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Influence of small-scale structure on radiative transfer 

and photosynthesis in vegetation canopies 

Yuri Knyazikhin, l J6m Kranigk, 2 Ranga B. Myneni, l Oleg Panfyorov, 2 and 
Gode Gravenhorst 2 

Abstract. The use of Beer's law to describe the radiation regime in plant canopies is valid 
for a sufficiently large volume filled densely with phytoelements. This set a limit to the scale 
at which models, based on Beer's law, can account for structural features of vegetation 
canopies and provide an adequate prediction of the radiation regime. The aim of our paper is 
to analyze radiation interaction in vegetation canopies and consequent photosynthetic rates at 
a scale at which Beer's law loses its validity. We use fractals to simulate the structure of 
vegetation canopies at this scale. It is shown that both the radiation regime and the 
photosynthesis depend on the fractal dimension of the plant stand. The development of 
radiative transfer models in fractal-like media as well as measurements and modeling of 
fractal characteristics of trees and tree communities are essential for better understanding and 
scaling of radiative transfer and photosynthetic processes from an individual leaf to the 
canopy. 

1. Introduction 

The structure of vegetation canopies determines the 
spatial distribution of intercepted incident radiation which 
drives various physiological and physical processes required 
for the functioning of plants. In order to quantitatively model 
this functioning, it is important to understand the interaction 
of electromagnetic radiation with different types of canopy 
structural organizations. 

Numerous models for describing the radiation regime of 
vegetation canopies have been developed since the classical 
model of Monsi and Saeki [1953], which essentially is Beer- 
Bouguer's law applied to plant canopy (hereinafter referred to 
as Beer's law). A key assumption underlining this law is the 
following: the number of scattering centers (e.g., leaves) in an 
elementary volume is proportional to its volume. Given leaf 
size, orientation, and optical properties of leaves, we can 
mathematically express the law of energy conservation. From 
information on the spatial distributi6n of such elementary 
volumes, one can derive various models for describing the 
radiation regime of plant stands. For example, in the turbid 
medium models, the vegetation canopy is treated as a gas with 
nondimensional planar scattering centers [Ross, 1981]. 
Alternately, modeling plants or trees in a stand as geometrical 
objects (cones, ellipsoids, etc.) leads to a family of 
geometrical-optical models [Nilson, 1977; Li and Strahler, 
1986]. There are also hybrid canopy radiation models which 
incorporate features of both these approaches [Norman and 
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Welles, 1983; Nilson 1992; Li et al., 1995; Myneni et al., 
1990] and account for some structural properties of tree 
organization [Oker-Blom, 1991; Chen et al., 1994; Stenberg, 
1995]. 

Recent investigations of plant morphology [de Ref•,e et 
al., 1991] as well as small-scale measurements of geometrical 
features of individual trees and tree communities [Zeide and 

Pfeifer, 1991; Rigon et al., 1994; Fe4vushkin, 1995] indicate 
that the architecture of most vegetation canopies obeys the 
laws of fractal geometry. The fractal characteristics of vege- 

tation canopies depend on the structure of tree organization 
and may vary between trees and tree species [Zeide and 
Pfeifer, 1991]. Fractality essentially means that the relation- 
ship between volume and number of phytoelements in it is 
nonlinear. This property conflicts with the above mentioned 
assumption of Beer's law, and an investigation of its conse- 
quence is essential for better understanding of the processes 
governing the functioning of vegetation systems. Therefore 
our goal is to analyze the interaction of electromagnetic ra- 
diation with fractal-like canopy organizations and to demon- 
strate that the radiation regime and canopy photosynthesis 
depend on fractal characteristics of such media, while the 
Beer's law is insensitive to them. 

Here we proceed with the suggestion that a vegetation 
canopy obeys the laws of fractal geometry and for which there 
is adequate empirical basis [Kranigk and Gravenhorst, 1993; 
Kranigk e! al., 1994]. Thus we use this geometry to reproduce 
an example coniferous stand with a high level of realism 
(section 2). We then formulate a strict mathematical definition 
of vegetation canopy structure as well as a method for its ap- 
proximation. We utilize the steady state radiative transfer 
equation to simulate the three-dimensional distribution of 
photosynthetically active radiation (PAR) and canopy photo- 
synthesis, using the simulated fractal forest as input. The use 
of transport theory presupposes that Beer's law can be applied 
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to describe the radiative regime in plant canopies; but this as- 
sumption is violated in the case of the modeled fractal forest 
stand. This discrepancy leads to a paradox [Kranigk, 1996]: 
the more accurately the canopy structure is reproduced, the 
more inaccurately the radiative regime and canopy photosyn- 
thesis are estimated (section 3). Note that similar paradoxes 
are already described and explained, for example, in cloud 
physics, remote sensing, and microphysiological investiga- 
tions [Quattrochi and Goodchild, 1997; Lovejoy and 
Schetzer, 1994; Ehleringer et al., 1993]. We will follow the 
methodology of these investigations. We start our analysis 
with examining the problem of photon interaction with the 
simplest fractal organization, the Cantor set (section 4). 
Further, two patterns of canopy organization are considered in 
section 5. In the first case, the phytoelements are distributed 
uniformly within the canopy space, and in the second case, 
their vertical distribution is specified by the distribution of the 
Cantor set. For both of these patterns, we derive equations for 
canopy transmittance and photosynthesis which depend on the 
fractal dimension of the patterns. Finally, a discussion with 
conclusions about radiation interaction with fractal-like media 

are presented in section 6. 

