
A mathematical comment on the formulae for the aggregation index and
the shape index

Jan Bogaert1,2,*, Ranga B. Myneni1 and Yuri Knyazikhin1

1Department of Geography, Climate and Vegetation Research Group, Boston University, Boston,
MA 02215-1401, USA; 2Department of Biology, Research Group of Plant and Vegetation Ecology, University
of Antwerp, Universiteitsplein 1, B-2610 Wilrijk, Belgium; *Author for correspondence (e-mail:
jan.bogaert@ua.ac.be)

Received 9 February 2001; accepted in revised form 19 December 2001

Key words: Aggregation index, Index redundancy, Landscape metric, Perimeter, Pixel edge, Pixel geometry,
Shape index, Spatial pattern

Abstract

In a recent paper [Landscape Ecol. 15: 591–601 (2000)] He et al. described an aggregation index AIi to measure
pixel aggregation within a single class i. We show that the commonly used shape index SIi is related to the
proposed aggregation metric as SIi = �(Ai) + AIi(1 − �(Ai)), with �(Ai) dependent on class area Ai only. More-
over, it is shown that the normalized shape index, SIi

�, equals (1 − AIi). We conclude that AIi does not provide
any information not provided by SIi, or SIi

�.

Introduction

Recently, an aggregation index (AI), designed to
quantify landscape spatial patterns for raster data, was
presented and tested (He et al. 2000). It was initially
applied by Miller et al. (1997) as a ‘cluster/intersper-
sion index’ in a study relating landscape pattern met-
rics to land use and to changes in biotic communities.
The index responds to demands for quantification of
aggregation levels within a single class. Calculation
of AIi for class i is based on the pixel edges ei,i shared
with itself, i.e.,

AIi �
ei, i

max_ei, i

, (1)

with max_ei,i the largest number of possible edges
shared for class i. The value of ei,i is also known as
the ‘contact perimeter’ (Bribiesca 1997). The proce-
dure for calculating max_ei,i is based on the largest
square integer (n2) smaller than the area Ai of class i.
Note that Ai is an integer value, exceeding zero, i.e.
Ai � �+

0. The shape index SI is another class specific

index, calculated as:

SIi �
P�Ai�

4�Ai

, (2)

with SIi the value for the i-th class, and P(Ai) the to-
tal perimeter. SIi is based on the area-to-perimeter re-
lationship P � 4�A for a square shape and measures
deviation of the perimeter from that of a perfect
square. Three justifications were given by He et al.
(2000) for proposing AI as a substitute for SI. First,
SI assumes that a square shape is the most aggregated
shape, although due to pixel geometry, a square can-
not always be constructed using Ai pixels, as was al-
ready mentioned by Milne (1991). Second, SI has no
upper bound, which makes its interpretation difficult.
Third, SI is based on perimeter calculation, and hence
uses the edges ei,j between different classes i and j.
He et al. (2000) argue that AI, although similar to SI,
quantifies aggregation more precisely. Here, we
present formulae for use of SIi with raster data, and
to normalize SIi. Consequently, we provide mathe-
matical arguments to illustrate a direct relationship
between AIi and SIi.
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Relationship between the aggregation index and
the shape index

The minimum perimeter Pmin(Ai) for aggregates of Ai

square pixels is calculated as (Milne 1991; Bogaert et
al. 2000):

Pmin�Ai� � 4int�Ai � c, (3)

int(x) is a function that truncates x at its decimal
point, i.e. |x − int(x)| < 1, and,

c

� �
0 if int�Ai ��Ai;

2 if �int�Ai�
2 � Ai � �int�Ai��1 � int�Ai�;

4 if Ai � �int�Ai��1 � int�Ai�.

