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ABSTRACT

Most of the existing cloud radiation models treat liquid water drops of a variety of sizes as an ensemble of
particles. The ensemble approach assumes that all drop sizes are well represented in an elementary volume, and
its scattering and absorbing properties can be accurately specified through the use of the drop size probability
density distribution function. The concentration of large drops, however, can be so low that a chance to capture
them in the elementary volume is rare. Thus the drop ensemble assumption is not always true, though classical
radiative transfer theory uses this assumption to simplify the radiative transfer process, as if scattering takes
place from an ‘‘average drop’’ rather than from a particular drop. The theoretical analysis presented in this paper
demonstrates that if a cumulative distribution function is used to describe drop size variability with jumps
accounting for the probability of finding large drops in the elementary volume, one obtains an extra term, the
Green’s function, in the solution of the radiative transfer equation. The analysis of data on cloud drop size
distribution acquired during the First International Satellite Cloud Climatology Project (ISCCP) Research Ex-
periment (FIRE) field campaign clearly shows jumps in the cumulative drop size distribution; the magnitudes
of the jumps are related to the frequencies of large drop occurrence. This discontinuity is primarily responsible
for the additional terms that must be added to the solution to properly account for the photon interaction with
the large drops. The enhancement of cloud absorption due to accounting for the ‘‘missing solution’’ exhibits a
jump-like response to continuous variation in the concentration of large drops and may exceed the enhancement
predicted by the ensemble-based models. The results presented here indicate that the missing term might be
plausible to explain the enhanced value of the ratio of the shortwave cloud forcing at the surface to the forcing
at top of the atmosphere.

1. Introduction

Recent studies indicate that the atmosphere absorbs
more solar radiation than any current model can predict
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(Cess et al. 1995, 1999; Ramanathan et al. 1995; Pi-
lewski and Valero 1995; Valero et al. 2000). If true
(Stephens 1996; Asano et al. 2000), this excess absorp-
tion can be due to the cloudy atmosphere (Zender et al.
1997; Collins 1998) or water vapor absorption in clear
sky (Arking 1996, 1999). If we assume that a cloudy
atmosphere absorbs more than one-dimensional radia-
tive transfer theory predicts, the most natural explana-
tion would be in the radiative effects of the three-di-
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mensional cloud structure or broken cloudiness. In other
words, cloud inhomogeneity would give longer photon
paths. However, extensive numerical calculations based
on different three-dimensional cloud structures (sto-
chastic models or satellite-retrieved scenes) failed to
find photon paths long enough to explain the excess
absorption (Barker et al. 1998; Marshak et al. 1998;
O’Hirok et al. 2000). Thus, neither one-dimensional nor
three-dimensional theories can explain the enhanced
cloud absorption.

In spite of the diversity of published approaches and
techniques used to analyze the absorption anomaly (Ste-
phens and Tsay 1990), they all are based on the as-
sumption that drops behave as an ensemble of particles
(Liou 1992, p. 255). The notion of ‘‘ensemble’’ is based
on the assumption that an elementary volume has either
all drop sizes or no drops at all. A realistic cloud con-
tains a huge number of small drops and a tiny number
of large ones; hence, the latter cannot be present in every
elementary volume. To stay in the framework of the
ensemble approach, large drops are artificially fraction-
ated (included in concentrations less than 1 per ele-
mentary volume) even though this is obviously a poor
approximation since drops are discrete. This step is fol-
lowed by the derivation of the drop size density distri-
bution function. Stated differently, one first averages the
drop concentration over space, evaluates the extinction
coefficient and scattering phase function and then solves
the radiative transfer equation with average character-
istics. An alternative technique is first to solve the ra-
diative transfer equation for each realization of drop
sizes and then to average solutions over all possible
realizations. The latter does not rely on the ensemble
concept. The cumulative drop size distribution function
is necessary to describe drop variability in this case.
With a simple example, we show that radiances obtained
by these two techniques differ by the Green’s function
(section 2). We expressed the radiative transfer equation
in terms of the cumulative distribution function. If this
function is smooth enough, its solution coincides with
one obtainable under the ensemble assumption. How-
ever, the presence of jumps in it leads to the appearance
of an additional term in the solution, which may enhance
the cloud absorptivity. This finding suggests that the
ensemble-based models may underestimate the cloud
absorption if the condition of their applicability is not
met.

We analyzed data on cloud drop size distribution ac-
quired during the First International Satellite Cloud Cli-
matology Project (ISCCP) Research Experiment (FIRE)
field campaign (section 3 and appendix B). It is shown
that the cumulative drop size distribution deduced from
measurements is not an absolutely continuous function
and we derive parameters that quantify its discontinuity.
This leads to an additional component in the solution
of the radiative transfer equation, which is required to
properly describe the radiation regime in clouds.

Based on the results of section 2 and appendix C, a

theoretical analysis of the enhanced value of the ratio
of the shortwave cloud forcing at the surface, to the
forcing at top of the atmosphere, is presented in section
4. The solution to the radiative transfer equation, which
does not rely on the ensemble concept, is treated as the
true radiation field in a cloudy atmosphere and is the
one provided by measurements. The ensemble-based so-
lution is taken as the model prediction. The ratio de-
pends on the total number of large drops excluded from
the ensemble. It is shown that even a very low concen-
tration of such drops can cause an enhanced value of
the ratio as reported in the literature (Cess et al. 1995;
Ramanathan et al. 1995; Pilewski and Valero 1995; Ra-
manathan and Vogelmann 1997). The violation of the
ensemble assumption, therefore, may lead to the dis-
crepancy between ensemble-based estimates and mea-
surements.

2. Attenuation of radiation by clouds: Theory

The scattering and absorption properties of clouds are
determined by scattering and absorption properties of
individual cloud drops which, in turn, are functions of
the drop size. The drop is referred to as a single ho-
mogenous sphere of the radius r. The drop size distri-
bution is the most important variable determining the
photon-cloud interaction. We analyze a widely used as-
sumption regarding the drop size distribution, and, with
a simple example, demonstrate the effect of its violation
on the estimation of cloud radiation regime.

Consider a parallelepiped with the base dS perpen-
dicular to a direction V and the height j (Fig. 1). A
cumulative drop size distribution function N(r, j) is
defined as the ratio of the total number of drops in the
parallelepiped with radii in the interval [0, r) to the base
dS. An elementary volume dV 5 djdS contains N(r, j
1 dj)dS 2 N(r, j)dS of such drops. In terms of these
notations, the optical distance dt(j) of an elementary
interval [j, j 1 dj) along the direction V takes the form

dt(j) 5 t(j 1 dj) 2 t(j)
`

5 s (r) d [N(r, j 1 dj) 2 N(r, j)]. (1)E ext r

0

Here, sext is the particle extinction cross section, and
drN(r, j) 5 N(r 1 dr, j) 2 N(r, j). The removal of
energy along the direction of photon travel is (Beer’s
law)

dI 1 I(j) dt(j) 5 0, (2)

where I(j) is the radiance at the point j.
Most of the existing cloud radiation models treat

drops with a variety of sizes as an ensemble of particles.
These models characterize variation in drop radii by a
drop size density distribution function c(r) defined as
the ratio of the total number d[N(r, j 1 dj) 2 N(r,
j)]dS of drops in the volume dV 5 djdS whose radii
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FIG. 1. Parallelepiped with the base dS perpendicular to the direc-
tion V and the height j. A cumulative drop size distribution function
N(r, j) is defined as the total number of drops in the parallelepiped
with radii in the interval [0, r) normalized by dS. The number of
drops in an elementary volume dV 5 djdS is dNdS 5 N(r, j1 1
dj)dS 2 N(r, j1)dS.

