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Prototyping of MODIS LAI and FPAR Algorithm
with LASUR and LANDSAT Data

Yuhong Tian, Yu Zhang, Yuri Knyazikhin, Ranga B. Myneni, Joseph M. Glassy, Gerard Dedieu, and
Steven W. Running

Abstract—This paper describes results from prototyping of active radiation (0.4—0.7m) absorbed by vegetation (FPAR),
the moderate resolution imaging spectroradiometer (MODIS) g radiometric variable. In order to quantitatively and accurately
radiative transfer-based synergistic algorithm for the estimation .\ 4q| global vegetation dynamics and differentiate short-term
of global Ie_af_area index (LAI) and fraction of phqtosynthetlcally f | 4 trend I to disti ish . | f
active radiation (FPAR) absorbed by vegetation using land rom long-term trends, as well as 1o distinguish regional irom
surface reflectances (LASUR) and Landsat data. The algorithm global phenomena, these two parameters must be collected
uses multispectral surface reflectances and a land cover classifi- often for a long period of time and should represent every
cation map as input data to retrieve global LAl and FPAR fields.  region of the Earth’s lands [7].

Our objectives are to evaluate its performance as a function of  Thege two parameters are estimated from remote sensing
spatial resolution and uncertainties in surface reflec_tances and d . irical relati hips b | f LAI/EPAR
the land cover map. We analyzed reasons the algorithm can or ata using emplrllca. re atlons 'PS etween vg ueso
cannot retrieve a value of LAI/FPAR from the reflectance data and vegetation indices which include near-infrared (NIR) to
and justified the use of more complex algorithms, instead of red (RED) band ratios and the normalized difference vegetation
NDVI-based meth(_)ds. The algo_r_ithm was tested to investigate the index (NDVI) [9]-[15]. The limitations of such methods
effects of vegetation misclassification on LAI/FPAR retrievals. 5.6 \well known [16]-[18]. No unigue relationship between
Mlsc_IaSS|f|cat|on between dl_stlnct bl_omes can fa;ally impact the LAI/EPAR and tation index i licabl h d
quality of the retrieval, while the impact of misclassification . and vegetation Index IS applicable everywhere ar.'
between spectrally similar biomes is negligible. Comparisons of all the time [19]-[21] because the reflectances of plant canopies
results from the coarse and fine resolution retrievals show that the depend on a number of other factors, such as, measurement
algorithm is dependent on the spatial resolution of the data. By geometry and spatial resolution. These empirical relationships
evaluating the data density distribution function, we can adjust 54 gjte- and sensor-specific, and are unsuitable for application
the algorithm for data resolution and utilize the algorithm with L .
data from other sensors. to large areas orin different seasons [19]. A phyS|caIIy_ based
model to describe the propagation of light in plant canopies and
(FPAR), land surface reflectances (LASUR), LANDSAT, leaf Its USFT' n rlemﬁval of bIOpf}yilc?El parr]ag]bmers.ls thse prefe”:gsal
area index (LAI), moderate resolution imaging spectroradiometer ternative. .nt.e'contexto the Eart serving y.Stem( g ),
(MODIS). the land discipline group of the moderate resolution imaging
spectroradiometer (MODIS) Science Team is developing
algorithms for the determination of landcover, LAI, albedo,
etc. to be operationally generated from data from one or more
HE importance of vegetation in studies of global cliof satellites [22].
mate and biogeochemical cycles is well recognized [1]. One of these algorithms is the synergistic algorithm for the es-
Presently, most ecosystem productivity models, carbon budgjeration of global LAI/FPAR from MODIS [7]. At the present
models, and global models of climate, hydrology and bidime, the algorithm has been developed and theoretically justi-
geochemistry require vegetation parameters to calculate |diggl, but no evidence of its functionality has been presented. The
surface photosynthesis, evapotranspiration and net prim@urpose of this paper is to evaluate the physical functionality and
production [2]-[6]. Therefore, accurate estimates of vegetatiperformance of the algorithm by prototyping with the land sur-
parameters are increasingly important in the carbon cycle, flage reflectances (LASUR) data derived from the advanced very
energy balance and environmental impact assessment studiigh resolution radiometer (AVHRR) data and Landsat data.
Two of these parameters are green leaf area index (LAl),Specifically, we would like to know: What is the effect of un-
canopy structural variable, and fraction of photosyntheticalertainties in surface reflectances on the quality of retrieved
LAI/FPAR? When and why the algorithm does/does not retrieve
. . . . a value of LAI/FPAR from the reflectance data? How can an
Manuscript rect_alvedJune 1,1_999; revised March 12000 This work was sup- . s .
ported by the National Aeronautics and Space Administration through MOngssessment of the algorithm accuracy be made? What is the
Contract NAS5-96061. behavior of the algorithm as a function of spatial resolution?
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Results from prototyping are a valuable means of testing theoblem, andrs » andts x are reflectance and transmittance
physics of the algorithm and also constitute an important firsésulting from an anisotropic source located underneath the
step toward improving the algorithm. At the most general levedanopy. The weightw,, » is the ratio of the BRDF for the
this research contributes to an improved understanding of thlack soil problem tar,; »(£20), andws » is the ratio of the
algorithm behavior. A more practical benefitis to provide a bastanopy leaving radiance generated by anisotropic sources on
for improved retrieval of surface parameters from satellite dathe canopy bottom ta@s ». The weightsw,, » and wg  are

functions of sun-view geometry, wavelength, and LAI. They
[I. ALGORITHM are precomputed and stored in the LUT [7].

