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Abstract

Accurate parameterization of rooting depth is difficult but important for capturing the

spatio-temporal dynamics of carbon, water and energy cycles in tropical forests. In this

study, we adopted a new approach to constrain rooting depth in terrestrial ecosystem

models over the Amazon using satellite data [moderate resolution imaging spectro-

radiometer (MODIS) enhanced vegetation index (EVI)] and Biome-BGC terrestrial

ecosystem model. We simulated seasonal variations in gross primary production (GPP)

using different rooting depths (1, 3, 5, and 10 m) at point and spatial scales to investigate

how rooting depth affects modeled seasonal GPP variations and to determine which

rooting depth simulates GPP consistent with satellite-based observations. First, we

confirmed that rooting depth strongly controls modeled GPP seasonal variations and

that only deep rooting systems can successfully track flux-based GPP seasonality at the

Tapajos km67 flux site. Second, spatial analysis showed that the model can reproduce the

seasonal variations in satellite-based EVI seasonality, however, with required rooting

depths strongly dependent on precipitation and the dry season length. For example, a

shallow rooting depth (1–3 m) is sufficient in regions with a short dry season (e.g. 0–2

months), and deeper roots are required in regions with a longer dry season (e.g. 3–5 and

5–10 m for the regions with 3–4 and 5–6 months dry season, respectively). Our analysis

suggests that setting of proper rooting depths is important to simulating GPP seasonality

in tropical forests, and the use of satellite data can help to constrain the spatial variability

of rooting depth.
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Introduction

Tropical forests, which account for about 20% of global

terrestrial carbon stocks and 30% of global terrestrial

productivity (Prentice et al., 2001), play important role

in the global carbon cycle responding to environmental

changes. Although atmospheric observations, ground

observations, and ecosystem models are used to under-

stand current changes in tropical forests, there are large

uncertainties in current carbon budgets among methods

and models (e.g. Schimel et al., 2001; Houghton, 2003).

Large uncertainties also remain in understanding
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various carbon cycle processes such as gross primary

productivity (GPP), respiration, and deforestation

(e.g. Clark, 2004; Fearnside, 2004).

GPP, which is one of the important components of the

terrestrial carbon cycle, shows large differences be-

tween observations and model simulations in terms of

controlling processes in tropical evergreen forests. Some

ground observations show that carbon uptake peaks

near the end of the dry season (Saleska et al., 2003;

Goulden et al., 2004). This pattern is partially explained

by the seasonal GPP variations that increase during the

dry season and peak in the end of the dry season

(Goulden et al., 2004) with no sign of drought stress

on GPP in the dry season (Rocha et al., 2004; Xiao et al.,

2005). Other ground-based studies, however, show de-

pressed photosynthetic activity in the dry season due to

moisture stress (Araujo et al., 2002; Malhi et al., 2002).

Satellite-based vegetation index (VI) analysis has shown

increases in vegetation activity in the dry season (Xiao

et al., 2005; Huete et al., 2006). Empirical analyses also

suggest that radiation is important for vegetation

growth in tropical evergreen forests (Churkina &

Running, 1998; Nemani et al., 2003).

On the other hand, results of terrestrial ecosystem

models in simulating GPP seasonality largely depend

on the model setting. Some terrestrial ecosystem models

have failed to simulate seasonal variations in the carbon

cycle over tropical evergreen forests. For example,

Saleska et al. (2003) pointed out that the simulated

carbon cycle seasonalities of two ecosystem models

were opposite to the ground observations, (i.e. models

show carbon uptake in the wet season and release in the

dry season), due to strong drought stress on modeled

photosynthesis. On the other hand, several studies have

successfully simulated seasonal carbon budgets in

tropical forests (Kleidon & Heimann, 1998; Potter

et al., 2001b).

