and
angular biome-specific signatures of vegetation canopies.
Taking into account features specific to the problem of radiative
transfer in plant canopies, powerful techniques developed in nu-
clear physics were utilized to split a complicated 3-D radiative
transfer problem into two independent, simpler subproblems.
The first subproblem describes the radiative regime within the
vegetation canopy for the case of a black surface underneath
the medium (“black soil problem”). The second subproblem
is the radiation field in the vegetation canopy generated by
anisotropic heterogeneous wavelength-independent sources
located at the canopy bottom (“S problem”). In terms of this
approach, the BRDF of a heterogeneous canopy
at wavelength can be expressed as [7], [8]

(2)

Here and are directional hemispherical
reflectance (DHR) and canopy transmittance for the black soil

problem, and and are reflectance and transmittance
resulting from an anisotropic source located underneath the
canopy. The weight is the ratio of the BRDF for the
black soil problem to , and is the ratio of the
canopy leaving radiance generated by anisotropic sources on
the canopy bottom to . The weights and are
functions of sun-view geometry, wavelength, and LAI. They
are precomputed and stored in the LUT [7].

The effective ground reflectance is the fraction of radia-
tion reflected by the canopy ground. It depends on the radiative
regime at the canopy bottom. However, its range of variations
does not exceed the range of variations of the hemispherically
integrated bidirectional factor of the ground surface, which is in-
dependent of vegetation [7]. Therefore, can be used as a pa-
rameter to characterize the ground reflection. The set of various
patterns of effective ground reflectances at the MODIS spectral
bands is a static table of the algorithm, i.e., the element of the
LUT. The present version of the LUT contains 29 patterns of

ranging from bright to dark. They were taken from the soil
reflectance model developed by Jacquemoudet al. [25], with
model inputs presented in Baretet al. [26]. These soil patterns
include three soil types: mixtures of clay, sand, and peat. Each
soil type is characterized by three moisture levels and three soil
roughness types. In biomes with grounds of intermediate bright-
ness, all soil patterns are assigned. In biomes where the ground
is bright, the first 16 bright soil patterns are used.

Note that and are not included in the LUT.
Given canopy absorptance ( and ) and transmit-
tance ( and ), they are evaluated via the law of
energy conservation as

(3)

(4)

This makes canopy reflectance sensitive to the within canopy
radiation regime , , , .

The dependence of canopy absorptance on wavelength for the
black soil problem (subscript “bs”) and S problem (
“S”) can be derived [7] as

(5)

Here is the leaf albedo (leaf reflectanceleaf transmit-
tance). It is a stable characteristic of green leaves, although its
magnitude can vary with leaf age and species. In order to ob-
tain accurate leaf albedos for the six biome types, we obtained
leaf spectra data from several sources. Mean leaf reflectance and
transmittance values were calculated for the six biome types at
seven MODIS bands (645 nm, 859 nm, 469 nm, 555 nm, 1240
nm, 1640 nm, and 2130 nm). We stored the mean albedo in the
LUT. Variable is a wavelength independent coefficient de-
fined as [7], [27]

(6)
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Where and are solutions of the black soil problem and
S problem for black ( 0) and white ( 1) leaves, and

is the extinction coefficient (dependent on vegetation types).
is a parallelepiped where vegetation canopies are located. Its

height coincides with the height of plants and its horizontal di-
mension coincides with the size of the pixels. The coefficient

depends on canopy structure andand is an element of the
LUT. Because the horizontal dimension ofcoincides with the
size of pixel, is a resolution dependent parameter. A precise
derivation of (5), and (6) is given in [7]. Validation of relation-
ships (6) with field measurements is presented in [27]. Similar
relationships are also valid for canopy transmittance [7], [27].

Thus, given canopy absorptance and transmittance for the
black soil problem and S problem at a reference wavelength

, one can evaluate these variables at any other wavelength.
Therefore, we only store canopy absorptances , transmit-
tances , the coefficients , and leaf albedo, instead of
and in the LUT. Reflectances and can then
be evaluated via the energy conservation law (3) and (4) and in-
serted into (2).

Similar to (2), the fraction of radiation absorbed by vegeta-
tion, , at wavelength can be expressed as [7]

(7)
For each acceptable solution [canopy, soil], a value of FPAR
can be explicitly evaluated as the integral of (7) over the photo-
synthetically active region of the solar spectrum [7].