FIG. 2. Schematic representation of photon interactions with the
ensemble of particles and individual drops. Elementary volumes that
contain all drop sizes with radii from the interval [r0, rE) are depicted
as a gray area. Drops that can appear in the elementary volume with
a low probability are shown as black dots. The direction of an incident
beam of intensity i0 is denoted by V0. Photons entering the cloud
through the point x0 on the upper boundary z 5 0 and attenuated by
the ensemble of particles, experience the first interaction with an
individual drop at the point x0 1 j1V0. Attenuation of the radiance
I(j) along the ray x0 1 jV0 is given by equation (7). Its solution is
discussed in appendix A. The distance between the point x0 and the
lower boundary along the direction V0 is denoted by jB.

fall in the interval [r, r 1 dr) to the volume dV and the
length dr; that is, (Liou 1992, p. 186)

dSd [N(r, j 1 dj) 2 N(r, j)]rc(r) 5
dSdrdj

2d N(r, j)
5 . (3)

drdj

For simplicity’s sake, c is assumed to be independent
of j. Substituting (3) into (1) results in dt 5 sEdj. Here,
sE is an extinction coefficient for the ensemble of drops.
This coefficient is the cross section calculated for a sin-
gle sphere, averaged over all possible drop radii (Liou
1992, p. 264):

`dt
s 5 5 s (r)c(r) dr. (4)E E extdj 0

Here and throughout the text, all variables subscripted
by ‘‘E’’ will refer to the ensemble. Equation (2), de-
scribing the attenuation of the radiance IE(j) due to
photon interactions with the ensemble of particles, re-
arranges to the form

dI 1 s I (j)dj 5 0.E E E (5)

We assume that the intensity scattered by an elemen-
tary volume is the sum of intensities scattered by in-
dividual drops (van de Hulst 1981, p. 5; Bohren and
Huffman 1983, p. 9). In other words, the elementary
volume dV is defined here as a volume inside which

photons can undergo not more than one interaction with
drops. The ensemble approach assumes that all drop
sizes are well represented in the elementary volume.
This yields that scattering and absorbing properties of
the elementary volume are proportional to dV 5 djdS
(Zege et al. 1991, p. 16). These assumptions are central
to the derivation of Eq. (5). In realistic clouds, the con-
centration of large drops can be so low that a chance
to capture them in the elementary volume is rare. In the
framework of the ensemble approach, the elementary
volume is defined to contain mainly small droplets. Thus
the drop ensemble assumption, which is consistent with
the definition of the elementary volume, is not always
true. The following example demonstrates the effect of
its violation on the estimation of cloud radiation regime.

Consider photon interactions with purely absorbing
drops whose radii vary in the interval r0 # r , rE. We
treat them as the ensemble. Let C(r, j) and c(r) be the
cumulative drop size distribution function and its den-
sity, respectively. It should be emphasized that the en-
semble excludes drops of radius rE in our example,
which appear at a finite number of spatial points as
shown in Fig. 2. The straight line along the direction
V0 of photon travel consists of a ‘‘continuous’’ number
of elementary volumes lacking drops of size rE and one
elementary volume that includes such a drop. A cu-
mulative drop size distribution function describing both
the ensemble and the single drop along the line (Fig. 2)
is given by

N(r, j) 5 C(r, j) 1 H (j 2 j )H (r 2 r ).1 E (6)
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FIG. 3. Attenuation of the radiance along the photon path by the
medium shown in Fig. 2. Case 1 has no large drops along the photon
path. Case 2 has a large drop at j 5 j1 in the direction of photon
travel. The curve ‘‘ensemble approach’’ shows the ensemble-based
estimate of the true solution.

Here, H is the Heaviside function accounting for the
fact that large drops occur at specific locations along
the photon path, with specific radii; j1 is the location
of the drop rE on the line x0 1 jV0. Substituting (6)
into (1), and (1) into (2), one obtains an equation that
describes the attenuation of the radiance I(j) due to
photon interactions both with the ensemble and the sin-
gle drop (see appendix A):

dI(j) 1 I(j)s dj 1 I(j)s (r )dH(j 2 j ) 5 0. (7)E ext E 1

Here, sE is the extinction coefficient defined by (4), and
sext is the particle extinction cross section. The exact
solution of this equation is derived in appendix A.

How does the ensemble approach approximate a true
solution to Eq. (7)? One first averages the drop con-
centration over space and evaluates an extinction co-
efficient sE 1 Ds using (4). As a result, drops of the
radius rE are included in much smaller fractional con-
centrations in every elementary volume. Then, one
solves the radiative transfer equation (5) with the av-
erage extinction coefficient sE 1 Ds. The ensemble
based estimate IE1Ds(j) of the radiation field can be
written as

I (j) 5 I (j) exp(2Dsj).E1Ds E (8)

Here, IE(j) 5 i0 exp(2sEj)is the solution to (5), and
i0 is the intensity of incident radiation. Because of the
sparsity of large drops, Ds is relatively small; that is,
Ds K sE. Therefore, solutions IE(j) and IE1Ds(j) of
Eq. (5) corresponding to sE and sE 1 Ds are not sig-
nificantly distinct.

Let D(j) 5 IE(j) 2 I(j), where I(j) is the solution
to Eq. (7). Subtracting Eq. (7) from Eq. (5) and taking
into account that dH(j 2 j1)/dj 5 d(j 2 j1), where d
is the Dirac delta function (appendix A), one obtains

dD
1 s D(j) 5 I(j )s (r )d(j 2 j ).E 1 ext E 1dj

The solution of this equation normalized by I(j1)sext(rE)
is the Green’s function G(j1, j) 5 exp[2sE(j 2 j1)]H (j
2 j1) for equation (5). Therefore,

I(j) 5 I (j) 2 I(j )s (r )G(j , j).E 1 ext E 1 (9)

The true solution (9) includes two types of curves
shown in Fig. 3. The first one corresponds to the case
when no large drops appear along the photon path. At-
tenuation of radiance is due to photon interaction with
the drop ensemble. This solution is labeled as ‘‘Case
1’’ in Fig. 3. The appearance of a large drop at j 5 j1

in the direction of photon travel causes a jump in the
true solution I(j) at this point (curve ‘‘Case 2’’ in Fig.
3). This has a simple interpretation. Photons entering
the medium through the point j 5 0, and attenuated by
the ensemble of particles, experience the first interaction
with the drop of radius rE at the point j1 (Fig. 2). The
intensity of energy that this drop gains is determined
by IE(j1). The jump in I(j) at j1 is the energy that the
individual drop removes. The intensity of photons that

interacts with the ensemble again is I(j) 5 IE(j) 2
IE(j1)sext(rE)G(j1, j), j . j1. The solid line in Fig. 3
schematically shows the ensemble-based estimate
IE1Ds(j) of the true solution.