2. Structure of the Forest Stand in Lange 
Bramke 

Norway spruce stand, about 50 km east of G6ttingen in 
the Harz Mountains, was chosen for simulation (Lange 
Bramke, 51.85øN, 10.40øE). The watershed, Lange Bramke, 
where ecosystem measurements were carried out, consists 
mainly of two slopes with north and south orientation. The 

base plot, selected for this study, was a 40 m by 40 m plot 
containing 297 trees (tree density of 1856 trees per hectare) 
and located on the south slope. The diameters of the tree 
trunks varied from 6 to 28 cm. The stand is rather dense but 

with some local gaps. Tree locations were mapped [Kranigk 
et al., 1994], and total height, height-to-crown base, and 
crown widths were measured on all trees in this stand. 

The trees were divided into five classes with respect to the 
stem diameter. A model of a Norway spruce based on fractal 
geometry [Kranigk and Gravenhorst, 1993] was then used to 
build a representative tree in each class. The computer-gener- 
ated base plot is shown in Figure 1. In the framework of an 
earlier project, 10 Norway spruce trees near the base plot 
were cut in 1989 and a data bank on measured crown 

morphology was assembled [Gruber et al., 1992]. These data 
were used to validate the architectural and morphological 
properties of our tree models. A good agreement between 
measured and simulated tree morphology was reported previ- 
ously [Kranigk et al., 1994]. Thus we idealize our base plot as 
a forest canopy consisting of 297 fractal trees (Figure 1). This 
model of plant stand is used to generate a three-dimensional 
distribution of photosynthetically active radiation and canopy 
photosynthesis. A good agreement between the field meas- 
urements and the simulated radiation regime at a scale at 
which Beer's law can be utilized were reported previously 
[Kranigk, 1996; Knyazikhin et al., 1997]. 

2.1. Basic Foliage Element 

A conifer needle is taken as the basic foliage element and 
approximated as small cylinders. The projected needle area is 
used to quantify the one-side area of the phytoelements and to 

Figure 1. Computer-generated Norway spruce stand shown from different directions: front view (top left), 
crown map (bottom left), and cross section (right). 
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express photosynthetic rates. The leaf normal distribution is 
assumed spherical. The Bi-Lambertian reflectance model 
[Ross and Nilson, 1968] is used in the calculations to simulate 
the reflection and transmission of needles at PAR wave- 

lengths; the reflectance and transmittance coefficients were 
determined from measurements (0.067 and 0.033, respec- 
tively). Interaction of radiation with stems and branches is 
neglected; therefore the canopy space is idealized as optically 
nearly black, flat linear elements that are spherically oriented. 
Their spatial distribution is generated by the fractal architec- 
tural model (Figure 1). 

2.2. Canopy Structure and Its Approximation 

To quantify the structure of canopy, we introduce an 
indicator function Z(r) whose value is 1, if there is a needle at 
the point r = (x, y, z), and 0 otherwise. The canopy structure is 
defined by the indicator function. We introduce a fine spatial 
mesh by dividing the base plot into N, nonoverlapping fine 
cells, ei, i = 1, 2, ..., N•, of size Ax = 4v = A z: e. We ap- 
proximate the canopy structure by a piece-wise constant 
function Z,(r): Z,(r) = Zœ.i if r • el. Here Zœ,l is equal to 1, if 
there is a needle within the cell el, and 0 otherwise. It is intui- 
tively clear that as e becomes smaller, the function Z,(r) ap- 
proximates the canopy structure better. We call this function 
Z,(r) an approximation of canopy structure by cells of size e. 
Figure 2 demonstrates the three-dimensional distribution of 
the function ;&(r), where the cell size e is 0.5 m. The model of 
plant stand shown in Figure 1 is the limit of this function as e 
tends to zero. 

In models of radiation interaction in vegetation canopies, 
the leaf area density distribution function uL(r) quantifies the 
canopy structure. Its value at a fine cell el is defined as the 

Figure 2. Three-dimensional distribution of foliated cells. 
The canopy space is limited by the slope and a plane parallel 
to the slope at a height of the tallest tree. This distribution is 
described by the function Z•(r) whose value is 1 (a fine cell is 
plotted), if there is a needle in the cell around the space point 
r=(x,y,z), and 0 otherwise (a fine cell is not plotted). The size 
e of the fine cell is 0.5 m in this plot. Tending the cell size to 
zero, this plot converges to the one shown in Figure 1. 

ratio of total one-side leaf area within this cell, A& (in m2), to 
the volume e: • of this cell [Ross, 1981 ]; that is, 

uL(r) = ASi/d if re ei. (1) 

The total one-side leaf area A& in an infinitesimal cell is 
comparable to AxAy -- e 2. Therefore the leaf area distribution 
function becomes arbitrarily large as e tends to zero. This 
property sets a limit to the applicability of the classical 
approach for characterizing the vegetation canopy structure: 
the cell size should be so great that leaves in it can be treated 
as infinitesimal planar elements. The heterogeneity of the 
entire canopy is characterized by variations in leaf area in 
these cells. 

The second conceptual limitation in classical theory is 
that the leaves are assumed distributed such that there is no 

mutual shading along any direction. It means that each cell is 
idealized as a turbid medium filled with infinitesimal planar 
elements, uniformly distributed within the cell, and oriented 
in all possible directions. The leaf area density in the cell 
depends on foliage clumping, gap distribution, etc. This 
assumption can be realized only if the definition of the leaf 
area density distribution function can be formulated for 
arbitrary small cells. 