C. Physical Meaning of (2)

Any pixel can be depicted as a point in the spectral space.
The spectral BRDF’s tend to occupy certain well localized space
in the spectral space, depending upon the architecture of the
biome. We use (2) to explain this behavior in the RED-NIR
plane as follows:

1) If LAI , then ,
, and coincides with bidirectional surface

reflectance factor [7]. The BRDF at RED and NIR re-
sults from photon-ground interactions. The pixels are
located on the so-called soil line (around 1:1 line in the
RED-NIR spectral space) [26], [28]. The spectral be-
havior for different soil types will determine the exact
location of the soil line. The bright soil pattern will gen-
erate high reflectance in RED and NIR. The dark soil
pattern will generate low reflectance in RED and NIR.

2) A high value of LAI corresponds to a very dense
canopy. Its transmittances and are close
to zero and thus, the contribution of soil is minimal.
Pixels will occupy a narrow space near the NIR axis.
Canopy reflectances at RED and NIR wavelengths
characterize exactly the spectral properties of vege-
tation, that is, plants absorb radiation very efficiently
throughout the visible regions and strongly reflect
and transmit at NIR. The type of vegetation and its
phenology will determine the precise location in the
RED-NIR spectral space.

3) If LAI is between case 1) and case 2), neither
nor transmittance will equal zero, and gaps in the vege-
tation elements will cause photons to interact with soil
and canopies. The soil-canopy interactions will cause
the canopy response, with a hypothetical nonreflecting
soil background, to shift toward the soil line (RED re-
flectance will decrease, and changes in NIR reflectance
will depend on the soil brightness pattern under the
canopy) [28]. The location of pixels will be between
the soil line and NIR axis. The more gaps, the smaller
the LAI value and the closer the pixels are to the soil
line.

To summarize, (2) shows how the location of a pixel in the
spectral space is related to LAI values. If a pixel is close to
the soil line, its LAI value is small. Away from the soil line
toward the NIR axis, the contribution of soil to canopy leaving
radiance decreases as the product of and , and
thus, LAI values increase. The direction of this movement in the
spectral space results in different rates of LAI variations. Such
a representation of canopy reflectances is used in our algorithm
to build and adjust the LUT, and to interpret results presented in
Section IV.

D. Adjusting the LUT for Data Resolution

Before the configurable parameters of the LUT can be set,
data of a specific spatial resolution must be analyzed to lo-
cate the pixels in the spectral space (for example, the RED-NIR
space) according to the biome type. We evaluated the data den-
sity distribution function as follows: specifying a fine grid cell in
the spectral space, counting the number of canopy reflectances
in this cell, and then dividing this value by the total number
of pixels in the entire spectral space. The data density distribu-
tion function was evaluated for each biome type. A location of
high density (25% of all pixels) for each biome in the RED-NIR
space was plotted and used to adjust the LUT as follows. The
areas of 25% density can be interpreted as the sets of pixels rep-
resenting the most probable patterns of canopy structure. As an
example, for biome 5 (broadleaf forests), we located the 25%
density of this biome in the spectral space during July, the green
season. Then we run the algorithm using only these pixels as
input data and plotted the histogram of the retrieved LAI value.
Based on previously reported results [24], the most probable
canopy realization in this case has an LAI value of about 5. It
means that the peak of the histogram should be around five. We
adjusted the LUT by changing to represent the corresponding
data set so that the simulated BRDF at RED and NIR wave-
lengths corresponding to LAI fall in the 25% density plot.
Given the location of the most probable realization of canopy
structure, (2) can be used to specify the location of pixels at
other values of LAI and soil patterns. The LUT was then ad-
justed for all biomes.

III. D ATA ANALYSIS

Before MODIS data are available, data acquired by other in-
struments can be used to prototype and test the functionality of
the LAI-FPAR algorithm. The goal of this section is to describe
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and analyze the surface reflectance data used to prototype the
algorithm.

A. Satellite Data

LASUR refers to data acquired during 1989-1990 and pro-
cessed at Centre d’Etudes Spatiales de la Biosphere (CESBIO),
Toulouse, France, from AVHRR onboard the NOAA-11 satellite
[29], [30]. LASUR is a reprocessing of weekly global vegetation
index data [31]. AVHRR is a cross-track scanning system fea-
turing one visible (RED, 572–698 nm), one NIR (716–985 nm),
one short wave infrared, and two thermal infrared channels. For
LASUR products, data from RED and NIR channels were used
to estimate surface reflectances and vegetation index, and data
from the two thermal infrared channels were used to estimate the
surface temperature. LASUR data were calibrated and corrected
for atmospheric effects and filtered to eliminate residual noises
and perturbations [29], [30]. The data span is from 75N to 55
S in latitude, and 180W to 180 E in longitude. Each image has
904 rows and 2500 columns. The spatial resolution is 1/7th of
a degree. In this study, RED and NIR surface reflectances from
July 1989, were used to prototype the MODIS LAI/FPAR al-
gorithm. We created a monthly layer based on maximum NDVI
compositing of the four weekly layers in this month, minimizing
cloud contamination, off-nadir viewing effects, sun-angle ef-
fects and aerosol and water vapor effects [32].