In our example, the true solution exhibits a piecewise
continuous behavior. This means that two different
‘‘mechanisms’’ are involved in the accumulation of en-
ergy absorbed by drops. The first one is the integration
of radiance over the photon path: the longer the photon
path is, the higher the amount of energy that drops ab-
sorb. The second one sums jumps in the true solution,
each corresponding to a photon path of length zero. This
enhances the absorption with the photon path un-
changed. The ensemble assumption excludes the latter
case and thus may cause a high uncertainty in the es-
timation of cloud absorptive properties. In other words,
the ensemble approach uses a factor exp(2Dsj) to force
Beer’s law to account for the presence of large drops
as in Eq. (8) while the correct treatment of large drops
yields an addition of an extra term as in Eq. (9). This
can lead to the discrepancy between ensemble-based
models and measurements that will be theoretically an-
alyzed in section 4.

The mean radiance taken as the average over all pos-
sible realizations of drop sizes is a weighted sum of two
terms. The first term coincides with IE(j) and accounts
for photon–ensemble interaction. The second term is
piecewise continuous with jumps accounting for photon
interactions with drops excluded from the ensemble.
Specification of weights and the radius rE of the largest
drop in the ensemble is discussed in next section. An
accurate derivation of this representation in the general
case of three-dimensional absorbing and scattering me-
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FIG. 4. Drop concentration for the two flight legs between 8:44
and 8:54 and 9:31 and 9:41 PDT on 10 July 1987. Each flight leg is
about 50 km long at an altitude of 725 m in the middle of a 440-m-
thick marine stratocumulus cloud layer. The first leg is across a ship
track, while the second one is along it (King et al. 1990, 1993). (a)
Number concentration as a function of time. The time intervals before
and after 600 s correspond to the first and second flight legs, re-
spectively. (b) Frequency of the number concentration shown in (a).
Drop size distributions for the 98 cases where the number concen-
tration fell in the interval between 166 and 173 were chosen for our
analysis.

dia is presented in appendix C. The effect of the jumps
in the true solution on the estimation of the ratio between
the shortwave cloud forcing at the surface and top of
the atmosphere will be analyzed in section 4.

3. Drop size distribution: Data analysis

The presence of jumps in the cumulative size distri-
bution is primarily responsible for additional terms in
the true solution. These terms account for photon in-
teractions with individual drops and enhance cloud ab-
sorptivity with the photon path unchanged. This hy-
pothesis can be confirmed if the cumulative drop size
distribution function derived from field measurements
does exhibit a jump-like behavior. Aircraft data on liquid
water drop sizes is analyzed in this section to see if the
cumulative drop size distribution function does exhibit
a jump-like behavior.

a. Data used

Two 10-min samples of the cloud drop size distribution
measured by the Forward Scattering Spectrometer Probe
(FSSP) during the FIRE field program (Albrecht et al.
1988) are used in our analysis. The measurements were
taken from 8:44 to 8:54 and 9:31 to 9:41 Pacific daylight
time (PDT) on 10 July 1987 over the Pacific Ocean off
San Diego. Each flight leg is about 50 km long at an
altitude of 725 m in the middle of a 440-m-thick marine
stratocumulus cloud layer. The aircraft speed was 80
m s21, and drops were accumulated over a 1-s time period.
The first 10-min sample (from 8:44 to 8:54 PDT) was
collected while the aircraft was flying across a ship track
[see Fig. 1 in King et al. (1993) for the Geostationary
Operational Environmental Satellite (GOES) image of the
FIRE marine stratocumulus region with the flight and ship
tracks]. The second 10-min sample (from 9:31 to 9:41
PDT) corresponds to the flight along the ship track [see
Fig. 5 in King et al. (1990) for the flight track]. The ship
track substantially increases cloud drop concentration. In
Fig. 4a, the drop concentration increases from 40–50 drops
for clean air to 150–200 drops per cubic centimeter for
the air mass contaminated by a ship track (see the time
intervals between 200 to 250 s and after 650 s). The ship
track features enhance the concentration of small drops,
reduce the concentration of very large drizzle-like (r ø
100 mm) drops and narrow the cloud drop size distribution
(King et al. 1993). The measured drops are categorized
into one of 15 bins with respect to their radii. The bin
width is Dr 5 2 mm; radii of the smallest and largest
registered drop were r0 5 1.4 mm and rmax 5 31.4 mm,
respectively. Thus, each registered drop with radius r be-
longs to one of Nbins 5 15 intervals ri21 # r , ri, where
ri 5 r0 1 iDr, i 5 1, 2, . . . , Nbins; r0 5 1.4 mm, rmax 5
r15 5 31.4 mm. Figure 4b shows the frequency of occur-
rence of different values of the number concentration. The
measured drop size distributions cobs,k(r), for which the
number concentration fell between 166 and 173 were cho-

sen for our analysis. There were Nrec 5 98 drop distri-
butions satisfying this condition. The mean number con-
centration was 169 drops per cubic centimeter.

b. Results

With the FSSP sample area of dS 5 0.004 cm2 (Liu
and Hallett 1998) and the distance dj 5 jk 2 jk21 5
80 m between two consecutive readings, the kth mea-
surement provides the distribution function Nk(r) 5 N(r,
jk) 2 N(r, jk21) of drop sizes in a volume dV 5 dS 3
[jk21, jk) of 32 cm3. The interval [jk21, jk) is taken as
an elementary interval in our analysis. Our goal is to
derive the cumulative drop size distribution function
N(r) 5 ^Nk(r)&, where the angle brackets denote the
mean over Nrec 5 98 realizations of the elementary vol-
ume. A probabilistic formalism for deriving N(r) is giv-
en in appendix B.

Note that the size of FSSP sampling volume does not
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FIG. 5. (a) Binary representation of measured drop size distributions. Each row corresponds to one record of the
drop distribution whose value at the ith bin of width 2 mm is set to 1 if there is a drop in it, and 0 otherwise. (b)
The probability that the FSSP bin contains a drop as a function of the bin number. The ratio between the number of
nonempty bins to the total number of records was assigned to the bin number.

FIG. 6. Fraction F(r) of all registered drop radii present in the
interval [0, r). This curve has linear and nonlinear parts. The latter
part exhibits a jump-like behavior.

necessary coincide with the size of an elementary vol-
ume. However, the cumulative distribution function is
not tied to its size and thus its specification is not critical
to the analysis presented in this section. It also so hap-
pens that the 1-s FSSP sampling volume is a tube, and
a tube is more like what a photon sees as it travels (Fig.
2). Therefore, the statistics generated by the FSSP can
provide enough information to see if the cumulative
distribution function exhibits a jump-like behavior along
the photon travel as it suggested by Eq. (6).