Under these assumptions, Beer's law can be utilized to 
describe radiation attenuation. The theory allows us to extend 
its utilization from a sufficiently big cell to the entire canopy 
[Ross, 1981]. The underlying assumptions of Beer's law 
predetermine a scale at which this approach provides an 
adequate prediction. There are scales which account for 
spatial distribution of trees, tree shape, vertical distribution of 
foliage within crowns, and its clumping [Knyazikhin e! al., 
1997]. For photosynthesis calculations, however, these scales 
may be rather large. Canopy photosynthesis depends on the 
distribution of radiation on foliage elements and the 
photosynthetic response of the elements. Recent models are 
capable of reproducing the canopy architecture with a high 
level of realism, from leaf to canopy scale (for example, 
Figure 1). The classical transport theory, however, is not 
useful for predicting the radiation regime at the leaf level. To 
demonstrate this, we evaluate canopy photosynthesis for two 
values of the cell size using the classical approach. 

3. Canopy Photosynthesis Evaluated With 
Beer's Law 

Let us consider two approximations, Z05(r) and Z0.25(r), of 
simulated base plot with cells of size e = 0.5 m and e=0.25 m. 
We use (1) to derive the three-dimensional distribution of leaf 
area density uL(r) for these two canopies. The leaf area 
density of a cell from the intersection of trees is given by the 
sum of leaf area densities of the intersecting cells. Thus the 
approximations have the same leaf area as the base plot. 
Figure 2 illustrates the three-dimensional distribution of the 
function Zo.•(r). The histograms of the frequency v(u) of leaf 
area per foliated cell u for the two approximations are shown 
in Figure 3. Cells where u=0 make up about 77% (e=0.5 m) 
and 78% (e = 0.25 m) of the total number of cells. The 
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Figure 3. Frequency of leaf area density values. 

volume of the parallelepiped in which the tree crowns are 
located makes up about 27% of the canopy space, which is 
close to the volume of all foliated cells. Thus the base plot is 
rather dense but with some local gaps. The average one-side 
leaf area per unit volume increases from about 0.5 m2/m 3 to 
about 0.6 m2/m 3 when the cell size is halved. Cells of size 
0.25 m result in 1.6 times more cells with high foliage 
densities (u > 8 m2/m 3) than cells of size 0.5 m (Figure 3). 
These cells are about 1.1% (e = 0.5 m) and 1.8% (e = 0.25 m) 
of the total canopy space. The distribution of cells with low 
foliage densities (u < 8 m2/m •) is approximately the same. 

We used the steady state radiative transfer equation 
[Knyazikhin et al., 1997] to simulate the radiation field in the 
base plot. Its solution is the intensity l(r,-Q) of PAR. The PAR 
intensity was evaluated in 80 directions distributed over the 
unit sphere according to Carlson's quadrature rule [Carlson, 
1970]. Within the cell about r, a photosynthesis-radiation re- 
sponse Pleaf(r,.QL) of leaf area with unit normal -QL directed 
outward from its upper surface was simulated by a three-pa- 
rameter equation [Prioul and Chartier, 1977]: 

OPieai(I',.QL) - (aFL + Pmax)Pleaf(F,-QL) + O•FLPma x = O, 

where Pleaf(r,-Oœ), a, />max are gross photosynthesis, apparent 
quantum yield, and maximum gross photosynthesis at light 
saturation, respectively; 0 is the convexity parameter, and F• 
is the PAR energy flux on the leaf area with unit normal 
within the cell about r: 

Fœ = f I(r, f•)lf•* f•L I ß 
4•r 

Canopy photosynthesis Pcan at a given time can be expressed 
as 

Pcan = l Pcell (r)U L (r)dr = • Pcell (rj )u j E3 (2) 
V j=l 

where V is the canopy space and Pcen(r) is the photosynthetic 
response of unit leaf area within the cell, 

Pcell (r) = I Pleaf(r,f•L2••g(f•L)df•L ß 
2/c + 

Here g(12L) is the probability density of leaf normal 
distribution over the upper hemisphere 2if, which is assumed 
spherical distribution, i.e., g(S2D = 1. 

Thus we define canopy photosynthesis at a given time as 
the sum of photosynthetic responses of individual cells. It 
seems clear that as cell size e is taken smaller and smaller, (2) 
should account for the photosynthetic response of individual 
leaves more and more accurately. This, however, is not true. 

Figure 4 demonstrates daily variation in canopy photo- 
synthesis on a cloudy (September 16, 1992) and a clear sunny 
(September 27, 1992) day for two example canopies. The 
average difference between the daily canopy photosynthesis 
from the two canopy approximations of the same base plot is 
about 14% on a cloudy day versus 9% on a sunny day. In both 
cases the diurnal canopy photosynthesis decreased with 
decreasing cell size. 

Let us analyze the behavior of canopy photosynthesis as 
the cell size e tends to zero. The photosynthetic response 



KNYAZIKHIN ET AL.' RADIATION AND PHOTOSYNTHESIS IN FRACTALS 6137 

lOO 

90 

80 

70 

60 

50 

40 

3O 

2o 

'1o 

! 

cell size: 0.5- 

cell size: 0.25- 

180 

160 

140 

• 12o 
E 

E 
r- 100 

._ 

._• 

•, 80 

o 

• 60 

0 , , • • ' ' • 40 
8 9 10 11 12 13 14 15 16 8 

Time, hours 

! i i i , [ , 

cell size: 0.5-- 

• cell size' 0.25- 

i i i i i i 

9 10 11 12 13 14 15 16 

Time, hours 

Figure 4. Diurnal variation of canopy photosynthesis on a cloudy (left) and a sunny (right) day for two 
canopy approximation by cells of the sizes s=0.5 m and s:0.5 m. 