A biome classification map (BCM) that describes the global
distribution of six canopy structural types (biomes) was used
as a prototype of the MODIS land cover product, required by
the MODIS LAI/FPAR algorithm. BCM was derived from the
AVHRR Pathfinder data set [24] and is time-independent. The
six biome types are: grasses and cereal crops (biome 1), shrubs
(biome 2), broadleaf crops (biome 3), savannas (biome 4),
broadleaf forests (biome 5), and needle forests (biome 6).

We also utilized Landsat Thematic Mapper (TM) scenes
of Northwest U S. (Washington and Oregon) from June 26,
1987 at 30 m resolution to evaluate the algorithm’s response
to high resolution data. In this study, we used data from band
3 (RED, 630–690 nm) and band 4 (NIR, 760–900 nm). This
image was geometrically registered to a terrain-corrected image
with an universal transverse Mercator (UTM) projection. The
dark object subtraction method of atmospheric correction was
used to correct surface reflectance for the atmospheric effect
[33], [34]. There was also a “sitemap” containing polygons
of known ground cover, associated with this data set. This
sitemap distinguished 17 different forest densities, based on the
percentage of forest cover in a forested pixel, and seven other
types of miscellaneous landcover types. Using the Bayesian
maximum likelihood classification method, we separated this
image into three biomes, grasses and cereal crops, broadleaf
forests and needle forests. We attributed to broadleaf forests all
the pixels where hardwood forest makes up more than 60% of
the pixel area. Needle forests consist of those pixels in which
conifers make up more than 60% of the pixel area. The other
landcover classes that do not belong to these three biomes were
defined as unknown class types. In total, grasses occupy 6.6%
of the total area, and broadleaf and needle forests occupy 4.8%
and 10.3% of the total area.

B. Spectral Signatures

Although all the vegetation types have relatively similar
spectral properties (large absorption in RED and large re-
flectance in NIR), different biomes have special characteristics
depending on the canopy architecture. These characteristics can
be distinguished by comparing the spectral signatures. Fig. 1(a)
and (b) present histograms of canopy reflectances in RED
and NIR spectral bands as a function of biome type derived
from LASUR data. In the RED band, canopy reflectances vary
between 0.0 and 0.2. Broadleaf and needle forests have the
strongest absorption features. On average, they reflect only
3% and 4.5% (Table I) of the incoming radiation. Grasses
and broadleaf crops are characterized as the brightest biomes.
About 8% and 6.5% of the incoming radiation is reflected. In
the NIR band, reflectances vary between 0.1 and 0.5. Shrubs
and broadleaf crops represent two extremes. Their reflectances,
on average, are 21% and 32%, respectively. The other biomes
reflect nearly 25% of the incoming radiation and have similar
histograms.

Vegetation indices typically capture the absorption contrast
across the 650-850 nm wavelength interval through combina-
tions of broadband RED and NIR reflectance. The most widely
used index in the processing of satellite data is NDVI, defined
as ( ), where and are spectral
reflectance at NIR and RED wavelengths, respectively. It is
a measure of chlorophyll abundance and energy absorption
[35]. Fig. 1(c) demonstrates the distribution of NDVI values
derived from LASUR data. In general, broadleaf forests have
the highest NDVI values, around 0.813, followed by needle
forest, around 0.695 (Table I). Broadleaf crops and savannas
have similar NDVI distributions, and their NDVI values are
larger than those of grasses (0.515) and shrubs (0.615). It would
be difficult to distinguish broadleaf crops from savannas using
only NDVI.

The data density distribution function, introduced earlier
in Section II, can be used to indicate the location of a data
peak in the spectral space. Fig. 1(d) shows the location of
points with high density for different biomes in the RED-NIR
space. Each area bounded by the contour represents an area
containing the 25% density of the total pixels from a given
biome type. Each biome tends to cluster and occupy a well
localized space. Broadleaf forests are located at low RED and
high NIR area, while grasses are at the high RED and low NIR
area. Broadleaf crops and savannas occupy different locations,
although their NDVI distributions are comparable. In general,
the more unique a location, the better the ability to distinguish
each of the vegetation type. The influence of soil is also clear
from this panel. Grasses and shrubs are biomes located near
the soil line. Broadleaf forests are dense vegetation and located
closest to the NIR axis.