The effective ground reflectangg; s is the fraction of radia-
tion reflected by the canopy ground. It depends on the radiative

The inverse problem of retrieving LAl and FPAR from atmoregime at the canopy bottom. However, its range of variations
spherically corrected BRDF is formulated as follows. Given sufves not exceed the range of variations of the hemispherically
Qo and view{2, directions, vegetation type, BRDF#&,(k = integrated bidirectional factor of the ground surface, which is in-
1,2,---,N)atN spectral bands and their uncertainigék =  dependent of vegetation [7]. Therefope; ; can be used as a pa-
1,2,---, N), find LAl and FPAR. The retrievals are performedameter to characterize the ground reflection. The set of various
by comparing observed and modeled BRDF's for a suite phtterns of effective ground reflectances at the MODIS spectral
canopy structures and soil patterns that cover a range of 8&nds is a static table of the algorithm, i.e., the element of the
pected natural conditions. All canopy/soil patterns for which theuT. The present version of the LUT contains 29 patterns of
magnitude of residuals in the comparison does not exceed W07 ranging from bright to dark. They were taken from the soil

A. Statement of the Problem

certainties in observed and modeled BRDF's, i.e., reflectance model developed by Jacquemstdl. [25], with
model inputs presented in Barettal. [26]. These soil patterns
1 & ri(Q,, Qo, p) — di 2 include three soil types: mixtures of clay, sand, and peat. Each
N ; < 5 ) s @) soil type is characterized by three moisture levels and three soil

roughness types. In biomes with grounds of intermediate bright-
Higss, all soil patterns are assigned. In biomes where the ground
IS bright, the first 16 bright soil patterns are used.
Note thatr,, »(€29) andrg » are not included in the LUT.

are treated as acceptable solutions to the inverse problem.
rp(,,Qo,p), k=1,2,---, N, are modeled BRDF's, angd=

[canopy, 50|I_] denotes a canopy/soil pattern, which is unknovgllven canopy absorptancas{ »(€) andas ») and transmit-
and will be discussed later. For each acceptable solution, avatue Q dt the luated via the | f
of FPAR is also evaluated. Mean values of LAl and FPAR avefa 16€ €=1(€0) andts»), they are evaluated via the law o

aged over the set of acceptable solutions are taken as solutigng"?Y conservation as

of the inverse problem. A mathematical justification of this pro-

cedure is presented in [7]. Its application to the retrieval of LAl Tos,x +tosx +apsn =1 ©)
and FPAR from multi-angular observation is discussed in [23]. rsaxttsytasy=1 (4)
B. Radiation Transport in a Canopy This makes canopy reflectance sensitive to the within canopy

For MODIS LAIFPAR algorithm, a three-dimensionalr@diation regimety,,(£2), avs,x (20), ts,x asa
(3-D) radiative transfer model is used to derive spectral apd! e dependence of canopy absorptance on wavelength for the
angular biome-specific signatures of vegetation canopi€sack Soil problem (subscript = *bs”) and S problem# =
Taking into account features specific to the problem of radiative ) ¢an be derived [7] as
transfer in plant canopies, powerful techniques developed in nu- 1—w(ho) 1—w(\)
clear physics were utilized to split a complicated 3-D radiative a. = 0)Pr ud A g -
transfer problem into two independent, simpler subproblems. 1=w(Npx 1=w(lo)
The first subproblem describes the radiative regime within trll?

vegetation canoov for the case of a black surface undernet rew() is the leaf albedo (leaf reflectanee leaf transmit-
g . “ by . ” %nce). It is a stable characteristic of green leaves, although its
the medium (“black soil problem”). The second subproblem

. . T . magnitude can vary with leaf age and species. In order to ob-
is the radiation field in the vegetation canopy generated by. o .
. : : in accurate leaf albedos for the six biome types, we obtained
anisotropic heterogeneous wavelength-independent source
|éat spectra data from several sources. Mean leaf reflectance and

located at the canopy bottom (*S problem). In terms of th'tsransmittance values were calculated for the six biome types at
approach, the BRDF; ({2, {Zo, p) of a heterogeneous canopy ..., MopIs bands (645 nm, 859 nm, 469 nm, 555 nm, 1240
atwavelength can be expressed as [7], [8] nm, 1640 nm, and 2130 nm). We stored the mean albedo in the

LUT. Variablep,, is a wavelength independent coefficient de-
rA(82, 20) = wes ATbs A($20) fined as [7], [27]

pesN)
+ wg At tus 2 (20). (2
SALSA T2 ) crea A(S0)- (2

(®)

/ / Ts(r, Qo (r, Q) drr dQ
_ 1 _ JV Jar
Here r;, A(Q0) and t,; A(2o) are directional hemispherical pr=1 ®)

reflectance (DHR) and canopy transmittance for the black soil A Aﬂ Ly (r, )o(r, Q) dr d€2
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Wherel,. , andl, ., are solutions of the black soil problem and 3) IfLAlis between case 1) and case 2), neithgr (£2o)

S problem for black¢ = 0) and white ¢ = 1) leaves, and nor transmittance will equal zero, and gaps in the vege-
o is the extinction coefficient (dependent on vegetation types). tation elements will cause photons to interact with soil
V' is a parallelepiped where vegetation canopies are located. Its and canopies. The soil-canopy interactions will cause
height coincides with the height of plants and its horizontal di- the canopy response, with a hypothetical nonreflecting
mension coincides with the size of the pixels. The coefficient soil background, to shift toward the soil line (RED re-
pr depends on canopy structure anidnd is an element of the flectance will decrease, and changes in NIR reflectance
LUT. Because the horizontal dimensioniéfcoincides with the will depend on the soil brightness pattern under the
size of pixel,p, is a resolution dependent parameter. A precise canopy) [28]. The location of pixels will be between
derivation of (5), and (6) is given in [7]. Validation of relation- the soil line and NIR axis. The more gaps, the smaller
ships (6) with field measurements is presented in [27]. Similar the LAl value and the closer the pixels are to the soil
relationships are also valid for canopy transmittance [7], [27]. line.