Pcell(r) of unit leaf area may range between zero and its light- 
saturation rate; that is, 0 < Pcell(r) -< Pmax. We divide this 
interval into m subintervals by points P/,.: 0 = Po < P• < ... < 
Pm-I <Pm -- Pmax- Let n•(Pj) be the number of foliated cells of 
size e in which Ps-• < Pcell(r) < Ps' We denote by N•.• the total 
number of foliated cells of size e, i.e., the sum of all n•(P./). 
The total one-side leaf area u(r)dr in a sufficiently small cell 
is comparable to e2; that is, u(r)dr = const e 2. We can now 
rewrite (2) as 

Pcan - Z Pj-I tlœ (Pj_i) const •: 2 
j:l 

Taking into account the inequalities Pj < Pm=,j: 1, 2, ..., m, 
it is possible to obtain 

Pcan -< const e 2 Pmax Z ne (Pj-1) = const Pmax œ 2 Nf,e (3) 
j=l 

which does not depend on m. 
Figure 5 demonstrates the distribution of points (In(l/s), 

ln(Nc.,) ) for the largest tree in the simulated base plot; that is, 
No. • is the total number of foliated cells containing needles of 
the tree of maximum diameter. These points are well 
approximated by the linear function ln(N•.,) = 1.737 In(l/s) + 
ln(227.9) with respect to ln(1/s). It follows from this equation 
that No. • = 227.9/s 1'737. Similar relationships are valid for all 
trees in our base plot, which can be expressed in the 
following form: 

Nf,e, i=C is -D' i= 1 2, 5. (4) , • ,..• 

Here N.f,e,i is the number of foliated cells of size e containing 
needles of the ith representative of the tree class; Ci is a 
constant that depends on the representative tree, and Di is the 

fractal dimension of the foliage set defined as [Barnsley, 
1993] 

In N 
D i -lim- (5) 

e•0 lnl/c 

The fractal dimension quantifies the internal structure of 
tree organization and may vary between trees and tree species 
[Zeide and Pfeifer, 1991]. Because needles are approximated 
as thin cylinders, which are close to a small straight line, the 
fractal dimension of our simulated trees is less then 2' that is, 

D, < 2. Substituting (4) in (3) and noting that N•., is the sum of 
N•.,.,, we can show that 

5 

Pcan -< const Pmax œ2 Z Ciœ-Dt -< const Pmax C œ2-D. 
i=1 

Here C = max{Cl, C2 ..... Cs}, D: max{Di,D2,...,Ds}. Since 
2-D > 0, it follows that ]>can becomes arbitrarily small as e 
tends to zero! Note that no suggestions about radiation model 
and photosynthesis equation are required to derive the last 
inequality. It means that such a degeneration holds true for 
any radiation-photosynthesis model using fractal model of 
canopy structure. 

Thus we obtain the following result' the more accurately 
canopy structure is reproduced, the more inaccurately canopy 
photosynthesis is evaluated. We come to the same result when 
we evaluate the total PAR energy incident on leaves in the 
canopy. Two reasons may be given for such discrepancies. On 
the one hand, the number of foliage elements in an elementary 
volume was assumed proportional to this volume. This allows 
us to quantify the canopy structure in terms of leaf area 
density distribution function u(r) which underlies the use of 
Beer's law in radiation-photosynthesis calculations. On the 
other hand, we used this method in a canopy i n which the 
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Figure 5. Dependence of ln(Nr., ) on ln(1/e). The points 0n(1/e), ln(Nr.,)) are distributed along the linear 
function with respect to ln(1/e)' 1.737 ln(1/e) + ln(227.9). 

relationship between the elementary volume and the number 
of foliage elements in it was nonlinear (equation (4)). If the 
canopy structure is similar to a fractal-like medium, Beer's 
law cannot be applied to describe light interaction in forest 
canopies. An essential revision of existing modeling 
techniques is needed to correctly simulate such processes in 
forest canopies. We will attempt to do this next, when we 
consider radiation interaction in a medium described by the 
simplest fractal set, the Cantor set. 

4. The Cantor Set 

We consider the Cantor set that can be obtained by the 
following iterative procedure. A unit interval [0,1] is divided 
into three equal subintervals, and the middle subinterval is 
removed. This transformation is then applied to each of the 
remaining two intervals (Figure 6). By repeating this trans- 
formation n times, we obtain the nth approximation of the 
Cantor set. Figure 6 demonstrates four successive iterations, 
each consisting of M,.c = 24 intervals of size œ = 1/34 (n = 0, 1, 
2, 3 ,4). As the number of iterations tend to infinity, these 
intervals degenerate into points. A set of these points is said 
to be the Cantor set or Cantor's points iterated from the 
interval [0,1]. In section 5, the Cantor points will be 
interpreted as foliage elements encountered along the photon 
path; in this section we discuss some properties of the Cantor 
set necessary for the discussion in section 5. 

We begin with the derivation of a relative distribution 
function of Cantor's points. Let F(s) be the portion of these 
points in the interval [0, s). Clearly, F(0) = 0 and F(1)= 1. Be- 
cause the intervals [0,1/3) and [2/3,1) are transformed by the 
same algorithm, each of them therefore contains an equal 
number of Cantor's points (Figure 6). In the interval [ 1/3,2/3), 

there are no Cantor points. Therefore we assign the value 1/2 
to the function F(s) when 1/3 _< s < 2/3. The intervals [0,1/9), 
[2/9,1/3), [2/3,7/9), and [8/9,1) are also subjected to the trans- 
formation by this algorithm, and so each of them contains an 
equal number of points from the Cantor set. Since the inter- 
vals [1/9,2/9) and [7/9,8/9) have no Cantor points, the func- 
tion F(s) is constant on these intervals, taking on the values 
1/4 and 3/4, respectively. By repeating this procedure n times, 
we obtain the nth approximation of the desired distribution 
function. The eighth iteration of F(x) is shown in Figure 7. As 
the number of iterations tend to infinity, we can assign a value 
to the function F(s) at any point in the interval [0,1 ]. 