Fig. 2 presents canopy reflectance features from Landsat data.
On average, grasses, broadleaf and needle forests reflect only
6.5%, 2%, and 1.3%, respectively, of the incoming radiation in
the RED band (Table I). This is much less than that of LASUR
data. However, the NIR reflectance of grasses and broadleaf
forest can be as high as 30% and 34.8%, compared with 25%
and 29% for the LASUR data. Needle forests are the darkest
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Fig. 1. Statistical properties of canopy reflectances for global LASUR data in July 1989. (a) Histogram of canopy reflectances at the RED band. (b) Histogram
of canopy reflectances at the NIR band. (c) Histogram of NDVI. (d) 25% density contours in the RED-NIR space, which shows the location of points with high
density for different biomes. The straight line represents the place where NDVI are equal to 0.68. Canopy structure varies considerably with the sameNDVI value.

TABLE I
SPECTRAL STATISTICS FORLASUR DATA AND LANDSAT TM DATA

among the three biomes, both at RED and NIR. The NDVI
values for the three biomes are 0.635, 0.881, 0.886, respectively
(Table I). The 25% density contours are tightly clustered occu-
pying a small but unique location in the spectral space. At the
same time, the clusters are away from the soil line, and closer
to the NIR axis. The biomes are well separated that they do not
overlap even on the 75% density contour.

Comparing the results from the previous two data sets, we
conclude that, as the spatial resolution increases from LASUR

data to Landsat data, the reflectance decreases in the RED band
and increases in the NIR band, and consequently, fewer biomes
overlap in the RED-NIR spectral space.

IV. PROTOTYPING OF THEALGORITHM

A. Prototyping with LASUR Data

This section describes global LAI and FPAR fields derived
with the MODIS LAI/FPAR algorithm using the LASUR data.
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Fig. 2. Statistical properties of canopy reflectances for Landsat TM data of northwest U.S. in June 1987. (a) Histogram of canopy reflectances at the RED band.
(b) Histogram of canopy reflectances at the NIR band. (c) Histogram of NDVI. (d) 25% density contours in the RED-NIR space, which shows the location of points
with high density for different biomes. The straight line represents the place where NDVI are equal to 0.68.

The objectives are to analyze these fields and situations when
the algorithm fails to retrieve a value of LAI/FPAR, and to as-
sess the influence of uncertainties in surface reflectances on the
LAI/FPAR product quality.

The algorithm was run pixel-by-pixel using LASUR data and
land cover BCM on all pixels with NDVI greater than 0.1. The
following notions are used in discussion on algorithm perfor-
mance. First, a pixel for which the algorithm retrieves a value
of LAI is a “retrieved” pixel. Second, a pixel for which the al-
gorithm can not retrieve a value of LAI is termed a “nonre-
trieved” pixel, and the algorithm is said to have failed for this
pixel. Third, the ratio of the number of retrieved pixels to the
total number of pixels is the retrieval index (RI).

1) Input Data: Atmospherically-corrected surface re-
flectances and uncertainties in measurements and simulations
are inputs to the algorithm (1). However, LASUR reports
no information on reflectance uncertainties. Therefore, the
uncertainties were simulated as

(8)

Here, is the mean uncertainty and is assumed to be a constant
in this study. Fig. 3 demonstrates the dependence of the RI on
. The RI increases with increases in. However, the quality of

retrieved LAI/FPAR decreases with increases in. If is under-
estimated, the algorithm fails even though surface reflectances

were reasonable. If is overestimated, the algorithm can pro-
duce LAI/FPAR values for nonvegetated pixels. Findingfor
which about 95% of nonretrieved pixels are nonvegetated is a
solution to the above problem, which was 0.2 for the LASUR
data. The RI varies with biome types at a constant. When

is 0.2, the RI for the six biomes is 91.5%, 92.7%, 74.0%,
79.7%, 39.3%, 54.5%, respectively. The reason that broadleaf
and needle forests have low RI could be due to dark soil pat-
terns used to represent effective ground reflectance in (2).
If a pixel is bright, it will not be considered as a pure broadleaf
or needle forest pixel and, consequently, the algorithm will fail.
Low values of RI are not necessarily an indication of poor per-
formance of the algorithm. For the coarse resolution data, such
as LASUR (1/7th of a degree), the vegetation in the pixel may
be a case of mixture of different land cover classes. Therefore,
biome-specific spectral features may be lost. At the present time,
restricting the algorithm to pure vegetation types retains the
ability to discriminate biome types.