Thus, given canopy absorptance and transmittance for thero summarize, (2) shows how the location of a pixel in the
black soil problem and S problem at a reference wavelengectral space is related to LAI values. If a pixel is close to
Ao, one can evaluate these variables at any other wavelengthihe soil line, its LAl value is small. Away from the soil line
Therefore, we only store canopy absorptanses,, transmit-  toward the NIR axis, the contribution of soil to canopy leaving
tanceg.., »,, the coefficientg,., and leaf albedo, insteadaf »  radiance decreases as the product,of.(20) andts », and
andt,  in the LUT. Reflectancesy, »({20) andrs x can then thys, LAl values increase. The direction of this movement in the
be evaluated via the energy conservation law (3) and (4) and §pectral space results in different rates of LAl variations. Such

serted into (2). _ o arepresentation of canopy reflectances is used in our algorithm
Similar to (2), the fraction of radiation absorbed by vegetao build and adjust the LUT, and to interpret results presented in
tion, a,({20), at wavelength\ can be expressed as [7] Section IV.

e just |
pefr(N) 00 0(Q0). D. Adjusting the LUT for Data Resolution

a)\(QO) = abs,)\(QO) + asa 1— p ff()\) “Ts A

@) Before the configurable parameters of the LUT can be set,

For each acceptable solutipr= [canopy, soil], a value of FPAR data of a_spec_lflc spatial resolution must be analyzed to lo-
ate the pixels in the spectral space (for example, the RED-NIR

can be explicitly evaluated as the integral of (7) over the phot8 i 4
synthetically active region of the solar spectrum [7]. space) according to the biome type. We evaluated the data den-

sity distribution function as follows: specifying a fine grid cell in
the spectral space, counting the number of canopy reflectances
in this cell, and then dividing this value by the total number
Any pixel can be depicted as a point in the spectral spact.pixels in the entire spectral space. The data density distribu-
The spectral BRDF's tend to occupy certain well localized spatien function was evaluated for each biome type. A location of
in the spectral space, depending upon the architecture of thigh density (25% of all pixels) for each biome in the RED-NIR
biome. We use (2) to explain this behavior in the RED-NIRpace was plotted and used to adjust the LUT as follows. The
plane as follows: areas of 25% density can be interpreted as the sets of pixels rep-
1) If LAl = 0, thenrps A(Q) = rs.a = 0, tps 2(Q) = resenting the most probable patterns of canopy structure. As an
tsx = 1,andws coincides with bidirectional surface €<@mple, for biome 5 (broadleaf forests), we located the 25%

reflectance factor [7]. The BRDF at RED and NIR redensity of this biome in the spectral space during July, the green
sults from photon-ground interactions. The pixels arg€ason. Then we run the qlgorithm using only these pixels as
located on the so-called soil line (around 1:1 line in th&'PUt data and plotted the histogram of the retrieved LAl value.
RED-NIR spectral space) [26], [28]. The spectral peBased on p_rew_ous_ly re_ported results [24], the most probable
havior for different soil types will determine the exacfanopy realization in this case has an LAl value of abogt 5.1t
location of the soil line. The bright soil pattern will gen-M€ans that the peak of the histogram should be around five. We

erate high reflectance in RED and NIR. The dark softdiusted the LUT by changing; to represent the corresponding

pattern will generate low reflectance in RED and NIRdata set so that the simulated BRDF at RED and NIR wave-
2) A high value of LAl corresponds to a very densdengths corresponding to LAk 5 fall in the 25% density plot.

canopy. Its transmittances, (€2) andt s, are close Given the location of the most probable realization of canopy

to zero and thus, the contribution of soil is minimalStructure, (2) can be used to specify the location of pixels at
Pixels will occupy a narrow space near the NIR axigther values of LAl and soil patterns. The LUT was then ad-

Canopy reflectances at RED and NIR wavelengti¥sted for all biomes.
characterize exactly the spectral properties of vege-
tation, that is, plants absorb radiation very efficiently
throughout the visible regions and strongly reflect
and transmit at NIR. The type of vegetation and its Before MODIS data are available, data acquired by other in-
phenology will determine the precise location in thaetruments can be used to prototype and test the functionality of
RED-NIR spectral space. the LAI-FPAR algorithm. The goal of this section is to describe

C. Physical Meaning of (2)

I1l. DATA ANALYSIS
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and analyze the surface reflectance data used to prototypeBheSpectral Signatures