The relative distribution function of Cantor's points has 
two important properties. On the one hand, it is a continuous 
function. On the other hand, it is a piece-wise constant func- 
tion that can take new values only at Cantor's points. A 
function satisfying these two properties is defined to be a 
singular function [Kolmogorov, 1950]. 

We use the symbol zC(s) to denote the indicator function 
of the Cantor set; that is, zC(s) takes on the value 1, if there is 
a point of the Cantor set at the point s (0 < s < 1), and 0 
otherwise. We divide the interval 0 _< s _< 1 into M• equal 
subintervals, ei = [si_l,si), by points si = (i-1)e, i = 1,2 .... ,M,, 
and approximate the indicator function zC(s) by a piece-wise 
constant function zC•(s); that is, zC,(s) = zc,.i if si_• -< s < si, 
i = 1, 2 ..... M,. Here zc•.i is equal to 1, if there is a point of the 
Cantor set in the interval [&-l,&) and 0 otherwise. The length, 
As (in relative units), of each interval is As = e. The function 
Z,(s) converges to the indicator function, as e tends to zero. 
Let M•.c be the number of intervals containing points of the 
Cantor set. Note that if e = 1/3", then M,.c = 2" (Figure 6). It 
follows from (5) that the fractal dimension D of the Cantor set 
is D- In 2/ln 3 --0.63. 
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Let us consider the nth approximation of the Cantor set 
which can be explicitly described by the function ZCe(s). We 
approximate the distribution function of Cantor's points by a 
piece-wise constant function Fe(s): Fe(s): Fe., if St_ ] __• S <2• Sl, 
i = 1, 2 ..... Me, where Fe., is a portion of Cantor's points in the 
interval [0, s,); that is, 

i i 

Fc,i-F(si)-Z(F(sk)-F(S•_l))-ZdF(sk). (6) 
k=l k=l 

It may be shown that this function converges to F(s) as e 
tends to zero. The function Fe(s) can only be evaluated when 
the values of F(s) are specified at Me + 1 discrete values of its 
argument. This information, however, may often be unknown 
in practical situation; for instance, as when one deals with a 
fractal set like the one used to simulate the tree stand 

described earlier. The question then arises of whether or not 
the distribution function of Cantor's points can be approached 
in terms of zOo(s). 

Let us examine the convergence process, Fe(s) -• F(s), 
when e takes on values 1/3" n: 1, 2 ...... In this case we have 

(compare Figure 6) 

F(s k ) - F(s k-1 ) 

, if there are points of the Cantor set in [s/•_ 1 ,s/•), 

otherwise, 

1 c 
Z•,k. (7) 

2 n 

Taking into account the following relationship between the 
fractal dimension D- In 2/ln 3 = ln_• 2 and the length 
As=e =1/3" (in relative units) of the interval [Sk_z,Sk), 

2" 

we can rewrite (7) as 

dF,(sO: ff•(s) (As) ø, D = lo33 2 = 0.63. (8) 

This equation shows that the relation between the length of an 
elementary interval and the relative number of Cantor's points 
in this interval is nonlinear. Substituting (8) into (6), we can 
express F•(s) in terms of the indicator function for the nth 
approximation of the Cantor set 

i 

, ge,k ß (9) 
k=l 

It will be recalled that this equality, however, is valid only 
under a special choice of e, i.e., when e = 1/3". Because the 
function F•(s) converges to F(s), no matter how e tends to 
zero, (9) is approximately satisfied for e other than 1/3". This 
formula therefore provides a means of approaching the 
relative distribution of Cantor's points, using the nth 
approximation of the Cantor set and its indicator function as 
input variables. Indeed, it follows from (9) that the portion of 
Cantor's points in the interval [0,st) is the sum of power of the 
lengths of intervals containing the Cantor points. The value of 
power coincides with the fractal dimension of the Cantor set. 

Equation (9) allows us to introduce a generalized length to 
measure Cantor's points. Let L be a length of the interval 
[0,1] expressed in a metric system (e.g., in meters). A length 
of each subinterval [Sl_l,S,) is z•ISL in this system. It follows 
from (9) that 

F(s L)-- F(s) LZ>; (10) 

that is, the portion F(s) (dimensionless) of Cantor's points in 
the interval [0,s) of the length sœ has a generalized length 
F(s)L • (e.g., in mO). Thus the Cantor set iterated from the in- 
terval [0,1] of length L = 1 m can be assigned the generalized 
length of 1 m •, where D = log• 2 =0.63 is the fractal 
dimension of the Cantor set. We call this set a unit Cantor set. 

Therefore if a Cantor set is iterated from an interval of length 
H, its total generalized length is H •. The generalized length of 
its portion F(s) in the interval [0, s H], 0< s< 1, of length sH is 
F(s) H ø (e.g., in mO). From this viewpoint, (9) has a simple 
interpretation. Indeed, the nth approximation of our Cantor set 
(e.g., shown in Figure 6) consists of Cantor subsets iterated 
from subintervals [Sl-l,Si), each of them of length As. Equation 
(9) shows that the generalized length of the whole Cantor set 
is the sum of the generalized lengths of these Cantor subsets. 

The result formulated in terms of (9) can now be utilized 
to specify a distribution function of fractal-like sets, other 
than the Cantor set, for example, of the fractal sets shown in 
Figure 1. This relationship is a special case of the Lebesgue 
theory of integration known as Lebesgue integral with respect 
to the Hausdorf measure [Barnsley, 1993]. The following 
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Figure 7. Distribution function of Cantor's points. 

result of this theory can be used to derive the relative leaf 
distribution function for our fractal tree model. 