Note that int�Ai � n, and for Ai � 1,
4int�Ai � c � 4�Ai, as in Equation (2). This is illus-
trated in Figure 1A, and is mathematically written as:

lim
Ai → �

4int�Ai � c

4�Ai

� 1. (4)

As a consequence of pixel geometry, Equation (2) can
be applied if int�Ai � �Ai, hence if Ai = n2, or, by
approximation, for Ai � 1. For vector data, Equation
(2) is replaced by

SIi �
P�Ai�

2��Ai

, (5)

based on the relation P � 2��A for disks (McGarigal
and Marks 1995). The application of Equation (2) is
hence mortgaged by (i) erroneous outcomes for val-
ues of Ai not equal to n2 or not large enough to use
the approximation for Ai � 1, and by (ii) the exist-
ence of an alternate formula, i.e. Equation (5), for
vector data structures, where the circle shape can al-
ways be used to find the smallest perimeter of a given
area. Note that both formulae (Equations 2 and 5)
were initially designed for shape assessment of single
patches (McGarigal and Marks 1995). They can be
just as well applied to multiple patches of a single
class, because these formulae are composed only of
area and perimeter data. The index outcomes should
be therefore interpreted with caution, because multi-
ple patches characterized by a perfect isodiametric

shape will generate an overall outcome exceeding that
of a single isodiametric patch.

The general formula for perimeter calculation of
pixel aggregates is given by (Bribiesca 1997; Bogaert

Figure 1. Approximations for Ai � 1, illustrated for 1 � Ai �

1,000, leading to a more simple calculation of Equations (3) and
(9). (A) Polygon fit (�2 = 0.139) showing the decreasing trend in
the relative difference between �4int�Ai � c� and 4�Ai, calculated
as �4int�Ai � c � 4�Ai�/�4int�Ai � c�. (B) Decreasing trend of
1/�Ai as a function of Ai. (C) Decreasing trend of the relative dif-
ference between ��Ai � 1� and �Ai, calculated as
��Ai � 1 � �Ai�/��Ai � 1� � � � 1�/��Ai � 1�.
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et al. 2000):

P�Ai� � 4Ai � 2ei, i. (6)

Consequently, for ei,i= max_ei,i, P(Ai) = Pmin(Ai).
Note that for ei,i = 0, P(Ai) = Pmax(Ai) = 4Ai, with
Pmax(Ai) the maximum perimeter (Bribiesca 1997;
Bogaert et al. 2000). Pmax(Ai) is the theoretical upper
limit of P(Ai), and requires that no neighboring pix-
els belong to the same class i. However, this will ex-
ceptionally occur in classified remote sensing data or
in any thematic data layer that describes a natural
phenomena (Johnsson 1995). Using Equation (3) and
Equation (6), Equation (2) can be substituted by

SIi �
P�Ai�

Pmin�Ai�
�

4Ai � 2ei, i

4Ai � 2max_ei, i

�
4Ai � 2ei, i

4int�Ai � c
,

(7)

for use with raster data. Note that for Equation (7),
SIi has an upper and lower limit, i.e.

1 � SIi �
Pmax�Ai�

Pmin�Ai�
, (8)

and hence SIi can be normalized as SIi
�, i.e.

SIi
� �

SIi � 1

Pmax�Ai��Pmin�Ai��
� 1 � 1

�
P�Ai� � Pmin�Ai�

Pmax�Ai� � Pmin�Ai�
. (9)

The upper limit of SIi reflects the effect of pixel
geometry on the data, and hence accounts for resolu-
tion when comparing data sets. It should be noted that
the use of pixel number in defining a reference value
is also applicable to AIi in Equation (1), where
max_ei,i is dependent on Ai, and that it is the only
objective parameter for standardizing a metric for
pixel configuration (Milne 1991; Bogaert et al. 2000).
For Ai � 1, it can be accepted that ��Ai�

� 1 � 0 and
�Ai � 1 � �Ai. The validity of these approximations
is illustrated in Figures 1B and 1C, and is mathemati-
cally given by:

lim
Ai → �

1

�Ai

� 0, (10)

lim
Ai → �

�Ai � 1

�Ai

� 1 �
1

�Ai

� 1. (11)