algorithm.
Although all the vegetation types have relatively similar

, spectral properties (large absorption in RED and large re-

A. Satellite Data flectance in NIR), different biomes have special characteristics

LASUR refers to data acquired during 1989-1990 and prg_epgn(.jing.on the canopy ar.chitecture. Thesg characteris_tics can
cessed at Centre d’Etudes Spatiales de la Biosphere (CESBRS)distinguished by comparing the spectral signatures. Fig. 1(a)
Toulouse, France, from AVHRR onboard the NOAA-11 satelljt@nd (b) present histograms of canopy reflectances in RED
[29], [30]. LASUR is a reprocessing of weekly global vegetatioﬁnd NIR spectral bands as a function of biome type derived
index data [31]. AVHRR is a cross-track scanning system feom LASUR data. In the RED band, canopy reflectances vary
turing one visible (RED, 572—698 nm), one NIR (716-985 nm5),etween 0.0 and .0.2. Broadleaf and needle forests have the
one short wave infrared, and two thermal infrared channels. FSfongest absorption features. On average, they reflect only
LASUR products, data from RED and NIR channels were uséd® and 4.5% (Table ) of the incoming radiation. Grasses
to estimate surface reflectances and vegetation index, and d¥td Proadleaf crops are characterized as the brightest biomes.
from the two thermal infrared channels were used to estimate fheout 8% and 6.5% of the incoming radiation is reflected. In
surface temperature. LASUR data were calibrated and correcteg NIR band, reflectances vary between 0.1 and 0.5. Shrubs
for atmospheric effects and filtered to eliminate residual nois@§d broadleaf crops represent two extremes. Their reflectances,
and perturbations [29], [30]. The data span is frorfi RGo 55°  ON average, are 21% and_ 32%,_respec_tlv_ely. The other _blqmes
Sin latitude, and 180W to 18C E in longitude. Each image hasre_ﬂect nearly 25% of the incoming radiation and have similar
904 rows and 2500 columns. The spatial resolution is 1/7th tograms.
a degree. In this study, RED and NIR surface reflectances fromvegetation indices typically capture the absorption contrast
July 1989, were used to prototype the MODIS LAI/FPAR alacross the 650-850 nm wavelength interval through combina-
gorithm. We created a monthly layer based on maximum NDVipns of broadband RED and NIR reflectance. The most widely
compositing of the four weekly layers in this month, minimizingised index in the processing of satellite data is NDVI, defined
cloud contamination, off-nadir viewing effects, sun-angle efs o~ — pr)/(pn + pr), Wherepy and pr are spectral
fects and aerosol and water vapor effects [32]. reflectance at NIR and RED wavelengths, respectively. It is

A biome classification map (BCM) that describes the glob& Mmeasure of chlorophyll abundance and energy absorption
distribution of six canopy structural types (biomes) was uséd°l- Fig. 1(c) demonstrates the distribution of NDVI values
as a prototype of the MODIS land cover product, required rived from LASUR data. In general, broadleaf forests have
the MODIS LAI/FPAR algorithm. BCM was derived from thethe highest NDVI values, around 0.813, followed by needle
AVHRR Pathfinder data set [24] and is time-independent. TH@rest, around 0.695 (Table I). Broadleaf crops and savannas
six biome types are: grasses and cereal crops (biome 1), shrit@ée similar NDVI distributions, and their NDVI values are
(biome 2), broadleaf crops (biome 3), savannas (biome ig[ger than those of grasses (0.515) and shrubs (0.615). It would
broadleaf forests (biome 5), and needle forests (biome 6). be difficult to distinguish broadleaf crops from savannas using

We also utilized Landsat Thematic Mapper (TM) scené¥ly NDVI.
of Northwest U S. (Washington and Oregon) from June 26, The data density distribution function, introduced earlier
1987 at 30 m resolution to evaluate the algorithm’s responigeSection Il, can be used to indicate the location of a data
to high resolution data. In this study, we used data from bapgak in the spectral space. Fig. 1(d) shows the location of
3 (RED, 630-690 nm) and band 4 (NIR, 760-900 nm). ThReints with high density for different biomes in the RED-NIR
image was geometrically registered to a terrain-corrected imaggace. Each area bounded by the contour represents an area
with an universal transverse Mercator (UTM) projection. Theontaining the 25% density of the total pixels from a given
dark object subtraction method of atmospheric correction wai®me type. Each biome tends to cluster and occupy a well
used to correct surface reflectance for the atmospheric efféasalized space. Broadleaf forests are located at low RED and
[33], [34]. There was also a “sitemap” containing polygonBigh NIR area, while grasses are at the high RED and low NIR
of known ground cover, associated with this data set. Thagea. Broadleaf crops and savannas occupy different locations,
sitemap distinguished 17 different forest densities, based on éihough their NDVI distributions are comparable. In general,
percentage of forest cover in a forested pixel, and seven otHeg more unique a location, the better the ability to distinguish
types of miscellaneous landcover types. Using the Ba_yesigfmch of the vegetation type. The influence of soil is also clear
maximum likelihood classification method, we separated thigom this panel. Grasses and shrubs are biomes located near
image into three biomes, grasses and cereal crops, broadtbgfsoil line. Broadleaf forests are dense vegetation and located
forests and needle forests. We attributed to broadleaf forestscisest to the NIR axis.
the pixels where hardwood forest makes up more than 60% ofFig. 2 presents canopy reflectance features from Landsat data.
the pixel area. Needle forests consist of those pixels in whi€n average, grasses, broadleaf and needle forests reflect only
conifers make up more than 60% of the pixel area. The oth@5%, 2%, and 1.3%, respectively, of the incoming radiation in
landcover classes that do not belong to these three biomes wheeRED band (Table ). This is much less than that of LASUR
defined as unknown class types. In total, grasses occupy 6.8&ba. However, the NIR reflectance of grasses and broadleaf
of the total area, and broadleaf and needle forests occupy 4.8¥est can be as high as 30% and 34.8%, compared with 25%
and 10.3% of the total area. and 29% for the LASUR data. Needle forests are the darkest
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Fig. 1. Statistical properties of canopy reflectances for global LASUR data in July 1989. (a) Histogram of canopy reflectances at the RED baogrgin) His
of canopy reflectances at the NIR band. (c) Histogram of NDVI. (d) 25% density contours in the RED-NIR space, which shows the location of poirits with hig
density for different biomes. The straight line represents the place where NDVI are equal to 0.68. Canopy structure varies considerably wiNDOké\ssHoee

TABLE |
SPECTRAL STATISTICS FORLASUR DATA AND LANDSAT TM DATA
LASUR DATA

Biome Type Mean Red Mean NIR Mean NDVI
Grasses and Cereal Crops | 0.080 0.25 0.515
Shrubs 0.050 0.21 0.615
Broadleaf Crops 0.065 0.32 0.662
Savanna 0.050 0.23 0.645
Broadleaf Forests 0.030 0.29 0.813
Needle Forests 0.045 0.25 0.695

LANDSAT DATA

Biome Type Mean Red Mean NIR Mean NDVI
Grasses and Cereal Crops 0.065 0.304 0.635
Broadleaf Forests 0.022 0.348 0.881
Needle Forests 0.013 0.200 0.886

among the three biomes, both at RED and NIR. The ND\data to Landsat data, the reflectance decreases in the RED band
values for the three biomes are 0.635, 0.881, 0.886, respectivatyl increases in the NIR band, and consequently, fewer biomes
(Table 1). The 25% density contours are tightly clustered occaverlap in the RED-NIR spectral space.
pying a small but unique location in the spectral space. At the
same time, the clusters are away from the soil line, and closer
to the NIR axis. The biomes are well separated that they do not ) .
overlap even on the 75% density contour. A. Prototyping with LASUR Data

Comparing the results from the previous two data sets, weThis section describes global LAl and FPAR fields derived
conclude that, as the spatial resolution increases from LASWth the MODIS LAI/FPAR algorithm using the LASUR data.