A main reason for these differences in the results of

ecosystem models is the setting of rooting depth. Root-

ing depth, a parameter for the storage size of the soil

water pool, determines the amount of plant available

water for transpiration during dry season, and in turn

affects the role of water stress on vegetation productiv-

ity. Although several studies have reported the role of

deep roots for water uptake to maintain green canopies

(e.g. Nepstad et al., 1994; Jackson et al., 2000), sustain

high evapotranspiration and net primary productivity

(NPP) during the dry season (e.g. Kleidon & Heimann,

1998; Zeng et al., 1998; Potter et al., 2001b), it is difficult

to obtain the spatial distribution of rooting depth due to

the lack of observations. A few studies attempted to

estimate spatial rooting depth patterns. For example,

Kleidon & Heimann (1998) and Kleidon (2004) esti-

mated the rooting depth by ecosystem model inversions

to maximize NPP or optimize satellite-based absorbed

photosynthetically active radiation (APAR). However,

their analysis was based on the advanced very high

resolution Radiometer (AVHRR), which have measure-

ments contaminated by cloud, water vapor, and aero-

sols (Kobayashi & Dye, 2005). Huete et al., (2006) have

found MODIS data, processed with state-of-the art

algorithms for geometric registration, radiometric cali-

bration, and atmospheric corrections, to accurately re-

present seasonal vegetation dynamics in the Amazonia.

In this study, we adopted an alternative approach to

constrain rooting depth in terrestrial ecosystem models

in the Amazon River Basin using satellite based analysis

(diagnostic analysis) and terrestrial ecosystem model

based analysis (prognostic analysis) by simulating

the seasonal GPP variation. Using the VI data from

the moderate resolution imaging spectroradiometer

(MODIS) as a satellite-based data and Biome-BGC as a

terrestrial ecosystem model, we simulated seasonal

GPP variations with different rooting depths, and dis-

cussed how rooting depth affects seasonal GPP varia-

tions and which rooting depth simulates GPP

consistently with satellite-based observation. In sum-

mary, the objectives of the study are (1) to infer the

rooting depth of tropical evergreen forests, (2) to assess

the capability of satellite-based VI data for monitoring

seasonal GPP variations, and (3) to characterize the

spatial patterns of inferred rooting depths.

Methods

Study area

Our study focused on Evergreen Broadleaf Forests

(EBF) regions in the Amazon River Basin. We used a

global land cover map (DeFries et al., 1998), and con-

verted the original 8 km data to 0.51 spatial resolution,

identifying pixels with a dominant EBF cover in the

Amazon River Basin (Fig. 1). All spatial analysis was

done with 0.51 spatial resolution.

Seasonal variations of the climate parameters show

regional contrasts in terms of the precipitation and

downwelling surface solar radiation (Fig. 2). In general,

precipitation mostly peaks in March to May (MAM) and

December to February (DJF), and solar radiation peaks

in September to November (SON) season over the most

of the study area. The Northwestern region has more

precipitation and less solar radiation than the other

regions and is characterized by weak solar radiation

and precipitation seasonality, with a short dry season

(0–2 months). Toward the Southeast region the climate

is characterized by less precipitation, a longer dry

season, more solar radiation, and greater seasonality

in precipitation and solar radiation. In the Southeastern
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region, the climate has a longer dry season (5–6 months)

from June to November with solar radiation peaks in

SON.

Model

We used the Biome-BGC version 4.2 model to simulate

monthly GPP variations over the tropical evergreen

forests in the Amazon River Basin. Biome-BGC prog-

nostically simulates the states and fluxes of terrestrial

carbon, water, and nitrogen at a daily time step using

time-variant climate data (Thornton et al., 2002). GPP is

estimated with a combined photosynthetic (Farquhar

et al., 1980) and canopy conductance (Jarvis, 1976)

model; autotrophic and heterotrophic respirations (AR

and HR) are simulated based on the carbon and nitro-

gen pools with temperature (for AR and HR) and soil

moisture status (for HR only).

The model has a one-box soil water pool, and there-

fore does not include vertical soil water layer, root

hydraulic redistribution, and vertical distribution of

root density in the extraction and movement of water

within the soil profile which are potentially important

for tropical forest water cycle modeling (e.g. Lee et al.,

2005; Oliveira et al., 2005). Potential impacts of these

simplifications on results are discussed in the results

and discussion section.

Variations in the input climate parameters affect the

carbon cycle in many ways. Briefly, temperature affects

photosynthesis through enzyme activity and stomatal

conductance and AR and HR by temperature effects on

respiration; precipitation affects photosynthesis and HR

through soil moisture status; solar radiation directly

affects photosynthesis; and vapor pressure deficit

(VPD) affects photosynthesis through stomatal conduc-

tance. Further Biome-BGC details are described else-

where (e.g. Thornton et al., 2002; Fujita et al., 2003).