We start by tackling the following question. How
many drops with different radii do reside in the 32-cm3

volume? In other words, we want to know how drop
sizes, not drops themselves, are represented in the el-
ementary volume. Therefore, we focus on examining a
binary representation of measured size distributions
(Fig. 5a), which only provides information on whether
a bin is empty or not. It should be emphasized that this
information is lost in the framework of the ensemble
approach.

Figure 5a demonstrates the appearance of the drop
radius in a 2-mm interval while Fig. 5b shows its prob-
ability. Clearly, the probability of finding a drop in the
32-cm3 volume falls distinctly below unity starting with
bin 7. This figure also suggests that the ensemble as-
sumption is accurate enough for drops below bin 7, but
not above. For bins below 7, the total number of drop
radii that fell in a given interval is proportional to the
length of the interval. For example, if an interval, con-
sisting of two consecutive bins (each of width 2 mm)
is increased/decreased twice, the number of drop radii
in this interval is also increased/decreased twice (Fig.
5a). The ensemble approach assumes this proportion-
ality to hold true independently of the bin width. The
proportionality, however, breaks down for drops above
bin 7. For example, the interval length of two bins, say,
12 and 13, would not have twice the amount of drop
radii (not drops themselves) than each of them.

Figure 6 summarizes this feature in terms of the cu-
mulative distribution function F(r) of drop radii (ap-
pendix B). For the ensemble, the drop radii all have
equal probability of occurrence; that is, the probability
F(r 1 Dr) 2 F(r) to observe a drop radius in the interval
[r 1 Dr, r) is proportional to its length Dr. For drops
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FIG. 7. Drop spectra calculated for a0 5 0.69 and a0 5 1.

above 14 mm, this probability is given by a nonlinear
function, indicating that the drop radii are not equally
weighted. The sparsity of these drops causes jumps in
F(r) that are clearly seen in Fig. 6. The point rE ø 14
mm at which the cumulative function F(r) turns into its
nonlinear part coincides with the radius of the largest
drop in the ensemble. Indeed, all drop sizes between r0

and rE are present in every elementary volume. The
probability that drops with only these radii reside in the
elementary volume is given by a0 5 F(rE) 5 0.69. In
other words, a0 is the probability that the elementary
volume contains the ensemble of drops.

Note, that the cumulative distribution function F(r)
describes the probability of values that drop radii can
take on and depends only on the binary structure of the
FSSP records. However, the ensemble-based approach
neglects this information, assuming that F(r) is always
a linear function; that is, possible values of the drop
radius are uniformly distributed.

Having F(r) defined, we are able to correctly answer
the following question. How many drops per drop radius
do appear in the 32-cm3 volume? This is given by a
drop spectrum (r), that is, the total number of dropsc
with radii between r and r 1 Dr in a unit volume nor-
malized by the probability F(r 1 Dr) 2 F(r) to observe
a drop radius in this interval. For the ensemble, drop
radii are uniformly distributed within the interval of
their variation and thus the normalization factor is pro-
portional to Dr. This does not hold true for ‘‘large
drops’’ (r . rE); for these drops, the normalization factor
varies in a nonlinear fashion (Fig. 6).

How is the drop spectrum calculated in the framework
of the ensemble approach? This concept postulates that
radii of the largest drop in the ensemble and the largest
measured drop coincide; that is, rE 5 rmax. In other
words, F(r) is artificially replaced with a linear function.
All drop sizes are assumed to be present in the ele-
mentary volume with a unit probability in this case; that
is, a0 5 F(rmax) 5 1. Figure 7 demonstrates drop spectra

(r) calculated for both a0 5 0.69 and a0 5 1. Onec
can see that the ensemble assumption (a0 5 1) has led
to the misrepresentation of the ‘‘true’’ drop distribution
(a0 5 0.69); it underestimates the concentration of large
drops due to the overestimation of small drop concen-
tration. The true spectrum characterizes the number of
drops per drop radii actually present in the elementary
volume, while the ensemble-based spectrum accounts
for large drops artificially included in much smaller con-
centrations in every elementary volume.

Figure 8 shows the cumulative drop distribution func-
tion N(r) for a mean elementary volume of 32 cm3 for
which the number concentration was about 169 drops
per cubic centimeter. This distribution is given by (ap-
pendix B)

min(r,r )E c(r9)
N(r) 5 a dr90 E r 2 rE 0r0

1 (1 2 a ) c(r )q , 0 # a # 1,O0 i i 0
all i#Nbins

for which r #r ,rE i

(10)

where the coefficients qi, S qi 5 1, are probabilities
that drops of radius ri $ rE will appear in the direction
of photon travel. One can see that N(r) consists of two
parts: the first one (r , 14 mm) can be approximated
accurately by a continuous function, while the second
one cannot be. The latter part is enlarged in Fig. 8b,
where the discreteness is evident. This discreteness is
intrinsic to the 32-cm3 volume; averaging many such
volumes together cannot change the sparsity of larger
drops.

If a0 , 1, the use of the ensemble approach alone
leads to the incorrect description of the statistical prop-
erties of drop sizes. Our data analysis has shown that
rE ø 14 mm; that is, drops of radii less than about 14
mm can be attributed to the ensemble of particles. The
coefficient a0 was estimated to be a0 ø 0.69; that is,
about 69% of all possible drop sizes are present in every
elementary volume. Drops of radii from the interval [r0,
rE] made up 99.8%–99.9% of the total number of the
drops registered by the FSSP. Therefore, the ensemble
approach excludes only about 0.1%–0.2% of drops, in
this case study.

To summarize the data analysis section, Eq. (10) was
derived using an additional information on the binary
structure of measured drop size distributions. The binary
representation allowed us to separate continuous and
discrete parts of the cumulative drop size distribution.
Now substituting (10) into (1), and (1) into (2), one can
derive a correct equation that describes photon inter-
action with a mean elementary volume of 32 cm3, for
which the number concentration was about 169 drops
per cubic centimeter. Based on the theory of Schwarz
distributions (Richtmyer 1978), this derivation in the
general case of three-dimensional absorbing and scat-
tering media is presented in appendix C.
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FIG. 8. (a) Cumulative drop size distribution function N(r) derived from data shown in Fig. 4. This function is a
weighted sum of two components. The first one continuously varies in the interval between 1.4 mm and 12 mm and
describes the drop size distribution of the ensemble of particles. (b) Enlarged portion of (a) showing the second
component (r $ 12 mm). The second component accounts for single drops that appear randomly in the direction of
photon traveling with a certain probability. The magnitudes of the jumps are determined by the probabilities pi (Fig.
5b) of drop appearances.

4. Cloud forcing ratio

One way to look at cloud absorption in a dimension-
less way is the ratio R 5 CS/CT, where CS and CT are
the shortwave cloud forcing at the surface and at the
top of the atmosphere, respectively. The cloud forcing
is the difference between cloudy sky and clear sky net
shortwave flux density (in W m22). Though R is not a
direct measure of cloud absorption, it indicates the effect
of clouds on column absorption. Observations collected
by Cess et al. (1995), Ramanathan et al. (1995), and
Pilewski and Valero (1995) estimate values of R near
1.5 while the ensemble-based radiative transfer algo-
rithms find R about 1 (e.g., Li and Moreau 1996). Based
on results of section 2 and appendix C, an analysis of
the discrepancy between ensemble-based models and
measurements is presented in this section. We will show
that the correct treatment of drops that yields an addition
of extra terms, as in Eqs. (9) and (C6), rather than the
modification of the extinction coefficient, as in Eq. (8),
may cause an enhanced value of R.