IV. PROTOTYPING OF THEALGORITHM
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Fig. 2. Statistical properties of canopy reflectances for Landsat TM data of northwest U.S. in June 1987. (a) Histogram of canopy reflectan€Bstatritie R
(b) Histogram of canopy reflectances at the NIR band. (c) Histogram of NDVI. (d) 25% density contours in the RED-NIR space, which shows the |agaton of p
with high density for different biomes. The straight line represents the place where NDVI are equal to 0.68.

The objectives are to analyze these fields and situations wheere reasonable. K is overestimated, the algorithm can pro-
the algorithm fails to retrieve a value of LAI/FPAR, and to asduce LAI/FPAR values for nonvegetated pixels. Findinfpr
sess the influence of uncertainties in surface reflectances onwigch about 95% of nonretrieved pixels are nonvegetated is a
LAI/FPAR product quality. solution to the above problem, which was 0.2 for the LASUR

The algorithm was run pixel-by-pixel using LASUR data andata. The RI varies with biome types at a constanihen
land cover BCM on all pixels with NDVI greater than 0.1. The is 0.2, the RI for the six biomes is 91.5%, 92.7%, 74.0%,
following notions are used in discussion on algorithm perfoiz9.7%, 39.3%, 54.5%, respectively. The reason that broadleaf
mance. First, a pixel for which the algorithm retrieves a valuend needle forests have low RI could be due to dark soil pat-
of LAl is a “retrieved” pixel. Second, a pixel for which the al-terns used to represent effective ground reflectangg in (2).
gorithm can not retrieve a value of LAl is termed a “nonrel a pixel is bright, it will not be considered as a pure broadleaf
trieved” pixel, and the algorithm is said to have failed for thisr needle forest pixel and, consequently, the algorithm will fail.
pixel. Third, the ratio of the number of retrieved pixels to théow values of Rl are not necessarily an indication of poor per-
total number of pixels is the retrieval index (RI). formance of the algorithm. For the coarse resolution data, such

1) Input Data: Atmospherically-corrected surface re-as LASUR (1/7th of a degree), the vegetation in the pixel may
flectances and uncertainties in measurements and simulatibesa case of mixture of different land cover classes. Therefore,
are inputs to the algorithm (1). However, LASUR reportbiome-specific spectral features may be lost. Atthe presenttime,
no information on reflectance uncertainties. Therefore, thestricting the algorithm to pure vegetation types retains the
uncertainties were simulated as ability to discriminate biome types.

2) Histograms of LAl and FPARThe histogram of the re-
trieved LAI/FPAR describes the value distribution of these fields
for various biomes. Fig. 4(a) presents the histogram of retrieved
Here,¢ is the mean uncertainty and is assumed to be a consthAt using the LASUR data. Broadleaf and needle forests have
in this study. Fig. 3 demonstrates the dependence of the Rldistributions distinct from the other four biomes. The former
e. The Rl increases with increasessitHowever, the quality of have relatively high LAl values, concentrated about 4.0 to 6.0.
retrieved LAI/FPAR decreases with increases.itf € is under- Forthe latter, the LAl values are generally less than 2.0. The dif-
estimated, the algorithm fails even though surface reflectandesences among grasses, shrubs, broadleaf crops, and savannas

érED = On1R = [dhpp + dy Rl %

8
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Fig. 3. Dependence of the retrieval index (RI) on uncertairtisBMeasurements and simulations.