We briefly describe the effects of the rooting depth on

GPP in the model here. The setting of the rooting depth

determines the vertical extent of the soil water storage

accessible to plants, (i.e. deep rooting depth increases
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Fig. 1 Study area and spatial patterns in dry season length. Dry

season length is defined as the number of months with less than

100 mm month�1 rainfall based on CRU TS2.1 precipitation data

from 1984 to 2000. The flux observation site used in the study

(Tapajos km67) is marked as X.
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Fig. 2 Seasonal variations [March to May (MAM), December to February (DJF), September to November (SON), and June to August

(JJF)] in precipitation and incoming surface solar radiation over the study area. Seasonal averages are based on the CRU TS 2.1

precipitation data and ISCCP-FD downwelling surface solar radiation data from 1984 to 2000.
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the soil water holding capacity). Soil water content is

calculated by the water balance of precipitation, evapo-

transpiration, and runoff, and the soil water holding

capacity is used to calculate runoff, (i.e. soil water in

excess of soil water holding capacity is routed to run-

off). Therefore, soils with high water holding capacities

can store more water in the wet season in tropical

forests, and in turn sustain photosynthesis and evapo-

transpiration during the dry season. On the other hand,

soils with shallow rooting depth cannot hold enough

water to sustain the photosynthesis and evapotran-

spiration during the dry seasons, which leads to soil

water stress, stomatal closure, and photosynthesis re-

duction.

In addition, we incorporated seasonal variations in

percent of leaf nitrogen in Rubisco (PLNR) based on the

studies of temperate forests, (i.e. PLNR peaks in the

middle of growing season Wilson et al., 2000). Based on

the results that new leaf flush occurred mostly within

the dry season for the field site in Manaus (Roberts et al.,

1998), we defined start of new leaf flush season as July.

Based on these assumptions, we modeled the seasonal

variability of PLNR as

PLNRðdÞ ¼ a sin

�
d

365
2p
�
þ PLNRbase ðd � 182Þ;

PLNRðdÞ ¼ a cos

�
365� d

365
2p
�
þ PLNRbase ðd < 182Þ;

ð1Þ

where a is amplitude of seasonal PLNR variations (we

set a 5 0.015), d is the day of the year since the beginning

of the year, and PLNRbase is minimum PLNR (which

corresponds with PLNR in the beginning and end of the

growing season). Incorporation of this dynamic para-

meter in the model produces higher GPP in the begin-

ning of wet season when radiation declines, which is

consistent with flux tower-based GPP.

As the model input parameter, we used the ecophy-

siological parameters shown in Table 1 (e.g. Ichii et al.,

2005). Nitrogen deposition and atmospheric CO2 con-

centrations are set 0.0018 g N m�2 yr�1 (Holland et al.,

1999), and 360 ppm, respectively. Other inputs required

to run the model are soil texture (Zobler, 1986), eleva-

tion (ETOPO-5), and albedo (Dorman & Sellers, 1989).

Table 1 Ecophysiological parameters of evergreen broadleaf forests used in the study

Value Unit Description

0.5 1 year�1 Annual leaf and fine root turnover fraction

0.70 1 year�1 Annual live wood turnover fraction

0.03 1 year�1 Annual whole-plant mortality fraction

1.2 Ratio (Allocation) new fine root C: new leaf C

2.2 Ratio (Allocation) new stem C: new leaf C

0.16 Ratio (Allocation) new live wood C: new total wood C

0.22 Ratio (Allocation) new croot C: new stem C

42.0 kg C (kg N)�1 C:N of leaves

55.0 kg C (kg N)�1 C:N of leaf litter, after retranslocation

48.0 kg C (kg N)�1 C:N of fine roots

50.0 kg C (kg N)�1 C:N of live wood

550.0 kg C (kg N)�1 C:N of dead wood

0.38 DIM Leaf litter labile proportion

0.44 DIM Leaf litter cellulose proportion

0.18 DIM Leaf litter lignin proportion

0.34 DIM Fine root labile proportion

0.44 DIM Fine root cellulose proportion

0.22 DIM Fine root lignin proportion

0.77 DIM Dead wood cellulose proportion

0.23 DIM Dead wood lignin proportion

0.01 1 LAI�1 day�1 Canopy water interception coefficient

0.54 DIM Canopy light extinction coefficient

15.0 m2 (kg C)�1 Canopy average specific leaf area (projected area basis)

0.02 DIM Fraction of leaf N in Rubisco

0.006 m s�1 Maximum stomatal conductance (projected area basis)

�0.34 MPa Leaf water potential: start of conductance reduction

�2.2 MPa Leaf water potential: complete conductance reduction

1100.0 Pa Vapor pressure deficit: start of conductance reduction

3600.0 Pa Vapor pressure deficit: complete conductance reduction

0.18 kg C (kg N)�1 Specific respiration rate
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Data

Flux tower based data. We used flux tower based climate

data as model input and GPP for validation in an old

growth seasonally wet tropical evergreen forest, located

in the Tapajos National Forest km67 (215102400S,

5415703200W), Para, Brazil (Fig. 1; Saleska et al., 2003).