Consider a function le(p) (in m p) of the positive variable p 
defined as 

le(p)=•Ze,i ep, p>0 (inmP), (11) 
i=1 

where N, and Ze, i are as in section 2.3. Let l(p) be the limit of 
le(p) as the cell size e tends to zero. This function can only 
take on three values: infinity if 0 < p < D, a nonzero finite 
value if p = D, and zero if p > D [Barnsley, 1993]. A point 
p=D at which the jump to infinity occurs is defined to be the 
Hausdorf dimension. In many practically important cases (and 
our fractal tree models are among them), the fractal dimension 
(5) coincides with the Hausdorf dimension [Barnsley, 1993]. 
Therefore knowing the fractal dimension of our trees, we can 
approach its relative foliage area distribution function as 

Fe(V,D)_ 1 D (dimensionless), (12) le(D---•Z Ze(r)e 
where I/is a domain in the tree crown, and the summation is 

performed over all cells in 
This result allows us to generalize the concept of length, 

surface, and volume. Indeed, the value e • can be interpreted 
as a specific volume (area, or length) of the fine cell and the 
value of l(p) at the point p = D at which the jump to infinity 
occurs as the generalized volume (area, or length) of a set 
consisting of these cells. For example, the unit Cantor set has 
the generalized "length" of/(0.63) = 1 m 0'63. It follows from 
(4) and from Figure 5 that the value of/(1.737) = 227.9 (in 
m 1'737) can now be assigned to the crown volume of our larg- 

est fractal tree. It can be shown that the fractal dimension of 

the tree crown space simulated by a homogeneous geometri- 
cal figure (e.g., a cylinder, or a cone) is 3. In this case, the 
crown volume in true sense and the generalized volume/(3) 
(in m 3) are the same. The Hausdorf integration technique 
therefore in no way conflicts with the one we usually use. On 
the other hand, the scope of integration is extended since 
there exist functions integrable in the Hausdorf sense (e.g., 
the indicator functions of the Cantor set and of our fractal 

trees) for which the classical definition of integral, as demon- 
strated in the previous section, fails. 

It is customary to write (12) and its limit (as e tends zero) 
in the following generalized form: 

Fe(V,D)=• 
1 

l e (D) Z Ze (r)•(dr), 

F(V,D)= l-• z(r)•(dr), (13) 

where st(dr) is the Hausdorf measure (or a specific volume) of 
an elementary volume (fine cell, or area, or length) about the 
point r. For the examples mentioned above, this measure is 
expressed as st(dr) = (ds) 0'63 = e 0'63 for the Cantor set; ll(dr) = 
(dxdydz) 1'737/3 -- e •'737 for the tree crown space of the largest 
fractal tree class, and st(dr)= dxdydz = • for tree crowns 
simulated by geometrical figures. Let V = ei in (13), and as the 
size e of the cell ei about r tends to zero, we obtain a relative 
density distribution function qffr,D) of the fractal-like set at r 
as 

q)(r,D)- lim Fe(ei'D) =lim Fe(ei'D) __•1 Z(r) (in m-d); 
e-•O Jr(dr) e-•o e D I(D) 
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that is, a portion of a fractal-like set, per elementary volume, 
about the space point r is proportional to the indicator 
function of this set. 

This approach allows us to formulate the concept of gen- 
eralized leaf area density distribution function as follows: 
Consider an elementary volume ei about r in the tree crown. 
Given the total one-side leaf area S (in m 2) of the tree crown, 
the leaf area density distribution function u(r,D) can be de- 
termined as the ratio of the one-side leaf area S dp(r,D) It(dr) 
in the elementary volume about r to the generalized volume 
It(dr) of this elementary volume; that is, 

S 

u(r,D)=Sd)(r,D)= l-•Z(r) (in m2/ma); (14) 
that is, this function is proportional to the indicator function 
of the tree crown. Note that the leaf area density distribution 
function depends on the fractal dimension D of tree crown 
which is determined by within-crown leaf organization and 
may vary between trees [Zeide and Pfeifer, 1991 ]. 

Thus the Hausdorf integration technique gives us a 
possibility to express canopy structure both quantitatively and 
qualitatively. Note that we have outlined this approach 
without precise mathematical argumentation. It refers, for 
example, to (12); in the general case the fractal dimension of 
a fractal set bounded by the domain V may differ from one 
derived from (11) and hence F(V,D) may not be a meaningful 
function. The problem of specifying a strict mathematical de- 
scription of the whole approach and of incorporating it into a 
particular research theme is the topic of another investigation. 

5. Radiative Transfer and Photosynthesis 
in Turbid and Fractal Media 

We consider the following model of fractal canopy 
organization: The canopy space is a parallelepiped of height 
H (in meters) and basal area cr (in square meters). The canopy 
consists of horizontal planes with optically black, flat linear 
elements, horizontally oriented and uniformly distributed. The 
leaf area density of planes (the total one-side leaf area in the 
plane per unit plane area) is assumed constant. Further, there 
are no leaves in between these planes. Two different patterns 
of vertical distribution of the planes will be analyzed here. 

Let the canopy be illuminated from above by a beam 
perpendicular to the horizontal plane h = 0 (Figure 8). We 
assume no mutual shading between leaves when viewed along 
the beam path. Average radiation attenuation along the beam 
path can be described by the following differential equation: 

4(h) aS(h), = 5) 

where I(h) is the intensity of the light beam at the depth h; 
S(h) is the cumulative leaf area index at h (total one-side leaf 
area above h per unit ground area, dimensionless), and I0 is 
the intensity of incident radiation. Its solution is 

l(h) : Io exp(- S(h)). (16) 

Assuming an invariant photosynthetic response Pleat of a 
foliage surface element as well as taking into account (15) 

and (16), the rate of canopy photosynthesis, Pc can be 
formally expressed as JOker-Biota et al., 1991 ] 

1 Io 1 

Pc = P•eaf(l(h))dS(h) = P•eaf(I) = P•eaf(10 T).• , 
0 I(H) T(H) 

where T(h) is the canopy transmittance, T(h) = I(h)/Io = 
exp[-S(h)]. 