are seen in the peak and tail of the LAI histograms. The highestNDVI, while FPAR is linearly proportional to NDVI. This
frequency of LAI for broadleaf crops and savannas is aroumdrresponds to relations reported in the literature [24], [36].
1.25, for grasses around 1.0, and for shrubs around 0.75 &mte the NDVI in this plot is evaluated from measured RED
1.25. The distribution tail of broadleaf crops and savannas camnd NIR reflectances, while the retrieved quantities result from
tains at least 20% of the pixels whose LAl values are larger thétre algorithm that uses reflectances instead of NDVI. The
4.0. The tail ends at about 4.0 for grasses and shrubs. Therefarsjantages of using the MODIS algorithm instead of NDVI
the mean LAl for broadleaf crops and savannas are 2.1 and 2edations are as follows. First, NDVI-LAI relations are subject
for grasses and shrubs, only 1.2 and 1.4. Shrubs have two ttb-changes in sun angle, background reflectance, and view
vious peaks that correspond to the two peaks in the NDVI hiangle, while the MODIS algorithm actually uses these changes
togram shown in Fig. 1(c). However, the retrieved LAl is noas sources of information in the retrieval process. Second,
based on the NDVI. NDVI is based on two spectral bands only, while the algorithm
The LAl distribution from a NDVI-based algorithm de-can ingest 3, 4, or even MODIS 7 bands simultaneously to
veloped earlier by Mynenét al. [24] is shown in Fig. 4(b). retrieve LAl and FPAR.
The data used for this NDVI-based algorithm were AVHRR Fig. 5(c) and (d) shows the scatter plot of data from retrieved
Pathfinder data from July 1981 through June 1991. The averagel nonretrieved pixels in the RED-NIR plane. This distribu-
July retrievals over the ten-year period are shown in thi®n provides insights into where and why the algorithm failed.
figure. There are many similarities between Fig. 4(a) and (IHor retrieved pixels in the RED-NIR plane, canopy reflectances
Broadleaf and needle forests have much higher LAI than thenge about 0.02—-0.16 for the RED band and 0.1-0.42 for the
other four biomes. The double peak in shrubs is also seenNIR band. This reflectance space obviously overlaps the 25%
Fig. 4(b). The similarity between the two retrievals imbuedensity contour area. From Figs. 4(e), (f) and 5(c), (d), it ap-
confidence in the MODIS algorithm. pears that there are three regions where the algorithm fails. RED
Fig. 4(e) and (f) show the NDVI histograms from retrievedeflectance less than 0.03 (NDVI is very large), large RED and
and nonretrieved pixels. Compared to Fig. 1(c), the NDVI hiNIR reflectances (pixels are near the soil line and NDVI is very
togram of retrieved pixels is similar to the NDVI histogram of alkmall), and RED and NIR are relatively large and located be-
pixels. Therefore, the algorithm identifies most of the featuresiween the first two regions. When the RED reflectance is very
the observed data. Failures are typically two cases. First, ND&fhall, the uncertainty is large, and the probability of retrieval
is too high for a particular biome. For example, the algorithmlecreases. When a pixel is near the soil line, it is not a vegetated
fails to retrieve information when the NDVI of grasses is larggrixel, and the algorithm identifies it correctly. For the third re-
than 0.75. Inthe LUT, there is no information for grasses at sugion, consider a line, on which NDVI is constant [Fig. 5(d)], in
values of NDVI. Second, for the same NDVI value, some of ththe RED-NIR spectral space. For the same value of NDVI, some
pixels are retrieved pixels, but the others are not. The failure jpifkels result in retrievals, while others do not. The algorithm is
this type will be discussed later. sensitive to canopy reflectances on a constant NDVI line, while
3) Test of Physics:There are many examples in publishethe NDVI-based algorithm is insensitive to these. It is clear that
literature about the strong relation between NDVI and LAthe algorithm uses information on the canopy spectral proper-
and FPAR [9]-[15]. This provides an opportunity to test thies instead of NDVI, especially, when there are many spectral
physics of the algorithm by comparing the LAI-NDVI andbands and multi-angle data. Only when a pixel falls within the
FPAR-NDVI relationships derived from the algorithm withspecified spectral and angular space in the LUT can it retrieve
those reported from field measurements. Fig. 5(a) and (b) shaavsLAl value. Otherwise, the algorithm fails even if the NDVI
the distributions of the retrieved values of LAl and FPAR witlis reasonable. Therefore, a correct LUT is a key factor in algo-
respect to the NDVI of biome 5. LAl is nonlinearly proportionakithm performance.
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Fig. 4. (a), (c) Histograms of LAI/FPAR derived from the MODIS algorithm with LASUR data. (b), (d) Histograms of LAI/FPAR derived from NDVI-based

algorithm with ten-year averaged AVHRR Pathfinder data [24]. (e) Histogram of NDVI from retrieved pixels. (f) Histogram of NDVI from nonretn@led pi
The mean uncertainty is 0.20.

4) Reliability of Retrieved LAI/FPAREquation (1) may of natural variations in canopy structure and soil can result in
admit a number of solutions, covering a wide range of LAthe same value of remotely-sensed signal [8]. Therefore, the
values. When this happens, the canopy reflectances are saisdiration frequency and threshold LAl value of saturation are
belong to the saturation domain, being insensitive to varioumportant criteria when assessing the accuracy of retrievals. For
parameter values characterizing the canopy. The algorithm ¢ha six biomes, the overall saturation frequencies are 0.38%,
recognize this situation. The frequency with which LAI value2.5%, 16%, 15%, 48.5%, and 42.5%, respectively. Fig. 6(a)
are retrieved under the condition of saturation is termed satusiows the histogram of LAI retrieved under the condition of
tion frequency. The accuracy of retrievals decreases in the caa@ration for the six biomes. When the LAl is less than 4.0, the
of saturation, that is, the information conveyed about canopgturation frequency is low for all biomes. But, when LAl is
structure by canopy reflectances is small because a wide ratagger than 4.0, the saturation frequency drastically increases.
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of retrieved LAI values (COVLAI) as a function of retrieved LAI.

Nearly every pixel is retrieved under the condition of saturaticas the ratio of LAl dispersion to mean LAI evaluated from the
when the LAl is larger than 5.0. set of acceptable solutions. The lower the COVLAI value, the
Broadleaf and needle forests in general have high LAl valugsapre reliable and accurate the retrieval. Fig. 6(b) demonstrates
and therefore, a high saturation frequency. In order to assess@@VLAl as a function of retrieved LAl and biome types. The
quality of retrieved LAI/FPAR values, we examine the coeffiCOVLAI values vary around 0.2, while the standard deviations
cient of variation of the retrieved LAl value (COVLAI) definedof the retrievals increase with LAI. This is not surprising, be-
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Fig. 7. (a) Global LAl and (b) global FPAR fields derived from LASUR data in July, 1989. For the nonretrieved pixels, the LAI-NDVI, and NDVI-FPAFRselati
were used to estimate LAl and FPAR.