All of the original data are provided hourly, and we

converted them into daily or monthly means.

The climate data required to run the model are daily

data of maximum and minimum temperature,

precipitation, VPD, and solar radiation. Daily

maximum and minimum temperature and

precipitation are obtained from hourly observations of

temperature and precipitation. We calculated VPD

based on the assignment of daily minimum

temperature as dew point temperature (Campbell &

Norman, 1998), and solar radiation by converting

photosynthetic photon flux density (PPFD) using an

average energy for PAR photon (4.55 mmol J�1).

Flux tower based hourly GPP is calculated as Rtot –

NEE, where Rtot is total ecosystem respiration and NEE

is net ecosystem exchange. Rtot equals NEE at night and

is assumed to have the same average value during the

day as at night. Detailed data processing for the gap-

filling and GPP calculations are described in Saleska

et al. (2003). We calculated the monthly total GPP using

original hourly data from 2002 to 2004.

Gridded climate data. As climate inputs for spatial model

simulation, we used daily maximum and minimum

temperature, precipitation, VPD, and solar radiation

from 1984 to 2000. Daily maximum and minimum

temperatures were derived from National Centers for

Environmental Prediction (NCEP) reanalysis data

sets (Kalnay et al., 1996). We adjusted daily NCEP

precipitation data using monthly Climate Research

Unit (CRU) TS2.1 precipitation data (Mitchell & Jones,

2005) while preserving the frequency of rainy days in

each grid cell. Daily VPD is calculated from surface

pressure, specific humidity, and temperature from the

NCEP data sets. We adjusted daily NCEP solar

radiation data using monthly solar radiation data

from the International Satellite Cloud Climatology

Project Radiation Flux profile (ISCCP-FD) data set

(Zhang et al., 2004).

Satellite based VI data. We used normalized difference VI

(NDVI) and enhanced VI (EVI) data in the MODIS VI

products (MOD13A2) from 2001 to 2004 (Huete et al.,

2002). The products are provided at 1 km spatial

resolution and 16 day compositing periods using

MODIS surface reflectance products (MOD09), which

are atmospherically corrected for molecular scattering,

ozone absorption, and aerosols (Vermote et al., 2002).

Although NDVI is the most commonly used VI, several

limitations including saturation in closed dense

canopies and high sensitivity to both atmospheric

aerosols and the soil background are reported (e.g.

Huete et al., 2002). On the other hand, EVI was

developed to optimize the vegetation signal with

improved sensitivity in high biomass regions and

improved vegetation monitoring through a decoupl-

ing of the canopy background signal and a reduction

in atmospheric influences including blue band for

reducing atmospheric contamination (Huete et al.,

2002).

For the point analysis, we used 7 km� 7 km pixels

centered on a flux tower site. We used the pixels which

satisfy the following four standards in the VI quality

assurance (QA) science data sets in MOD13A2

products; (1) VI quality is ‘VI produced with good

quality’ or ‘VI produced but with unreliable quality

and examination of other QA bits recommended,’ (2) VI

usefulness index is better than ‘fair quality,’ (3) mixed

clouds flag is ‘no mixed clouds,’ and (4) shadow flag is

‘no shadow.’ We calculated an average 16 day VI if

the number of selected pixels exceeds 10% of the

corresponding 7 km� 7 km region, and computed

monthly averages by temporal weighting, and

calculated monthly variations by averaging 4 years

data for both NDVI and EVI.

For the spatial analysis, we used 12 MODIS tiles to

cover the study area. First, we averaged over 0.51 spatial

resolution using the selected pixels in each 16 day

product. We used the same standard as the point

analysis to select the data for spatial averaging. Then,

we produced monthly averages by temporal weighting.

Lastly, we averaged over 4 years to produce the

averaged monthly variations in NDVI and EVI.