Consider a sufficiently extended atmospheric column
bounded below by a black surface. This column rep-
resents either clear or cloudy atmosphere. We assume
that the ensemble concept is able to describe scattering
and absorption properties of the clear atmosphere. We
idealize the cloudy atmosphere as a medium shown in
Fig. 2 that consists of densely distributed small drops
(gray area) and M large drops (black dots). Let the at-
mospheric column be illuminated by a parallel solar
beam of intensity i0 and in the direction V0. We use
the boundary value problem (C1)–(C2) for the three-
dimensional transport equation to describe the radiative
regime in this medium. Its solution J(x, V) can be rep-
resented as (appendix C)

M

J(x, V) 5 J (x, V) 1 J (x, V, x ). (11)OE P k
k51

Here, JE describes the three-dimensional radiation field
due to photon interaction with the ensemble of particles
and is nonresponsive to the presence of the individual
drops (‘‘black dots’’), and JP(x, V; xk) is the singular
solution to the transport equation [see (C4)–(C5)] where
xk denotes the location of the ith black dot. The solution
J(x, V) is assumed to be a true radiation field in a cloudy
atmosphere and the one provided by measurements
while the component JE(x, V) is the ensemble-based
model estimate. It should be noted that JE ignores in-
teraction with large drops. However, their effect to total
atmospheric column absorptivity evaluated on the basis
of the ensemble concept is estimated to be about 2%
for large drops and 3% for very large drops (Wiscombe
et al. 1984; Table 2 in Wiscombe and Welch 1986).

Note that an increase in the number M in Eq. (11)
changes the sparsity of large drops. As a result, part of
them will behave as the ensemble and the number of
drops excluded from the ensemble will be consequently
reduced. This increases the contribution of the ensemble
component JE(x, V) into J(x, V) via the modification
of the extinction coefficient. This process sets a limit
to M and, as a consequence, to the impact of the singular
solution to the cloud radiation regime. The total number
of large drops in Eq. (11) cannot be very high.

Let CE,S(V0) and CE,T(V0) be the cloud forcing at the
surface level and at the top of the column, respectively,
evaluated with the classical solution JE(r, V) of the
three-dimensional transport equation. We have

C 5 2i | m | [t (A) 2 t (C)].E,S 0 0 E E
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Here, m0 is the cosine of the solar polar angle, i0 | m0 |
is the downward flux density at the top of the atmo-
sphere, and tE(A) and tE(C) are transmittances of the
clear and cloudy atmospheres, respectively. Further,

C 5 2i | m | r,E,T 0 0 (12)

where r is the difference between the reflectances of
the cloudy and clear columns. In terms of these nota-
tions, the ratio between cloud forcing at the surface and
the top of the atmosphere takes the form

C t (A) 2 t (C)E,S E ER 5 5 . (13)E C rE,T

It follows from (11) that
M

S · C 5 S · C 1 i |m | t ,OS E,S 0 0 P,k
k51

M

S · C 5 S · C 1 i |m | (t 1 a ). (14)OT E,T 0 0 P,k P,k
k51

Here, S is an area of the column upper (lower) boundary,
tP,k (in m2) and aP,k (in m2) are the downward flux (in
W) at the surface level, and the column absorption (in
W) resulted from the singular component JP(x, V; xk)
normalized by the incident flux density i0 | m0 | (in W
m22). It should be emphasized that the singular com-
ponent JP(x, V; xk) contains the delta function d[V 2
(x 2 xk)/ | x 2 xk | ], which relates directions and spatial
points (appendix C). Its integration over S (or over the
whole column) does not result in a value proportional
to S; that is, tP,k and aP,k are bounded functions with
respect to the area S of the column lower boundary.

Let and be the mean normalized downward fluxt a
and the mean normalized column absorption of indi-
vidual drops excluded from the ensemble:

M M1 1
t 5 t , a 5 a . (15)O OP,k P,kM Mk51 k51

It follows from (12)–(15) that

S · C 5 S · C 1 i |m |Mt 5 S · R C 1 i |m |MtS E,S 0 0 E E,T 0 0

5 2S · R i |m |r 1 i |m |Mt;E 0 0 0 0

S · C 5 2S · i |m |r 1 i |m |M(t 1 a).T 0 0 0 0

Thus, the model estimates RE 5 CE,S/CE,T ø 1, while
the measurements provide

C S · R r 2 MtS ER(M ) 5 5 . (16)
C S · r 2 M(t 1 a)T

Let us discuss this equation. The ratio R(M) is an
increasing function with respect to M when RE . /(t t
1 ). If M 5 0, then R(0) 5 RE. It has a verticala
asymptote, M 5 Sr/( 1 ), and a horizontal asymptote,t a
R 5 /( 1 ). If clouds do not absorb the interceptedt t a
radiation (i.e., 5 0) and RE 5 1, R becomes insensitivea
to the presence of individual drops and takes on the

value 1. However, the absorbing medium ( . 0) can,a
potentially, result in any value of R between RE (M 5
0) and infinity [M( 1 ) 5 Sr]. While this is truet a
mathematically, the natural conditions under which R
would be significantly greater than RE are not met. For
example, the vertical asymptote M( 1 ) 5 Sr meanst a
that the net shortwave flux of radiation reflected by M
individual drops is equal to the cloud forcing at the top
of the atmosphere resulted from an ensemble of drops.
To achieve this, the total number of large drops should
be comparable with the column volume. In this case, at
least part of large drops should be attributed to the en-
semble. This leads to fewer drops being excluded from
the ensemble, and thus the ratio R(M) does not take an
infinite value. From the other side, if the concentration
of large drops is small, their contribution to R(M) is not
significant either. Increasing the number of large drops
leads to a smaller concentration of drops excluded from
the ensemble. Thus, again, the total contribution of sin-
gle drops to the ratio R(M) will not be large. However,
there is an intermediate case when the number of large
drops is not small enough to be neglected, and not large
enough to be attributed to the ensemble. An accurate
analysis of physical constraints on R(M) is the topic of
a special investigation, and will not be discussed here.
Here, based on Eq. (16), we show that a reasonable
number of single drops may be enough to increase the
ratio R(M) to 1.5 [as reported in the literature for at
least the warm pool (Ramanathan and Vogelmann
1997)].