cause at high LAl values the reflectances belong to the satun@bution at the global scale. Whether the retrievals are accurate
tion domain and it is difficult to localize a single estimate. Whear not requires validation, which is the next step.
LAl is larger than 3.0, broadleaf and needle forests have rela-6) Biome Misclassification and LAI/FPAR Retrieval§he
tively lower COVLAI values than other biomes at the same LAMODIS LAI/FPAR algorithm requires a land cover classifica-
value. Therefore, when LAl is large and saturation frequencytisn map provided by the MODIS land cover product [22]. It is
large, the retrieval is not necessarily poor. COVLAI cannot beportant, therefore, to assess the impact of biome misclassifi-
less than 0.2, because the mean uncertainty in these runs is€#fion on LAI/FPAR retrievals. We ran the algorithm six times
The quality of the retrievals cannot be better than the quality pér pixel, each time using a different biome’s LUT. This sim-
the largest uncertainty in spectral reflectance data input to thiates the effects of biome misclassification on LAI/FPAR re-
algorithm. Therefore, the availability of band specific uncertairrievals. The results are shown in Table II. Typically, when pixels
ties in atmospherically corrected surface reflectances is critigak misclassified, either the Rl is low and/or the retrieved LAl
to assess the quality of the LAI/FPAR product. values are incorrect. When misclassification between distinct
5) LAl and FPAR ImagesThe algorithm was run on the biomes occurs, the results are predictable. For example, grasses
global LASUR data for the month of July 1989. For the nonreand cereal crops (biome 1) and broadleaf forests (biome 5) are
trieved pixels, the averaged NDVI-LAI/NDVI-FPAR relationsdistinct in their architecture and foliage optics. If biome 1 is mis-
derived from all the retrieved pixels were used to estimate LAlassified as biome 5, the Rl is 27% compared to 91% without
and FPAR. Fig. 7 shows color-coded images of global LAl andisclassification. Or, if biome 5 is misclassified as biome 1,
FPAR. These compare well with the fields reported earlier lifie retrieved LAI value decreases from 4 or 5 to 2. Misclas-
Myneni et al. [24]. The comparison was done to assess if thafication can be detected by the RI, mean LAI and the his-
algorithm captures the general patterns of LAl and FPAR digsgram of retrieved LAl distribution in such cases. If misclas-
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TABLE I
(a) SuccessINDEX AND (b) MEAN LAl FOR MISCLASSIFIEDLASUR DATA

Misclassified Biome Type
Grasses And Broadleaf Broadleaf Needle
Cereal Crops Shrubs Crops Savanna Forests Forests
Grasses 91.53 88.54 89.60 88.68 27.63 29.00
and Cereal Crops
87.67 92.66 91.53 91.73 47.34 46.37
Shrubs
Broadleaf 87.93 70.33 74.03 71.29 14.80 19.52
BCM Crops
Biome 78.02 79.91 80.25 79.65 41.31 44.33
Type Savanna
Broadleaf 55.02 63.23 61.4 61.32 39.30 33.59
Forests
Needle 76.75 85.74 84.92 84.78 46.38 54.54
Forests
(a)
Misclassified Biome Type
Grasses And Broadleaf Broadleaf Needle
Cereal Crops Shrubs Crops Savanna Forests Forests
Grasses 1.197 1.245 1.401 1.363 1.293 2.011
and Cereal Crops
1.026 1.408 1.542 1.514 1.505 1.987
Shrubs
Broadleaf 1.845 1.833 2.097 2.044 2424 3.710
BCM Crops
Biome 1.508 2.079 2.286 2.250 2221 2953
Type Savanna
Broadleaf 1.921 3.299 3.439 3451 4.014 4.649
Forests
Needle 1.640 2916 3.205 3.179 2.976 3.996
Forests
(b)

sification happens between spectrally and structurally simileBASUR data, the RI increase for broadleaf and needle forests,
biomes, perhaps, because of coarse spatial resolution, the impact so do the mean LAl values. The saturation frequencies at
on LAI/FPAR retrievals is difficult to assess. As an exampldigh LAI values for these biomes are comparable to those re-
consider shrubs (biome 2) and savannas (biome 4). The RI grodted earlier for LASUR data.

mean LAI do not vary greatly. The retrieved LAI/FPAR values The following explains the dependency of the LUT on spatial
are acceptable, although the pixels have been misclassified. Tasolution. Canopy spectral properties are a function of spatial
example indicates that various biome LUT'’s share similar eresolution (Figs. 1 and 2). In the RED-NIR plane of 25% den-

tries for certain combinations of spectral reflectances. sity contours, fine resolution data tend to cluster and occupy
] ) a small region close to the NIR axis. Contours corresponding
B. Prototyping with Landsat Data to different biome types do not overlap either. As the resolu-

1) General Results The MODIS LAI/FPAR algorithm was tion decreases, the spectral properties of each biome are influ-
prototyped with Landsat data for three biomes: grasses and eaced by the presence of soil and water as well as the other
real crops, broadleaf forests, needle forests. A fine resolutivegetation types. In the spectral space, the distance between the
LUT was used to retrieve LAl and FPAR because of the findiomes decreases and the biomes become similar. Therefore, the
spatial resolution of Landsat data. The RI's for the three vegUT should reflect these changes in vegetation canopy spec-
etation types are 90.7%, 53.9%, 57.9%, respectively, and thal properties with changes in resolution. The parameigrs
mean LAl values are 1.87, 5.79, 4.11, respectively. Comparedtc= “bs” or “S,” introduced by (6) control the dependency of
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Fig. 8. Retrievals from Landsat data as a function of spatial resolution-dependent look-up table (LUT). Histograms of LAl from (a) Landsat LLSUR) LA
LUT, (c) histograms of FPAR from Landsat LUT, and (d) LASUR LUT.