Experiments

In this study, the analysis consists of the point analysis

at Tapajos km67 flux site, and the spatial analysis over

the Amazon River Basin. First, we conducted a point-

based analysis to validate the modeled GPP seasonality,

then we analyzed the sensitivity of GPP to the setting of

rooting depth, and finally we tested the capability of

satellite-based VIs to infer the GPP seasonality. We

extended this to the spatial analysis using the satellite-

based VI data as a surrogate of GPP.

Point analysis. First, we validated the model and tested

the sensitivities of modeled GPP seasonality to rooting

depth settings at the Tapajos km67 flux site. Using the

daily climate input from 2002 to 2004, we executed the

model to simulate seasonal GPP variation based on
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different rooting depth inputs. For the model spinup,

the model was run until the soil carbon pool reaches

near equilibrium, then was executed using the data for

2002 to 2004. To analyze the sensitivities of GPP

seasonality to rooting depth settings, we adopted four

rooting depths of 1, 3, 5 and 10 m. One meter rooting

depth is one of the common values in terrestrial

ecosystem modeling (e.g. Kleidon & Heimann, 1998),

and close to the mean depth above which 95% of all

roots are located in the soil (Schenk & Jackson, 2002). In

addition, we used 3, 5 and 10 m rooting depths, as

several studies reported deep rooting depths and their

roles in tropical forests (e.g. Nepstad et al., 1994;

Canadell et al., 1996; Kleidon & Heimann, 1998). Then,

using flux tower based GPP and satellite-based VIs (EVI

and NDVI), we selected the suitable VI to represent

seasonal GPP patterns for the spatial analysis.

Spatial analysis. We analyzed the seasonal variations in

modeled GPP and satellite-based VIs over the study

area to test how satellite-based data can constrain

rooting depths in ecosystem models for tropical

evergreen forests. For the model run, spin-up was

done using the data from 1984 to 2000 until soil

carbon became equilibrium at each grid, then the

model was executed. Monthly GPP was calculated by

averaging entire period. To analyze the sensitivity of

seasonal GPP variations to the rooting depth, we

compared the modeled seasonal GPP variations with

satellite-based VI. All of the results were standardized

by taking anomaly from May average, as water

limitation has small impacts on the carbon cycles in

the end of the rainy season (May in most of the study

areas; Fig. 1).

Results and discussion

Point analysis

Sensitivity of GPP seasonality to the rooting depth. At

Tapajos km67 flux tower site, the mean dry season

extends from approximately July 15 to December 15

(e.g. Saleska et al., 2003; Hutyra et al., 2005), and solar

radiation peaks in September and October for 3 years’

average from 2002 to 2004 (Fig. 3a). Flux-based GPP is

lowest in June, July and August due to the ecosystem

preparing for leaf senescence (e.g. Goulden et al., 2004),

and increases until October which corresponds to the

peak radiation (Fig. 3b). GPP has its maximum values

from October to March (from the middle of dry season

to the middle of the wet season), and then declines. The

GPP increases in the dry season indicate weak or no

drought stress for photosynthesis, which is consistent

with other studies based on flux observations (Goulden

et al., 2004) and satellite-based observations (Xiao et al.,

2005; Huete et al., 2006).

Modeled GPP shows a high sensitivity of GPP

to the rooting depth settings (Fig. 3b), and only the

assumption of deep rooting system (e.g. 10 m) can

capture the flux-based GPP seasonality. For the

rooting depth 1 m simulation, GPP shows a strong

decline due to a strong drought stress impact on

photosynthesis during the dry season, which is not

consistent with flux GPP. The 3 m rooting depth

simulation shows GPP increases in the beginning of

dry season, however, GPP declines in the end of the dry

season due to the drought stress. The 5 m rooting depth

simulation extends the length of GPP increases in the

dry season. However, GPP declines in the end of the dry

season significantly due to the drought stress that is

inconsistent with flux GPP. Only 10 m rooting depth

successfully tracks the flux-based GPP seasonality

during the dry season and the beginning of wet season.

Use of satellite VI for GPP. In order to test the capability of

satellite based VI data to monitor GPP, the correlation
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Fig. 3 Monthly variations in (a) climate parameters (precipita-

tion and radiation), and (b) flux-based and modeled gross

primary production (GPP) at Tapajos km67 flux tower site under

different rooting depth (1, 3, 5, and 10 m) averaged over 2002–

2004. Error bars in flux-based GPP show the standard deviation

of 3 years’ monthly data. GPP differences from June are plotted.