2) Histograms of LAI and FPAR:The histogram of the re-
trieved LAI/FPAR describes the value distribution of these fields
for various biomes. Fig. 4(a) presents the histogram of retrieved
LAI using the LASUR data. Broadleaf and needle forests have
distributions distinct from the other four biomes. The former
have relatively high LAI values, concentrated about 4.0 to 6.0.
For the latter, the LAI values are generally less than 2.0. The dif-
ferences among grasses, shrubs, broadleaf crops, and savannas
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Fig. 3. Dependence of the retrieval index (RI) on uncertainties" in measurements and simulations.

are seen in the peak and tail of the LAI histograms. The highest
frequency of LAI for broadleaf crops and savannas is around
1.25, for grasses around 1.0, and for shrubs around 0.75 and
1.25. The distribution tail of broadleaf crops and savannas con-
tains at least 20% of the pixels whose LAI values are larger than
4.0. The tail ends at about 4.0 for grasses and shrubs. Therefore,
the mean LAI for broadleaf crops and savannas are 2.1 and 2.2,
for grasses and shrubs, only 1.2 and 1.4. Shrubs have two ob-
vious peaks that correspond to the two peaks in the NDVI his-
togram shown in Fig. 1(c). However, the retrieved LAI is not
based on the NDVI.

The LAI distribution from a NDVI-based algorithm de-
veloped earlier by Myneniet al. [24] is shown in Fig. 4(b).
The data used for this NDVI-based algorithm were AVHRR
Pathfinder data from July 1981 through June 1991. The average
July retrievals over the ten-year period are shown in this
figure. There are many similarities between Fig. 4(a) and (b).
Broadleaf and needle forests have much higher LAI than the
other four biomes. The double peak in shrubs is also seen in
Fig. 4(b). The similarity between the two retrievals imbues
confidence in the MODIS algorithm.

Fig. 4(e) and (f) show the NDVI histograms from retrieved
and nonretrieved pixels. Compared to Fig. 1(c), the NDVI his-
togram of retrieved pixels is similar to the NDVI histogram of all
pixels. Therefore, the algorithm identifies most of the features in
the observed data. Failures are typically two cases. First, NDVI
is too high for a particular biome. For example, the algorithm
fails to retrieve information when the NDVI of grasses is larger
than 0.75. In the LUT, there is no information for grasses at such
values of NDVI. Second, for the same NDVI value, some of the
pixels are retrieved pixels, but the others are not. The failure of
this type will be discussed later.

3) Test of Physics:There are many examples in published
literature about the strong relation between NDVI and LAI
and FPAR [9]–[15]. This provides an opportunity to test the
physics of the algorithm by comparing the LAI-NDVI and
FPAR-NDVI relationships derived from the algorithm with
those reported from field measurements. Fig. 5(a) and (b) shows
the distributions of the retrieved values of LAI and FPAR with
respect to the NDVI of biome 5. LAI is nonlinearly proportional

to NDVI, while FPAR is linearly proportional to NDVI. This
corresponds to relations reported in the literature [24], [36].
Note the NDVI in this plot is evaluated from measured RED
and NIR reflectances, while the retrieved quantities result from
the algorithm that uses reflectances instead of NDVI. The
advantages of using the MODIS algorithm instead of NDVI
relations are as follows. First, NDVI–LAI relations are subject
to changes in sun angle, background reflectance, and view
angle, while the MODIS algorithm actually uses these changes
as sources of information in the retrieval process. Second,
NDVI is based on two spectral bands only, while the algorithm
can ingest 3, 4, or even MODIS 7 bands simultaneously to
retrieve LAI and FPAR.