Let n be the concentration of drops excluded from
the ensemble defined as the ratio between the total num-
ber M of large drops in the column to the column volume
SH. Here, H is the column height. Solving Eq. (16) for
M and accounting for n 5 M/SH yields

R 2 RE21n 5 rH .
(R 2 1)t 1 Ra

We take R 5 1.5 while RE 5 1. Cloudy and cloudless
atmospheres reflect 30% and 13% of the incoming ra-
diation, respectively (Liou 1992, 11–12); that is, r 5
0.30 2 0.13 5 0.17. For the optically thick cloud øt
0; that is, the normalized downward flux of photons
from the incident radiation that are scattered by indi-
vidual drops and reach the surface without experiencing
another collision is small. The normalized absorption

is the mean fraction of energy incident on large dropsa
that the drops absorb plus the mean fraction of energy
scattered by the large drops that the ensemble of par-
ticles absorbs. The effect of large drops to total atmo-
spheric column absorptivity evaluated on the basis of
the ensemble concept is about 3% (Wiscombe et al.
1984; Wiscombe and Welch 1986). Although this could
be an underestimation of the true absorption, it can be
taken as a lower bound of ; that is, $ 0.03. Assuminga a
the cloud height H 5 1 km 5 105 cm, one obtains
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1
25 25n 5 0.17 3 10 # 1.9 3 10 .

t 1 3a

This is consistent with the number concentration of 30-
mm and larger drops obtainable from the model of nor-
mal drop size distribution (see Fig. 1 in Wiscombe et
al. 1984). In other words, a reasonable concentration
number of large drops, if treated correctly, might be
plausible to explain the enhanced ratios of the shortwave
cloud forcing reported in the literature.

5. Conclusions

Radiative transfer in clouds is described by the ra-
diative transfer equation. In this equation, scattering and
absorption properties of an ensemble of cloud drops are
characterized by a drop size density distribution function
(Liou 1992, p. 255). The notion of ensemble is based
on the assumption that an elementary volume has either
all drop sizes (as in clouds) or no drops at all (as in
gaps between clouds). A realistic cloud contains a huge
number of small drops and a tiny number of large ones.
It is clear that large drops cannot be present in every
elementary volume. In other words, the ensemble con-
cept fails to account for large drops being rare in oc-
currence.

Attempts were made to include the large (and very
large) drops into the classical radiative transfer (Welch
et al. 1980; Wiscombe et al. 1984; Wiscombe and Welch
1986). How differently does classical radiative transfer
theory treat cases with and without large drops? To build
a cloud drop size density distribution function, drops
excluded from the ensemble are distributed uniformly
over the space. They are artificially fractionated (in-
cluded in concentrations less than one per elementary
volume) even though this is obviously a poor assump-
tion since drops are discrete. As a result, a new extinc-
tion coefficient is defined; obviously, it is bigger than
the one that ignores the large drops. This results in a
positive increment in cloud absorption. Solution of the
transport equation continuously depends on the extinc-
tion coefficient. This means that the increment in cloud
absorption degrades continuously as soon as the con-
centration of large drops tends to zero. The main con-
clusion from these studies is that large and even very
large drops do not yield enough increase in cloud ab-
sorption to explain recently found discrepancies be-
tween models and measurements (e.g., Valero et al.
2000).

The data analysis presented in section 3 points to the
presence of jumps in the cumulative drop size distri-
bution whose magnitudes are related to the frequencies
of large drop occurrence. This makes it impossible to
use the density distribution function for characterizing
the variation in drop sizes without a loss of information.
We showed that if the drop size distribution is treated
properly, an additional component, the Green’s function,
must be added to the solution of the radiative transfer

equation (section 2). The true solution is thus a sum of
two components that represent contributions from the
ensemble of particles and from large single drops (ap-
pendix C). There are two different mechanisms involved
in the accumulation of energy absorbed by drops. The
first one is the integration of radiance over the photon
path: the longer the photon path is, the higher the
amount of absorbed energy. The second one sums jumps
in the true solution, each corresponding to a photon path
of length zero. This enhances the absorption with the
photon path unchanged. The ensemble assumption ex-
cludes the latter case and thus may lead to the discrep-
ancies between the ensemble-based models and mea-
surements. More research is needed to quantitatively
address this question. However, as was shown in this
paper (section 4), the correct interpretation of large
drops might be plausible to explain the enhanced values
of the ratio between the shortwave cloud forcing at the
surface and at the top of the atmosphere reported in
literature (e.g., Ramanathan and Vogelmann 1997).
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APPENDIX A

Derivation and Solution of Eq. (7)

Let w(x) be a continuous function. The following for-
mula is required to derive Eq. (7):

b

w(x) dH(x 2 x ) 5 w(x ). (A1)E 0 0

a

Here, H (x 2 x0) is the Heaviside function, which is
equal to 1 if x . x0, and 0 otherwise; and (A1) is the
Lebesgue–Stieltjes integral (Richtmyer 1978). This for-
mula justifies that dH (x 2 x0)/dx 5 d(x 2 x0), where
d(x) is the Dirac delta function.

Substituting (6) into (1) and accounting for (A1), one
obtains

`

dt(j) 5 s (r) d {[C(r, j 1 dj) 2 C(r, j)]E ext r

0

1 [H(j 1 dj 2 j )H(r 2 r )1 E

2 H(j 2 j )H(r 2 r )]}1 E
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` 2d C(r, j)
5 s (r) dr djE ext drdj0

`

1 s (r) dH(r 2 r ) dH(j 2 j )E ext E 1

0

5 s dj 1 s (r )dH(j 2 j ),E ext E 1

where sE is defined by (4), and c(r, j) 5 d2C(r, j)/dr
dj is the probability density distribution function. Equa-
tion (7) can now be obtained by substituting dt(j) into
(2).

Let j , j1 or j $ j1 1 «, where « is a sufficiently
small positive number. The term dH (j 2 j1) vanishes
and Eq. (7) takes the form dI(j) 1 sEI(j)dj 5 0. Its
solution is I(j) 5 i0 exp(2sEj), if j , j1, and

I(j) 5 I(j 1 «) exp[2s (j 2 j 2 «)], (A2)1 E 1

if j $ j1 1 «.
Let j1 # j , j1 1 «. It follows from the equalities

dI(j1) 5 I(j1 1 «) 2 I(j1) and dH (j1 2 j1) 5 H (j1 1
« 2 j1) 2 H (j1 2 j1) 5 1 that I(j1 1 «) 2 I(j1) 1
sEI(j1)« 1 sext(rE)I(j1) 5 0. Tending « to zero results
in

2 1 2I (j ) 2 I (j ) 5 s (r )I (j ),1 1 ext E 1 (A3)

where I6(j1) are the limits of I(j1 6 «) as « tends to
zero. Solving Eq. (A3) for I1(j1) and substituting I1(j1)
into (A2), one obtains the solution to Eq. (7):

0, j , 0;
I(j) 5 i exp(2s j), 0 # j , j ;0 E 1
[1 2 s (r )]i exp(2s j), j $ j . ext E 0 E 1

(A4)

APPENDIX B

Derivation of the Cumulative Distribution Function

Probability theory starts with the definition of a sim-
ple event. The event ‘‘drops of radius hr appear in the
elementary volume with concentration hc’’ is taken as
the simple event. A concentration is defined here as the
number of drops in an elementary volume of 32 cm3

normalized by 32 cm3. We depict the simple event as
a point h 5 (hr, hc) on a plane with random variables
hr and hc. This plane is the sample space. A point h
5 (hr, 0) signifies that the drop does not appear in the
elementary volume. The appearance of drop radii along
the horizontal axis, therefore, is given by a conditional
probability F(r) of the event hr , r, given that hc ±
0. We start our analysis with the derivation of F(r).