Positive GPP difference shows positive anomaly of carbon fixa-

tion by vegetation.
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between monthly VIs and flux-based GPP were

analyzed. The correlation between EVI and GPP is

much higher (R2 5 0.46) than that of NDVI-GPP

(R2 5 0.03) with linear regression results of

GPP 5 11.7EVI 1 2.1, and GPP 5�3.9NDVI 1 11.9.

These contrasting relationships are explained by the

advantages of EVI; the EVI is sensitive even in

high LAI canopies by relying on near-infrared

reflectance and resistant with atmospheric noise by

including blue band reflectance (Huete et al., 1997,

2002). Empirical analysis suggests that EVI can be

used to track GPP seasonality, therefore we used EVI

as a surrogate of GPP for the spatial analysis (Huete

et al., 2006).

Spatial analysis

EVI spatial – seasonal variations are roughly similar to

that of solar radiation variations (Figs 2 and 4). In June

to August (JJA), EVI and solar radiation are minimum

over the study area. Then, EVI peaks in SON corre-

sponding with maximum solar radiation. In contrast to

seasonal patterns in precipitation, the EVI is minimum

in MAM and JJA and maximum in SON and DJF

through most of the Amazon regions, suggesting no

or weak drought effects on photosynthesis in the dry

season.

Seasonal patterns in modeled GPP are sensitive to the

setting of the rooting depth and the seasonal precipita-

−0.1 0.10.0
−3.0 3.0 ∆GPP (g C m−2 day−1; anomaly from May)

∆EVI   (unitless; anomaly from May)
R         (∆GPP ∆EVI correlation)
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Fig. 4 Seasonal [March to May (MAM), June to August (JJA), September to November (SON), and December to February (DJF)]

variations in simulated gross primary production (GPP) under different rooting depth (1, 5, and 10 m) and satellite-based enhanced

vegetation index (EVI), and correlation coefficients (R) of monthly variations of EVI and GPP. Averages from 1984 to 2000 for GPP and

from 2001 to 2004 for EVI are calculated, and anomalies from May are shown. Positive DGPP shows positive anomaly of carbon fixation

by vegetation. Three regions (shown as ovals in MAM) are defined to characterize the sensitivity of GPP to rooting depth (See text).
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tion pattern especially in dry season (Fig. 4). For exam-

ple, for the 1 m rooting depth simulation, most of the

southern areas show large GPP decreases in JJA and

SON seasons due to the strong drought stress in the dry

season. A deeper rooting depth setting creates a weaker

drought stress in the dry season (i.e. 5 m setting show a

smaller negative anomaly in the southeastern regions in

JJA and SON seasons). In addition, the higher sensitiv-

ity of GPP to the rooting depth is seen in the regions

with the longer dry season [i.e. southern regions which

show the highest sensitivity to the rooting depth are

characterized by the longest dry season (5–6 months) in

the study areas (Figs 1 and 4)]. There are no substantial

difference in DGPP in middle and end of wet seasons

(MAM) when abundant soil water are available.

We summarized the regional dependency of GPP

sensitivity on rooting depth and its consistency with

EVI by dividing the study areas into three regions (Fig.

4). In region 1, all of three experiments simulated the

same GPP seasonality and similar EVI-GPP correlations

regardless of the rooting depth settings, which peaks in

SON and DJF when radiation takes its maximum and

negatively peaks in JJA when radiation takes its mini-

mum, which is consistent with EVI seasonality. These

regions are characterized by high precipitation through-

out a year with short dry seasons (0–2 months), and

only shallow rooting depths are required to support

GPP during the dry season. In region 2, GPP under 1 m

rooting depth shows different seasonal variations with

other rooting depth settings and satellite-based obser-

vations, showing strong modeled GPP declines in JJA

and SON seasons (dry season) and low EVI-GPP corre-

lations. Both 5 and 10 m rooting depth simulations show

that GPP seasonal variations are consistent with EVI,

which peaks in SON and shows high EVI-GPP correla-

tions. In region 3, the different settings of the rooting

depth affect GPP seasonality most significantly. For 1 m

rooting depth, GPP takes its minimum for the whole

dry seasons (e.g. through JJA and SON), and recovers in

the beginning of the wet season. For 5 m rooting depth,

simulated GPP in the SON does not show any positive

anomalies, which is inconsistent with EVI. Only GPP

with 10 m rooting depth setting is consistent with EVI,

which peaks in the SON and DJF. Highest correlation of

EVI–GPP monthly variation among three different set-

ting of rooting depth also support that 10 m rooting

depth setting is the most appropriate to simulate GPP

seasonality in the region 3.