Fig. 5(c) and (d) shows the scatter plot of data from retrieved
and nonretrieved pixels in the RED-NIR plane. This distribu-
tion provides insights into where and why the algorithm failed.
For retrieved pixels in the RED-NIR plane, canopy reflectances
range about 0.02–0.16 for the RED band and 0.1–0.42 for the
NIR band. This reflectance space obviously overlaps the 25%
density contour area. From Figs. 4(e), (f) and 5(c), (d), it ap-
pears that there are three regions where the algorithm fails. RED
reflectance less than 0.03 (NDVI is very large), large RED and
NIR reflectances (pixels are near the soil line and NDVI is very
small), and RED and NIR are relatively large and located be-
tween the first two regions. When the RED reflectance is very
small, the uncertainty is large, and the probability of retrieval
decreases. When a pixel is near the soil line, it is not a vegetated
pixel, and the algorithm identifies it correctly. For the third re-
gion, consider a line, on which NDVI is constant [Fig. 5(d)], in
the RED-NIR spectral space. For the same value of NDVI, some
pixels result in retrievals, while others do not. The algorithm is
sensitive to canopy reflectances on a constant NDVI line, while
the NDVI-based algorithm is insensitive to these. It is clear that
the algorithm uses information on the canopy spectral proper-
ties instead of NDVI, especially, when there are many spectral
bands and multi-angle data. Only when a pixel falls within the
specified spectral and angular space in the LUT can it retrieve
an LAI value. Otherwise, the algorithm fails even if the NDVI
is reasonable. Therefore, a correct LUT is a key factor in algo-
rithm performance.
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Fig. 4. (a), (c) Histograms of LAI/FPAR derived from the MODIS algorithm with LASUR data. (b), (d) Histograms of LAI/FPAR derived from NDVI-based
algorithm with ten-year averaged AVHRR Pathfinder data [24]. (e) Histogram of NDVI from retrieved pixels. (f) Histogram of NDVI from nonretrieved pixels.
The mean uncertainty" is 0.20.

4) Reliability of Retrieved LAI/FPAR:Equation (1) may
admit a number of solutions, covering a wide range of LAI
values. When this happens, the canopy reflectances are said to
belong to the saturation domain, being insensitive to various
parameter values characterizing the canopy. The algorithm can
recognize this situation. The frequency with which LAI values
are retrieved under the condition of saturation is termed satura-
tion frequency. The accuracy of retrievals decreases in the case
of saturation, that is, the information conveyed about canopy
structure by canopy reflectances is small because a wide range

of natural variations in canopy structure and soil can result in
the same value of remotely-sensed signal [8]. Therefore, the
saturation frequency and threshold LAI value of saturation are
important criteria when assessing the accuracy of retrievals. For
the six biomes, the overall saturation frequencies are 0.38%,
2.5%, 16%, 15%, 48.5%, and 42.5%, respectively. Fig. 6(a)
shows the histogram of LAI retrieved under the condition of
saturation for the six biomes. When the LAI is less than 4.0, the
saturation frequency is low for all biomes. But, when LAI is
larger than 4.0, the saturation frequency drastically increases.
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Fig. 5. For broadleaf forests in LASUR data, the scatter plot shows (a) the LAI-NDVI relationship, (b) the NDVI-FPAR relationship, (c) retrieved pixels in the
RED-NIR space, and (d) nonretrieved pixels in the RED-NIR space.

Fig. 6. (a) Histogram of LAI values retrieved under the condition of saturation. Solid lines present the same histograms as Fig. 4(a). Dashed lines show the ratio of
the number of LAI values retrieved under the condition of saturation to the total number of retrieved pixels. (b) Coefficient of variation (standard deviation/mean)
of retrieved LAI values (COVLAI) as a function of retrieved LAI.

Nearly every pixel is retrieved under the condition of saturation
when the LAI is larger than 5.0.

Broadleaf and needle forests in general have high LAI values,
and therefore, a high saturation frequency. In order to assess the
quality of retrieved LAI/FPAR values, we examine the coeffi-
cient of variation of the retrieved LAI value (COVLAI) defined

as the ratio of LAI dispersion to mean LAI evaluated from the
set of acceptable solutions. The lower the COVLAI value, the
more reliable and accurate the retrieval. Fig. 6(b) demonstrates
COVLAI as a function of retrieved LAI and biome types. The
COVLAI values vary around 0.2, while the standard deviations
of the retrievals increase with LAI. This is not surprising, be-
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Fig. 7. (a) Global LAI and (b) global FPAR fields derived from LASUR data in July, 1989. For the nonretrieved pixels, the LAI-NDVI, and NDVI-FPAR relations
were used to estimate LAI and FPAR.

cause at high LAI values the reflectances belong to the satura-
tion domain and it is difficult to localize a single estimate. When
LAI is larger than 3.0, broadleaf and needle forests have rela-
tively lower COVLAI values than other biomes at the same LAI
value. Therefore, when LAI is large and saturation frequency is
large, the retrieval is not necessarily poor. COVLAI cannot be
less than 0.2, because the mean uncertainty in these runs is 0.2.
The quality of the retrievals cannot be better than the quality of
the largest uncertainty in spectral reflectance data input to the
algorithm. Therefore, the availability of band specific uncertain-
ties in atmospherically corrected surface reflectances is critical
to assess the quality of the LAI/FPAR product.