Thus, SIi
� can be approximated for large values of

Ai as (cf. Equations (4), (11) and (12)),

SIi
� �

P�Ai�

4Ai

�
SIi

�Ai
, (12)

or, mathematically,

lim
Ai → �

SIi
�

SIi

�Ai � 1. (13)

The use of SIi
� instead of SIi hence addresses the two

limitations of Equation (2); SIi
� generates the correct

outcome for all values of Ai by accounting for pixel
geometry, and is easy to interpret because of its range
[0,1]. The relation between SIi and AIi is found by
combining Equations (1) and (7):

SIi �
4Ai � 2AIimax_ei, i

4int�Ai � c
, (14)

which can be simplified into

SIi � ��Ai� � AIi�1 � ��Ai��, (15)

with �(Ai) dependent on Ai only, i.e.

��Ai� �
4Ai

4int�Ai � c
�

Pmax�Ai�

Pmin�Ai�
, (16)

with �(Ai) > 1 if Ai > 1, and �(Ai) equal to the up-
per bound of SIi. Note that Equation (15) does not
apply for Ai = 1 which generates Pmax(1) = Pmin(1) =
4 and �(1) = 1, and because for a class composed of
a single pixel, ei,i = max_ei,i = 0, and Equation (1)
cannot be used. To obtain the relation between SIi

�

and AIi, Equation (1) is rewritten using ei,i = (4Ai −
P(Ai))/2 and max_ei,i = (4Ai − Pmin(Ai))/2 as

AIi �
4Ai � P�Ai�

4Ai � Pmin�Ai�
�

Pmax�Ai� � P�Ai�

Pmax�Ai� � Pmin�Ai�
, (17)
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or,

P�Ai� � Pmax�Ai� � AIi�Pmax�Ai� � Pmin�Ai��. (18)

P(Ai) in Equation (9) can be substituted by the above
which results,

SIi
� � 1 � AIi. (19)

These obvious relations between AIi, SIi
�, and SIi (cf.

Equations (15) and (19)) indicate that these indices
are not independent, and that they duplicate informa-
tion, i.e. exhibit index redundancy, which is prefer-
ably avoided (O’Neill et al. 1988).

Note that we assume

ei � ei, i � ei, j, (20)

with ei the total number of edges for class i, and that
ei,j = P(Ai). If pixels of class i touch the grid or land-
scape edge, they are included in the count of ei,j

(Pearson et al. 1999). The edges between pixels of
class i are tallied once (He et al. 2000), such that

4Ai � 2ei, i � ei, j. (21)

Thus, we note that (i) Equation (7) adapts SIi for ras-
ter data, (ii) SIi

� defined in Equation (9) is standard-
ized by its maximum and minimum, and thus ranges
from 0 to 1, and (iii) Equations (15) and (19) directly
relate AIi to SIi and SIi

�, respectively. Therefore we
conclude that AIi does not provide any information
not provided by SIi, or SIi

�.

Summary

The aggregation metric AIi, proposed as a substitute
for the shape index SIi, was supported by three justi-
fications (He et al. 2000): it accounts for pixel geom-
etry, it has an upper bound, and it measures ei,i, the
total edges shared by class i with itself. AIi was sug-
gested to measure aggregation more precisely than
SIi. Using perimeter equations, we define SIi for use
with raster data, together with its upper and lower
limit, which leads to normalization of SIi as SIi

�. Us-
ing the ratio �(Ai) of the theoretical maximum and
minimum perimeter, we show that SIi equals �(Ai) +
AIi(1 − �(Ai)). Further, we find that SIi

� = 1 − AIi.

To avoid index redundancy, only one of the metrics
AIi, SIi, and SIi

� should be used when quantification
of aggregation levels within a single class is required.
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