Detailed analysis of monthly GPP and EVI variations

based on the ranges of dry season length suggested that

the rooting depth required to sustain the consistent

seasonal patterns with EVI depends on the length of

the dry season (Fig. 5). In very wet regions (e.g. 0–2

month dry season), seasonal variations in modeled GPP

are not sensitive to the settings of rooting depth and

consistent with EVI seasonality. In this region, a shallow

rooting depth (1–3 m) is enough to sustain the seasonal

EVI patterns (Fig. 5a). In the regions with 3–4 month dry

season, simulated GPP based on rooting depths greater

than 5 m shows similar patterns with EVI, however, for

example, 1 m rooting depth setting shows negative peak

of GPP in July and August, which lags 1 month behind

EVI due to the strong drought stress. In these regions,

3–5 m rooting depth is required. For the regions with 5–

6 month dry season, shallow rooting depth simulation
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Fig. 5 Monthly variations in simulated GPP under different

rooting depth (1, 3, 5, and 10 m) and MODIS enhanced vegeta-

tion index (EVI) averaged over the regions with (a) 0–2, (b) 3–4,

and (c) 5–6 month dry season in the study area. Anomalies from

May are shown for both GPP and EVI. Positive DGPP shows

positive anomaly of carbon fixation by vegetation.
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clearly underestimates the GPP in the dry season, which

shows a large decline from June to October (for 1 m

rooting depth simulation), and August to October (for

3 m rooting depth simulation). Five meter rooting depth

simulation also shows the different peaks in GPP, which

lags 2 months in GPP simulations. These analyses show

the inferred rooting depth is strongly determined by the

seasonal precipitation patterns and length of the dry

season.

Comparison of rooting depth with other studies

We compared rooting depths inferred in this study with

others. We used two existing data sets of rooting depth;

Schenk & Jackson (2002), and Kleidon (2004), and one

probability map of deep rooting system (Schenk &

Jackson, 2005). Schenk & Jackson (2002) generated a

global rooting depth map using observed biomass

rooting profiles with nonlinear regression of climate

parameters in each vegetation class (hereafter, SJ2002).

We used mean 95% ecosystem rooting depth (rooting

depth that contains 95% of all roots). Kleidon (2004)

generated plant available water maps based on an

inverse method using a terrestrial ecosystem model by

fitting to satellite-based APAR (hereafter, K2004-1) and

maximizing NPP (hereafter K2004-2). As K2004-1 and

K2004-2 data are provided as plant available water

(mmH2O), we converted to the rooting depth using

field capacity and wilting point (we assumed that the

amount of water at wilting point is equivalent to and

corresponds to the leaf water potential at stomatal

closure (we used �2.2 MPa; Table 1)). Then, average

rooting depths are calculated in each region of 0–2, 3–4,

and 5–6 months dry season.

Although the general characteristics of rooting depth

which increases toward the drier regions (longer dry

seasons) are qualitatively consistent among all rooting

depth estimations (SJ2002, K2004-1, 2) and empirical

analysis of probability of deep rooting system (Schenk

& Jackson, 2005), our approach is generally deeper than

other studies (Table 2). First, consistent with Kleidon

(2004), estimated rooting depths are much deeper than

the SJ2002’s estimation especially in the regions with the

longer dry seasons (e.g. 3–4 and 5–6 months dry season).

As the deepest 5% of roots may supply enough water to

sustain transpiration in the dry season (e.g. Nepstad

et al., 1994), rooting depth which is based on the 95%

of rooting biomass is shallow. Differences with K2004-1

and K2004-2 data may be explained by the model setting

(empirical parameterization of water stress for net

primary production in Kleidon & Heimann, 1998 model

vs. process based parameterization in Biome-BGC),

and input parameters (ECMWF precipitation data for

Kleidon, 2004 and CRU precipitation data for this study),

and the degree of model validations.