5) LAI and FPAR Images:The algorithm was run on the
global LASUR data for the month of July 1989. For the nonre-
trieved pixels, the averaged NDVI-LAI/NDVI-FPAR relations
derived from all the retrieved pixels were used to estimate LAI
and FPAR. Fig. 7 shows color-coded images of global LAI and
FPAR. These compare well with the fields reported earlier by
Myneni et al. [24]. The comparison was done to assess if the
algorithm captures the general patterns of LAI and FPAR dis-

tribution at the global scale. Whether the retrievals are accurate
or not requires validation, which is the next step.

6) Biome Misclassification and LAI/FPAR Retrievals:The
MODIS LAI/FPAR algorithm requires a land cover classifica-
tion map provided by the MODIS land cover product [22]. It is
important, therefore, to assess the impact of biome misclassifi-
cation on LAI/FPAR retrievals. We ran the algorithm six times
per pixel, each time using a different biome’s LUT. This sim-
ulates the effects of biome misclassification on LAI/FPAR re-
trievals. The results are shown in Table II. Typically, when pixels
are misclassified, either the RI is low and/or the retrieved LAI
values are incorrect. When misclassification between distinct
biomes occurs, the results are predictable. For example, grasses
and cereal crops (biome 1) and broadleaf forests (biome 5) are
distinct in their architecture and foliage optics. If biome 1 is mis-
classified as biome 5, the RI is 27% compared to 91% without
misclassification. Or, if biome 5 is misclassified as biome 1,
the retrieved LAI value decreases from 4 or 5 to 2. Misclas-
sification can be detected by the RI, mean LAI and the his-
togram of retrieved LAI distribution in such cases. If misclas-
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TABLE II
(a) SUCCESSINDEX AND (b) MEAN LAI FOR MISCLASSIFIEDLASUR DATA

sification happens between spectrally and structurally similar
biomes, perhaps, because of coarse spatial resolution, the impact
on LAI/FPAR retrievals is difficult to assess. As an example,
consider shrubs (biome 2) and savannas (biome 4). The RI and
mean LAI do not vary greatly. The retrieved LAI/FPAR values
are acceptable, although the pixels have been misclassified. This
example indicates that various biome LUT’s share similar en-
tries for certain combinations of spectral reflectances.

B. Prototyping with Landsat Data

1) General Results:The MODIS LAI/FPAR algorithm was
prototyped with Landsat data for three biomes: grasses and ce-
real crops, broadleaf forests, needle forests. A fine resolution
LUT was used to retrieve LAI and FPAR because of the finer
spatial resolution of Landsat data. The RI’s for the three veg-
etation types are 90.7%, 53.9%, 57.9%, respectively, and the
mean LAI values are 1.87, 5.79, 4.11, respectively. Compared to

LASUR data, the RI increase for broadleaf and needle forests,
and so do the mean LAI values. The saturation frequencies at
high LAI values for these biomes are comparable to those re-
ported earlier for LASUR data.

The following explains the dependency of the LUT on spatial
resolution. Canopy spectral properties are a function of spatial
resolution (Figs. 1 and 2). In the RED-NIR plane of 25% den-
sity contours, fine resolution data tend to cluster and occupy
a small region close to the NIR axis. Contours corresponding
to different biome types do not overlap either. As the resolu-
tion decreases, the spectral properties of each biome are influ-
enced by the presence of soil and water as well as the other
vegetation types. In the spectral space, the distance between the
biomes decreases and the biomes become similar. Therefore, the
LUT should reflect these changes in vegetation canopy spec-
tral properties with changes in resolution. The parameters,

“bs” or “S,” introduced by (6) control the dependency of
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Fig. 8. Retrievals from Landsat data as a function of spatial resolution-dependent look-up table (LUT). Histograms of LAI from (a) Landsat LUT, (b) LASUR
LUT, (c) histograms of FPAR from Landsat LUT, and (d) LASUR LUT.

LUT on the spatial resolution of data. To further investigate, the
algorithm was performed on Landsat data with LASUR LUT,
that is, fine resolution data with coarse resolution LUT. Fig. 8
shows the histogram of LAI and FPAR obtained from Landsat
data with LASUR LUT and, also, Landsat data with Landsat
LUT. When Landsat data and Landsat LUT are used, the re-
trieved LAI values vary from 0.0 to 2.5 for grasses, from 5.0 to
7.0 for broadleaf forest, and from 1.5 to 6.0 for needle forests
(Table III). When LASUR LUT is used with Landsat data, the
histograms of retrieved LAI and FPAR change greatly. For ex-
ample, the LAI of grasses/cereal crops can reach unrealistic
values between 4.0 and 6.0. The LAI of needle forests is con-
centrated between 1.5 to 4.0, a relatively small range for this
biome. The RI for the three biomes also decrease to 87.5%,
39.2%, 4.7%, respectively. When the algorithm is run using
LASUR data but with Landsat LUT (Fig. 9), the mean LAI for
all biomes decrease, and the differences between forests (high
LAI) and other biomes (low LAI) disappear. FPAR shows sim-
ilar changes. This clearly indicates the dependency between data
resolution and the LUT.