The sample space is composed of 15 3 98 5 1470
simple events h 5 [ri, cobs,k(ri)]; i 5 1, 2, . . . , 15; k
5 1, 2, . . . , 98. Here 15 and 98 are numbers of the
FSSP bins Nbins and the selected records Nrec, respec-
tively, and cobs,k(ri) is the concentration of drops reg-
istered by the ith FSSP bin. We assume that the random

variable hr is uniformly distributed along the horizontal
axis of the sample space. Let Hi be the event ‘‘the ran-
dom variable hr has taken on a value in the ith FSSP
bin.’’ This event is represented by the interval [ri21, ri).
The number of different hr observed in this interval is
proportional to Dr. We denote by B the event ‘‘hc ±
0.’’ In the sample space, this event is represented by
points h 5 (hr, hc), which do not lie on the horizontal
axis c 5 0. Its probability can be calculated as the ratio
of the number of ‘‘black rectangles’’ in Fig. 5a to the
total number of ‘‘rectangles.’’ For the selected data, P(B)
5 0.57. It means that the distribution F(r) should de-
scribe how 57% of the points from the interval [r0, rmax]
are distributed within this interval.

The probability F(r 1 Dr) 2 F(r) to observe a drop
radius in the interval [r, r 1 Dr) is given by the con-
ditional probability P(Hi | B) of the event Hi under the
condition B; that is,

P(B ù H )iF(r 1 Dr) 2 F(r ) 5i21 i21 P(B)

P(B ù H )i5 . (B1)Nbins

P(B ù H )O k
k51

For drop radii that appear in the FSSP bin with a unit
probability (see Fig. 5b), Hi is a subset of B; that is, Hi

, B. The event B ù Hi, therefore, is represented by
the interval [ri21, ri), and its probability is proportional
to its length Dr. The ensemble approach assumes that
this property holds true independently of the bin width
Dr. For large drops, the event B ù Hi can be represented
by an infinitesimal interval, while the probability of B
ù Hi takes on a finite number. The probability, therefore,
cannot be associated with Dr; but instead with Dr ,Di

where 0 # Di # 1 is the Hausdorf–Besicovitch dimen-
sion of the set B ù Hi (Barnsley 1993; Federer 1969).
For bins with a unit probability (Fig. 5b), Di 5 1 and
P(B ù Hi) is proportional to Dr. For large drops, the
Hausdorf–Besicovitch dimension can fall below unity,
and thus P(B ù Hi) is proportional to Dr . Let pi(Dr)Di

be the coefficient of proportionality. In terms of these
notations, (B1) can be written as

Dip (Dr)DriF(r 1 Dr) 2 F(r ) 5 . (B2)i21 i21 Nbins

Dkp (Dr)DrO k
k51

The coefficient pi(Dr) is the probability of the event hc

± 0, given that ri21 # hr , ri21 1 Dr; that is, pi(Dr)
5 P(B | Hi). Their values are shown in Fig. 5b. It fol-
lows from (B2) that the probability density distribution
function dF/dr at ri21 can be defined if and only if Di

5 1.
Consider a set of all simple events for which pi(Dr)

5 1. This set separates drop radii that appear in the
elementary volume with a unit probability; that is, those
drops to which the concept of the ensemble is applicable.
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The Hausdorf–Besicovitch dimension is unity in this
case. For sufficiently large drops, the bin width Dr 5 2
mm can be treated as a infinitesimal interval in compar-
ison with the drop radius. Their appearance in a 2-mm
interval, therefore, can be treated as a discrete random
variable; that is, Di 5 0. There is an intermediate case
when drops are not small enough to densely fill the in-
terval [ri21, ri21 1 Dr), and not large enough to be treated
as a discrete variable. Theoretically, the Hausdorf–Be-
sicovitch dimension can take any value between 0 and
1. Our data do not provide enough information to analyze
this case. We assume that Di can take on two values only,
that is, 1 if pi(Dr) 5 1, and zero otherwise. Based on
this assumption, the radius rE of the largest drop in the
ensemble coincides with the largest edge of the FSSP
bin for which pi(Dr) 5 1. For the selected data, rE ø 14
mm. The probability a0 that the elementary volume con-
tains the ensemble of drops can be evaluated as

p (Dr)DrO i
all i for which D 51ia 50 Nbins

Dkp (Dr)DrO k
k51

r 2 rE 05 .
r 2 r 1 p (Dr)OE 0 k

all k for which D 50k

We split the sums in Eq. (B2) into two sub-sums,
which include summands Di 5 1 and Di 5 0, respec-
tively. This allows us to express F(r) as

F(r) 5 a F (r) 1 (1 2 a )F(r).0 0 0 (B3)

Here, F0(r) is cumulative distribution function of the
ensemble of drops:

DrO r 2 rall i for which D 51 and r ,r 0i iF (r) 5 5 ,0 r 2 rDrO E 0
all k for which D 51k

if r0 # r , rE; and F0(r) 5 0, if r # r0 or r . rE. The
second component can be expressed as

F(r) 5 q .O i
all i for which r ,ri

Here,

p (Dr)iq 5 ,i p (Dr)O k
all k for which D 50k

if pi(Dr) , 1, and 0 otherwise. The distribution F(r)
is the cumulative distribution function of drops excluded
from the ensemble. If a0 5 1, then F(r 1 Dr) 2 F(r)
5 Dr/(rmax 2 r0); that is, the number of drop radii in
the interval [r, r 1 Dr) is proportional to its length Dr.
The probability density distribution function can be used
in this case. Figure 6 demonstrates the distribution (B3)
derived from data used in this study.

The drop spectrum (r) can be calculated asc

Nrec1
c (r )O obs,k iN k51recc(r ) 5 .i F(r ) 2 F(r )i i21

Examples of this function for a0 5 0.69 and a0 5 1
are shown in Fig. 7. Note that the ensemble approach
(a0 5 1) underestimates the contribution of large drops.

The cumulative drop size distribution N(r) can be
expressed as

r

N(r) 5 c(r) dF(r). (B4)E
r0

Substituting (B3) into (B4), one obtains (10).