LUT on the spatial resolution of data. To further investigate, thadditional radiation due to interactions between the soil and
algorithm was performed on Landsat data with LASUR LUTvegetation. Therefore, the soil-vegetation interaction is an im-
that is, fine resolution data with coarse resolution LUT. Fig. Bortant component controlling the spectral behavior of vege-
shows the histogram of LAl and FPAR obtained from Lands#dtion canopies. At the fine resolution, the contribution of the
data with LASUR LUT and, also, Landsat data with Landsa&bil-vegetation interaction is negligible in the case of dense veg-
LUT. When Landsat data and Landsat LUT are used, the etation, such as forests. We executed the algorithm only with
trieved LAl values vary from 0.0 to 2.5 for grasses, from 5.0 tthe black soil problem on Landsat data to test this assumption.
7.0 for broadleaf forest, and from 1.5 to 6.0 for needle foresthe RI can be as high as 50.6% (broadleaf forest) and 54.3%
(Table 111). When LASUR LUT is used with Landsat data, théneedle forest), compared to 53.7% and 57.9% if the contri-
histograms of retrieved LAl and FPAR change greatly. For ekution from the soil-vegetation interaction is added. The his-
ample, the LAI of grasses/cereal crops can reach unrealigigrams of retrieved LAl and FPAR do not change substan-
values between 4.0 and 6.0. The LAI of needle forests is caielly. Therefore, the fine resolution Landsat data represent pure
centrated between 1.5 to 4.0, a relatively small range for ttaad dense vegetation with minimal soil or background effects
biome. The RI for the three biomes also decrease to 87.50b this instance. The RI are only 31% and 45% for broadleaf
39.2%, 4.7%, respectively. When the algorithm is run usirend needle forests when only the black soil problem is used to
LASUR data but with Landsat LUT (Fig. 9), the mean LAI forretrieve LAl and FPAR for the coarser resolution LASUR data.
all biomes decrease, and the differences between forests (higie soil-vegetation interaction is an important component that
LAI) and other biomes (low LAI) disappear. FPAR shows simeontrols the spectral behavior of vegetation canopies. Its effect
ilar changes. This clearly indicates the dependency between dataomes large as the resolution decreases.
resolution and the LUT.

2) Soil or Background EffectsAs previously mentioned, in
the design of the MODIS LAI/FPAR algorithm, the 3-D ra- V. CONCLUSIONS
diative transfer problem can be represented as the sum of twdResults from the prototyping described in this paper demon-
components. The first describes the radiation regime within terate the ability of the algorithm to produce global LAI and
vegetation canopy with a completely absorbing soil or backPAR fields. For global LASUR data in July, the mean LAI of
ground beneath the canopy. The second component descritreadleaf and needle forest is around 4.0, broadleaf crops and
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TABLE Il
COMPARISON OFTHE RESULTSFROMLASUR LUT AND LANDSAT LUT RETRIEVALS

Shrubs
[ ———— Grasses and Cereal Crops

LASUR DATA
LASUR LUT LANDSAT LUT
Biome Type Retrieval Index Mean LAI Retrieval Index Mean LAI
Grasses and Cereal Crops 91.53 1.20 91.6 1.07
Shrubs 92.66 1.41 96.4 0.92
Broadleaf Crops 74.03 2.09 80.1 1.17
Savanna 79.65 2.25 85.4 1.61
Broadleaf Forests 39.30 4.01 41.8 2.62
Needle Forests 54.54 3.99 41.8 1.66
LANDSAT DATA
LANDSAT LUT LASUR LUT
Biome Type Retrieval Index Mean LAI Retrieval Index Mean LAI
Grasses and Cereal Crops 90.7 1.87 87.5 3.62
Broadleaf Forests 53.9 5.79 39.2 6.21
Needle Forests 57.9 4.11 4.7 3.39
a
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Fig. 9. Retrievals from LASUR data using Landsat look-up table (LUT). Histograms of (a) LAl and (b) FPAR.

savannas 2.1 and 2.2, shrubs 1.4 and grasses and cereal dhegpdata and the LUT, because the quality of the retrievals cannot
1.2. The algorithm utilizes leaf spectral properties and canopg better than the quality of the largest uncertainty in spectral re-
structural attributes, instead of NDVI, in the retrieval procesfiectance data input to the algorithm. The effect of biome mis-
An LAl value can only be retrieved when a pixel falls within theclassification between distinct biomes on the algorithm can be
specified spectral and angular space in the LUT.The algorithewaluated through the RI, mean LAI, and the histogram of the re-
fails even if the NDVI value is reasonable. The uncertainties trieved LAI distribution. Misclassification can fatally impact the
input data influence the RI. Rl increases with increasing uncejality of the retrieval in this case. The impact of biome misclas-
tainties. However, the quality of retrieved LAI/FPAR decreasesfication between spectrally and structurally similar biomes is
with increasing uncertainties. A value of 0.2 was found optimalkegligible, particularly if the spatial resolution of the input data
in this study. Quantitatively, the saturation frequency and coe$-coarse.

ficient of variation (standard deviation/mean) of retrieved LAl Leaf canopy spectral properties differ with spatial resolution.
values (COVLAI) are two useful metrics to assess the qualijach vegetation type in Landsat data tends to cluster and oc-
of the retrieved field. The higher the saturation frequency amdpy a small region close to the NIR axis in the spectral space,
COVLAI value, the lower the quality of the retrieval. On av-while biomes become spectrally similar in the case of coarse
erage, if LAl is larger than 4.0, saturation problems begin to imesolution LASUR data. The algorithm is dependent on the spa-
fluence the retrieval. Forests have higher saturation frequendi@sresolution of the data through the use of the LUT. We cannot
than other vegetation types. However, they have lower COVLAke Landsat LUT to retrieve LASUR LAI/FPAR and vice versa.
values than other biomes at the same LAl value, especiallyBat evaluating the data density distribution function, we can ad-
high LAl values. Therefore, the retrieval quality is not necegust the algorithm for data resolution and utilize the algorithm
sarily poor. COVLAI cannot be less than the total uncertainty with data from other sensors.
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