Limitation and further model improvements

Although our study successfully simulated the GPP

seasonality in Amazon tropical rainforests, we need to

point out several limitations of the study. First, the

assumption of one box soil water layer in Biome-BGC

tends to overestimate the soil water evaporation, under-

estimate the runoff due to ignoring vertical water

transport, and underestimate the water stress for photo-

synthesis due to the lack of vertical distribution of water

and roots. However, these effects are not important in

this study. First, overestimation of soil water evapora-

tion due to single soil water layer does not have a large

impact on closed canopy tropical forests. Second, as

runoff occurs mostly in the wet season, impact on our

rooting depth estimation, which is largely determined

by length and precipitation amount of dry season, is

small. Third, underestimation of the water stress for

photosynthesis due to the lack of vertical distribution of

water and roots may be partially compensated by

hydraulic redistribution (Oliveira et al., 2005). Inclusion

of vertical distribution of water and roots potentially

increases water stresses for photosynthesis at certain

levels of soil layer in dry season. As the current model

results capture GPP seasonality consistently with EVI,

further water stresses are unlikely. Along with impor-

tance of hydraulic redistribution to avoid vegetation

water stresses during the dry season (e.g. Oliveira et al.,

2005), possible explanation is that our simplification of

lack of both vertical distribution of water and roots and

hydraulic redistribution rather works appropriately in

tropical rainforests.

Second, more accurate information on soil texture

and its effects on soil moisture status are required to

give further constraints to the rooting depth estimation.

Several studies showed the effects of soil texture to the

leaf water potential, which potentially affect canopy

photosynthesis (e.g. Williams et al., 2002), and to the

Table 2 Estimated rooting depths (units, m) in the study area

Dry season length

(months) This study SJ2002 K2004-1 K2004-2

0–2 1–3 0.9 1.0 0.9

3–4 3–5 1.2 2.4 2.5

5–6 5–10 1.6 2.7 2.7

SJ2002, K2004-1, and K2004-2 denote Schenk & Jackson (2002),

Kleidon (2004) (fitting to satellite-based APAR), and Kleidon

(2004) (maximizing NPP) methods.

APAR, absorbed photosynthetically active radiation; NPP, net

primary productivity.
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empirical estimation of rooting depths (Schenk &

Jackson, 2005). Some ecosystem model studies used

more detailed information on soil texture and its hy-

draulic conductivities (e.g. Potter et al., 2001a, b).

Third, the modeling of ecosystem respiration is re-

quired to simulate NEE. Field observations showed the

importance of seasonal variations in ecosystem respira-

tions responding to the water availabilities (e.g. Saleska

et al., 2003; Vourlitis et al., 2005). Current ecosystem

models mostly fail to simulate the seasonality of re-

spiration, therefore, further improvements of water

effects on respiration are required to simulate NEE.

Conclusion

Combined analysis of satellite-based VI and terrestrial

ecosystem model gave constraints on the rooting depths

of tropical forests in Amazon. A series of the sensitivity

studies showed that GPP seasonality of the tropical

forests is sensitive to the setting of rooting depth in

the areas with long dry seasons. At Tapajos km67 flux

site, we confirmed that setting of rooting depth strongly

controls modeled GPP seasonal variations and only

models with deep rooting system (e.g. 10 m) can suc-

cessfully track flux-based GPP seasonality in the dry

season. We also showed that satellite-based EVI season-

ality can be used as a surrogate of GPP. The spatial

analysis showed that the model reproduced the similar

GPP seasonality with that of satellite-based EVI; how-

ever, required rooting depths are strongly dependent on

the precipitation and the dry season length. For exam-

ple, shallow rooting depth (1–3 m) is required for the

regions with short dry season (e.g. 0–2 months), and

deeper ones are required in the regions with longer dry

seasons (e.g. 3–5 and 5–10 m for the regions with 3–4

and 5–6 months dry season, respectively). Our analysis

shows that setting of the rooting depth is important to

simulate GPP seasonality in tropical forests, and the use

of satellite data can help to constrain the spatial varia-

bility of rooting depth.

Our analysis suggests that the reanalysis of the eco-

system models using the deep rooting system is re-

quired to project the impacts of the carbon cycle of the

tropical forests responding to the future environmental

changes. Assumption of the shallow rooting depth

which is generally used in the tropical forests ecosystem

modeling might overestimate the responses of carbon

cycle of the tropical forests (e.g. Amazon rainforest

dieback; Cox et al., 2000) to the future precipitation

and soil moisture changes. Our analysis suggests that

currently most of the tropical evergreen forests regions

in Amazon River Basin sustain the photosynthesis

through deep rooting systems, which implies GPP is

less sensitive to the water availability. Less sensitive

effects of precipitation on the tropical forests GPP might

delay the changes of tropical ecosystems responding to

the future environmental changes.
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