2) Soil or Background Effects:As previously mentioned, in
the design of the MODIS LAI/FPAR algorithm, the 3-D ra-
diative transfer problem can be represented as the sum of two
components. The first describes the radiation regime within the
vegetation canopy with a completely absorbing soil or back-
ground beneath the canopy. The second component describes

additional radiation due to interactions between the soil and
vegetation. Therefore, the soil-vegetation interaction is an im-
portant component controlling the spectral behavior of vege-
tation canopies. At the fine resolution, the contribution of the
soil-vegetation interaction is negligible in the case of dense veg-
etation, such as forests. We executed the algorithm only with
the black soil problem on Landsat data to test this assumption.
The RI can be as high as 50.6% (broadleaf forest) and 54.3%
(needle forest), compared to 53.7% and 57.9% if the contri-
bution from the soil-vegetation interaction is added. The his-
tograms of retrieved LAI and FPAR do not change substan-
tially. Therefore, the fine resolution Landsat data represent pure
and dense vegetation with minimal soil or background effects
in this instance. The RI are only 31% and 45% for broadleaf
and needle forests when only the black soil problem is used to
retrieve LAI and FPAR for the coarser resolution LASUR data.
The soil-vegetation interaction is an important component that
controls the spectral behavior of vegetation canopies. Its effect
becomes large as the resolution decreases.

V. CONCLUSIONS

Results from the prototyping described in this paper demon-
strate the ability of the algorithm to produce global LAI and
FPAR fields. For global LASUR data in July, the mean LAI of
broadleaf and needle forest is around 4.0, broadleaf crops and
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TABLE III
COMPARISON OFTHE RESULTSFROMLASUR LUT AND LANDSAT LUT RETRIEVALS

Fig. 9. Retrievals from LASUR data using Landsat look-up table (LUT). Histograms of (a) LAI and (b) FPAR.

savannas 2.1 and 2.2, shrubs 1.4 and grasses and cereal crops
1.2. The algorithm utilizes leaf spectral properties and canopy
structural attributes, instead of NDVI, in the retrieval process.
An LAI value can only be retrieved when a pixel falls within the
specified spectral and angular space in the LUT.The algorithm
fails even if the NDVI value is reasonable. The uncertainties in
input data influence the RI. RI increases with increasing uncer-
tainties. However, the quality of retrieved LAI/FPAR decreases
with increasing uncertainties. A value of 0.2 was found optimal
in this study. Quantitatively, the saturation frequency and coef-
ficient of variation (standard deviation/mean) of retrieved LAI
values (COVLAI) are two useful metrics to assess the quality
of the retrieved field. The higher the saturation frequency and
COVLAI value, the lower the quality of the retrieval. On av-
erage, if LAI is larger than 4.0, saturation problems begin to in-
fluence the retrieval. Forests have higher saturation frequencies
than other vegetation types. However, they have lower COVLAI
values than other biomes at the same LAI value, especially at
high LAI values. Therefore, the retrieval quality is not neces-
sarily poor. COVLAI cannot be less than the total uncertainty in

the data and the LUT, because the quality of the retrievals cannot
be better than the quality of the largest uncertainty in spectral re-
flectance data input to the algorithm. The effect of biome mis-
classification between distinct biomes on the algorithm can be
evaluated through the RI, mean LAI, and the histogram of the re-
trieved LAI distribution. Misclassification can fatally impact the
quality of the retrieval in this case. The impact of biome misclas-
sification between spectrally and structurally similar biomes is
negligible, particularly if the spatial resolution of the input data
is coarse.

Leaf canopy spectral properties differ with spatial resolution.
Each vegetation type in Landsat data tends to cluster and oc-
cupy a small region close to the NIR axis in the spectral space,
while biomes become spectrally similar in the case of coarse
resolution LASUR data. The algorithm is dependent on the spa-
tial resolution of the data through the use of the LUT. We cannot
use Landsat LUT to retrieve LASUR LAI/FPAR and vice versa.
By evaluating the data density distribution function, we can ad-
just the algorithm for data resolution and utilize the algorithm
with data from other sensors.
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