Thus the canopy transmittance and photosynthesis can be 
evaluated when the cumulative leaf area index is specified. 
We derive this variable for two different vertical distributions 

of the above mentioned horizontal planes. In the first case, the 
foliated planes are assumed to be uniformly distributed along 
the vertical within a layer [0,H]. We term this canopy 
organization a turbid medium. In the second case, the vertical 
distribution of the foliated planes in [0,H] coincides with the 
distribution of Cantor's points iterated from the interval [0,H] 
(Figure 8). We call this canopy a Cantor medium. 

Our analysis will be performed in terms of the generalized 
volume discussed previously. In order to derive this variable, 
we introduce a fine spatial mesh as in section 2.2. Note that 
the total number of fine cells N• and the size e of an 
individual cell are related by the following equation: 

3 Hry 
e 

Ne 

where Her is the volume (in cubic meters) of our canopy 
space. This equation has a simple interpretation: the volume 
of an individual cell is the ratio of the volume of our canopy 
to the total number of cells constituting the canopy space. 

5.1. Turbid medium. 

Cells with foliage are uniformly distributed within the 
canopy space and therefore the indicator function takes on the 

z=l iz 
b 

Figure 8. Horizontally homogeneous fractal model of canopy 
organization. The canopy space consists of horizontal planes 
with plane leaves, horizontally oriented, and uniformly 
distributed. The vertical distribution of these foliated planes 
coincides with distribution of Cantor's points along the OZ 
axis. Three successive iterations of our fractal model of 

canopy organization. 
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value 1 at any space point within the canopy space. Taking 
into account (18), we can rewrite (11) as 

l e (p) = N e e p Hcr = 3 EP =H•YEP-3 ' 
E 

It is clear that l,(p) takes a finite value; that is, Her (in cubic 
meters), if and only if p = 3. The volume, in the true sense, 
therefore coincides with the volume of leaves. Let LAIB be the 
leaf area index (the total one-side leaf area in the canopy 
space per unit ground area). It follows from (14) that the leaf 
area density distribution function is 

u(r,3) = LAI B• = LAI B• = LAI____& (in m'l). 
/(3) Hry H 

Thus the cumulative leaf area index SB(h) for the turbid 
medium has the following form: 

S•(h) = LAI• h__= LAI• F(s,1). (19) 
H 

Here F(s, 1)- s is the relative foliage distribution function for 
the turbid medium; s = h/H is the length of the interval [0,h) 
in relative units. Note that the fractal dimension of the whole 

interval [0,H], compare (5) and (18), is 1. To emphasize this, 
we include this value in the argument list of the distribution 
function. 

5.2. Cantor Medium 

The total number of horizontal layers of length e contain- 
ing the foliated planes coincides with number, M,.c, of inter- 
vals of the same length, e, along the vertical axis containing 
Cantor's points (Figure 6). Consider the situation when the 
size e of a cell can take on the values H/3 n, n = 1, 2 .... , only. 
In this case, we have (Figure 8) M,.c = 2 "= (3n) ø = (H/e)r>, 
where D = log3 2 is the fractal dimension of the Cantor set. 
Because leaves are uniformly distributed over the horizontal 
planes, each foliated layer contains cr/e 2 cells. Thus the total 
number of foliated cells N,. r can be expressed as N•,r = 
(cr/e2)(H/e) ø= crbløe -(2+•). It follows from this relationship that 
(11) can be rewritten as 

I e (p) = Ne, f e p = cr H iv e p-2-iv (in mY). 

This function can take a finite value, i.e., oH ø (in m2+O), if 
and only if p = 2 + D. Therefore the generalized volume of 
leaves in our canopy space is 

l•(2+D) = oH ø (in m2+ø). 

Because the function/,(2+D) converges to/(2+D), no matter 
how e tends to zero, this result does not depend on a specific 
choice for the size of the cell. 

Let LAIc be the leaf area index of the Cantor medium. It 
follows from (14) that the generalized leaf area density 
distribution function (in m -r>) has the following form: 

cr LAI c 
u(r,2+D)=•X(r)=• 

/(2 + D) 
o' LAI c LAI c 
o' H D x(h) = H D x(h) 

Because leaves are uniformly distributed over horizontal 

planes, the indicator function of the Cantor medium does not 
depend on the horizontal coordinates. Its vertical dependence 
coincides with the indicator function of the Cantor set iterated 

from the interval [0,H]. Taking into account (8) and (10), one 
can derive the cumulative leaf area index Sc(h) of the Cantor 
medium 

h h 

Sc(h)= LAIc z(h)!a(dh)= dF(h) 
H D H D 

o o 

LAIc F(h)= LAI c F(s,D) 
H D 

(20) 

where t.t(dh)is the Hausdorf measure of an elementary 
interval [h,h+dh); that is, t.t(dh) = (dh)r> (in mr>); F(s,D) is the 
relative distribution function of the unit Cantor set introduced 

in section 4 (we include the fractal dimension D in its 
argument list here), and s = h/H is the length of the interval 
[0,h) in relative units. It follows from (20) and (10) that the 
function Sc(h) coincides with the distribution function of 
Cantor's points iterated from the interval [0,1] of the length 
LAIc •ø expressed in relative units LAIc •/ø h/H. Therefore if 
the leaf area index of the turbid medium is taken as the length 
of the interval [0,1] in relative units L=LAIa b/H, then the leaf 
area index for the Cantor medium can be expressed as 

= ø , 

where D is the fractal dimension of the Cantor set. This 

equation has a simple interpretation: removing the foliated 
planes from the turbid medium by means of the iterative 
procedure shown in Figure 8 involves the alteration in the leaf 
area index from the value of LAI• (for the turbid medium) to 
(LAI•)r> (for the Cantor medium). 