APPENDIX C

Radiative Transfer in Three-Dimensional Cloud

Consider the three dimensional medium shown in Fig.
2. We use the boundary value problem for the three
dimensional transport equation to describe radiative
transfer in this medium, which is assumed to be bounded
from below and on lateral sides by an absorbing surface

V • =J(x, V) 1 x(x)J(x, V)

x (x)s5 J(x, V9) dV9, (C1)E4p 4p

J(x , V) 5 i d(V 2 V ), n • V , 0,t 0 0 t

J(x , V) 5 0, n • V , 0. (C2)b b

Here, x takes on values sE and sext(rE) at the ‘‘gray’’
and ‘‘black’’ dots, where sE and sext are the extinction
coefficient and the particle extinction cross section, re-
spectively. The function xs describes scattering prop-
erties of the ensemble of particles and individual drops.
This is a two-value function: xs(x) 5 sE,s if x belongs
to the gray area, and xs(x) 5 ss(rE) otherwise; sE,s and
ss(rE) are the scattering coefficient for the ensemble of
drops and the particle scattering cross section, respec-
tively. Symbols xt and xb denote points on the top (sub-
script ‘‘t’’), bottom, and lateral (subscript ‘‘b’’) bound-
aries; nt and nb are outward normals to the boundary at
xt and xb, respectively; i0 is the intensity of the incident
beam; and the bold raised dot denotes the scalar product.
For ease of analysis, we assume that there is one in-
dividual drop of radius rE at the point x0 1 j1V0, where
x0 is a point on the upper medium boundary z 5 0.
Note that the choice of an isotropic phase function in
Eq. (C1) is not essential here and it has been assumed
only for simplicity.

The solution J(r, V) to this problem is the radiance at
x in the direction V, which is treated as a Schwartz dis-
tribution. Schwartz theory distinguishes two types of func-
tions: regular and singular distributions (Vladimirov
1971). There is a one-to-one correspondence between
‘‘usual functions’’ and regular distributions, and thus, an
ordinary function can be regarded as a special case of a
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distribution. The Dirac delta function is the simplest ex-
ample of a singular distribution. No usual function can be
identified with it (Vladimirov 1971). In general, a solution
of the transport equation can be expressed as a sum of
regular and singular distributions. The singular summand
must be separated explicitly because numerical technique
cannot deal with singular distributions. The mathematical
theory of Schwartz distributions applicable to the transport
equation was developed by Germogenova (1986). Choulli
and Stefanov (1996) and Antyufeev and Bondarenko
(1996) recently reported that there is a one-to-one corre-
spondence between the complicated three-dimensional
structure of the medium and radiation exiting the medium.
An additional singular distribution in the solution of the
three-dimensional transport equation makes this one-to-
one correspondence possible. Zhang et al. (2002) showed
that the singular solution to the transport equation is re-
sponsible for the hot spot effect, that is, a sharp peak in
radiation reflected by the vegetation canopy in the retro-
solar direction that is neglected by classical radiative trans-
fer. Below we will closely follow the ideas of Germo-
genova (1986), Choulli and Stefanov (1996), Antyufeev
and Bondarenko (1996), and Zhang et al. (2002).

Photons entering the medium through the point x0 on
the upper boundary in the direction V0 and being at-
tenuated by the ensemble of particles experience the first
collision at the point x0 1 j1V0, which results in the
appearance of a point diffuse source. It is intuitively
clear that the three-dimensional radiation field decom-
poses into two very different fields (Fig. 2). The first
field is generated by a diffuse source at x0 1 j1V0, and
the second one comes from photons penetrating into the
medium through elementary surfaces on the upper
boundary that exclude x0. The incident beam, therefore,
should be treated as a horizontally inhomogeneous field
with respect to its contribution to the radiation regime
inside the medium. We treat each point on the upper
boundary as a point monodirectional source and for-
mulate the radiative transfer problem for each such
source. The radiative response of the medium at x in
direction V to a point monodirectional source located
at x0 is the Green’s function, G(x, V; x0, V0) (Bell and
Glasstone 1970), which satisfies Eq. (C1), and where
G(xt , V; x0, V0) 5 d(xt 2 x0) · d(V 2 V0). The so-

lution to the problem [Eqs. (C1)–(C2)] can be expressed
as an integral over the upper surface z 5 0 of the Green’s
function as

J(x, V) 5 i G(x, V; x , V )|n · V | dS. (C3)0 E 0 0 t 0

A technique to separate the singular components from
Eq. (C3) is based on the following result (Germogenova
1986; Choulli and Stefanov 1996): for a three-dimen-
sional medium, radiances G0 and G1 of uncollided and
single scattered photons from a point monodirectional
source are singular distributions, while the remaining
field is described by a regular distribution GR. The
Green’s function, therefore, is the sum of two singular
and one regular component; that is, G 5 G0 1 G1 1
GR. Substituting this sum into Eq. (C3) results in the
decomposition of the solution J(r, V) into three terms,
J 5 J0 1 J1 1 JR, which are integrals over the upper
boundary of G0, G1, and GR, respectively. Because GR

is a regular function, the third integral JR is insensitive
to a value of GR at a particular point x0; that is, one
can ignore the point x0 when integrating GR over the
upper boundary surface. This means that the contribu-
tion of multiply scattered photons entering the medium
through the point x0 to the term JR can be neglected.

The singular nature of G0 and G1 makes their integrals
sensitive to particular points of the upper boundary.
Therefore, we perform the integration Eq. (C3) over the
upper boundary surface in two parts, the first excludes
the point x0 and then separately over the point x0. The
former separates photons ‘‘continuously’’ penetrating
into the medium through elementary surfaces while the
latter specifies the path that results in the illumination
of the scattering center at x0 1 j1V0 (Fig. 2). The in-
tegration of G0 and G1 over the surface results in similar
expressions for the unscattered and once scattered ra-
diance. Thus, the sum of JR and these two terms is the
solution JE of the boundary value problem [Eqs. (C1)–
(C2)]. Note that JE consists of a singular (unscattered
intensity) and regular (diffuse intensity) components.

The integration of G0 and G1 over the set of points {x0}
results in JP 5 JP,0 1 JP,1, where (Germogenova 1986)

I(|x 2 x |) x 2 x0 0J (x, V; x ) 5 d(V 2 V )d V 2 H(|x 2 x | 2 |x 2 x |)P,0 1 0 1 0 02 1 2|x 2 x | |x 2 x |0 0

I(|x 2 x |) x 2 x1 11 d(V 2 V )d V 2 H(|x 2 x | 2 |x 2 x |); (C4)0 0 1 02 1 2|x 2 x | |x 2 x |1 1

s (r ) exp(2s |x 2 x |) x 2 xs E E 1 1J (x, V; x ) 5 I(|x 2 x |) d V 2 . (C5)P,1 1 1 0 2 1 24p |x 2 x | |x 2 x |1 1
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Here, x1 5 x0 1 j1V0, H is the Heaviside function, | x
2 x1 | is the distance between x and x1, and I is given
by (A4). Thus, a formal mathematical solution to the
problem [Eqs. (C1)–(C2)] is

J(x, V) 5 J (x, V) 1 J (x, V; x ).E P 1 (C6)

The first summand JE describes the three-dimensional
radiation field generated by photons penetrating into the
medium through elementary surfaces on the upper me-
dium boundary and is insensitive to the presence of the
individual scattering center x1 and the path x0 1 jV0.
We term JE the classical solution of the transport equa-
tion [Eq. (C1)]. The second summand JP is the radiative
response of the medium to the point source, which is a
singular distribution. With changes in the number of
black dots the classical solution JE is unchanged but the
singular component transforms to the sum of JP(x, V;
xi) over xi, i 5 1, 2, . . . , M.
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