The canopy transmittance T(h,D) of the media takes the 
form 

T(h,i) = exp(- S(h)) = exp(-LAIar> F(s,i)), (21) 

where F(s,D) is the relative plane distribution function for the 
layer [0,H]. Inserting this in (17), we obtain an expression for 
canopy photosynthesis 

1 

P(D) I P•eaf (Io r' dr (22) - 
exp(-LAl•) 

Thus if the turbid medium is replaced by the Cantor medium, 
canopy transmittance and photosynthesis will change from 
T(h,1) and P(1) to T(h,log23) and P(log32). 

It follows from (21) that the relationship between leaf area 
index and transmittance of a canopy can be expressed in the 
form of Beer's law, irrespective of the internal organization of 
the canopy; that is, 

T(H,D) = exp(-LA/), (23) 

where LAI = LAIB for the turbid medium and LAI = LAIc for 
the Cantor medium. Therefore in the case of horizontally ho- 
mogeneous media, it follows that canopy transmittance can be 
predicted by Beer's law irrespective of the canopy organiza- 
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tion. This, however, leads to erroneous estimation of leaf area 
index when the Beer's law is inverted. Indeed, one can meas- 
ure canopy transmittance without making any assumption 
about canopy organization. The leaf area index thus derived 
from (23) does not depend on such assumptions too. In using 
this technique therefore, the important thing is to recognize 
the canopy organization to which the derived LAI refers. Let 
us suppose that the leaf area index derived corresponds to the 
Cantor medium. In this case, its nth approximation contains 2 n 
foliated layers of the height e = H/3 '• each (compared to turbid 
medium which contains 3 '• foliated layers of the height e = 
H/3 '• each). Let us remove all nonfoliated layers and change 
each foliated layer by powering its height by D = log3 2. As a 
result of this transformation, the new medium has 2 '* foliated 

layers of the height e = HD/2 • each. These layers are now uni- 
formly distributed along the vertical within the layer [0,Hø]. 
Thus the Cantor medium of depth H and leaf area index LAIc 
corresponds to the turbid medium of depth H r• and the same 
leaf area index LAIc. Therefore if we want to treat this Cantor 
medium of depth H as a turbid medium of the same depth, 
then we should assign the value LAI •/D to its leaf area index. 
Note that the same result was derived by analyzing (19) and 
(20). Such a correction of measured LAI is required before its 
use as input for any canopy radiation model based on Beer's 
law. 

Neglecting internal canopy organization also leads to 
errors in estimated canopy photosynthesis. The Cantor canopy 
is equivalent to the turbid medium of LAIc •/•. Thus the Cantor 
medium which contains leaves of area ryœAlc takes up as 
much CO2 as the turbid medium with leaves of area ry LAIc •/• 
This follows from (22) also. 

6. Summary 

The architecture of a vegetation canopy is the most 
important factor determining the canopy radiation regime. All 
canopy radiation models therefore require the probability dis- 
tribution function of leaf area in order to specify statistical 
features of canopy architecture. In probability theory 
[Kolmogorov, 1950], any distribution function F can be rep- 
resented as a sum of three components: F -o•C+/tJ+7S 
where o•, fl, and 7 take on the values 0 or 1 depending on 
whether or not the corresponding component is represented. 
The first summand C is the continuous probability distribu- 
tion function. The uniform, Gaussian, gamma, etc., distribu- 
tions are examples of this component. The second summand J 
is the jump function. This is a piece-wise constant function 
which describes random discrete variables taking on finite or 
countably infinite number of values. The third summand S is 
the singular function. It is a continuous, nonconstant function 
whose derivative is zero almost everywhere. 

Previous canopy radiation models used the first and 
second components to describe the structure of vegetation 
canopies which allows us to mathematically express radiation 
attenuation by Beer's law. This predetermines the scale at 
which it provides an adequate prediction. This is the land- 
scape scale, which can account for spatial distribution of 
trees, tree shape, the mean vertical or/and horizontal distribu- 

tions of foliage within crowns, clumping, and mean leaf size, 
but which ignores small-scale structural features of canopy 
organization. In the present paper, we considered examples of 
fractal-like canopy organizations, in which the spatial distri- 
bution of phytoelements is described by singular probability 
distribution functions. Any attempt to use continuous and 
discrete distribution functions leads to degeneration in the 
description of canopy structure. The use of the singular distri- 
bution function therefore is needed in order to derive the 

distribution of phytoelements. However, one requires 
information about fractal characteristics of the vegetation 
canopy to do this. The singular distribution function assumes 
that the foliage elements in an elementary volume are uni- 
formly distributed and generally obtained by powering a unit 
elementary volume by a fractal dimension. Because photo- 
synthesis in an elementary volume depends on the distribution 
of radiation on foliage elements, this property of fractal-like 
canopy organization influences photosynthesis of the entire 
vegetation canopy. The fractal dimension depends on the 
structure of tree organization and may vary between trees and 
tree species. Thus canopy radiation models based on continu- 
ous and discrete distribution functions are unable to account 

for such features of canopy organization. The use of the 
singular distribution function in canopy radiation models, 
however, requires information on fractal characteristics of 
trees and tree communities. Their measurement and modeling 
therefore requires special attention in order to extend the ap- 
plicability of Beer's law. 
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