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The evaluation of a new global monthly leaf area index (LAI) data set for the period July 1981 to December
2006 derived from AVHRR Normalized Difference Vegetation Index (NDVI) data is described. The physically
based algorithm is detailed in the first of the two part series. Here, the implementation, production and
evaluation of the data set are described. The data set is evaluated both by direct comparisons to ground data
and indirectly through inter-comparisons with similar data sets. This indirect validation showed satisfactory
agreement with existing LAI products, importantly MODIS, at a range of spatial scales, and significant
correlations with key climate variables in areas where temperature and precipitation limit plant growth. The
data set successfully reproduced well-documented spatio-temporal trends and inter-annual variations in
vegetation activity in the northern latitudes and semi-arid tropics. Comparison with plot scale field
measurements over homogeneous vegetation patches indicated a 7% underestimation when all major
vegetation types are taken into account. The error in mean values obtained from distributions of AVHRR LAI
and high-resolution field LAI maps for different biomes is within 0.5 LAI for six out of the ten selected sites.
These validation exercises though limited by the amount of field data, and thus less than comprehensive,
indicated satisfactory agreement between the LAI product and field measurements. Overall, the inter-
comparison with short-term LAI data sets, evaluation of long term trends with known variations in climate
variables, and validation with field measurements together build confidence in the utility of this new 26 year
LAI record for long term vegetation monitoring and modeling studies.

© 2008 Elsevier Inc. All rights reserved.

1. Introduction

Long term global vegetation monitoring requires temporally and
spatially consistent data sets of vegetation biophysical variables
characteristic of vegetation structure and functioning like the Leaf area
index (LAI) and Fraction of Photosynthetically Active Radiation (FPAR).
Such data sets are useful in many applications ranging from ecosystem
monitoring to modeling of the exchange of energy, mass (e.g. water and
CO2), and momentum between the Earth's surface and atmosphere
(Demartyet al., 2007;Dickinson et al.,1986; Sellers et al.,1996; Tianet al.,
2004). Akey step in assembling these long termdata sets is establishinga
link between data from earlier sensors (e.g. AVHRR) and present/future
sensors (e.g. MODIS TERRA, NPOESS) such that the derived products are
independent of sensor characteristics and represent the reality on the

ground both in absolute values and variations in time and space (Van
Leeuwen et al., 2006). Multi-decadal globally validated data sets of LAI
and FPAR produced with a physically based algorithm and of known
accuracy are currently not available, although several recent attempts
have resulted in shorter term data sets from medium resolution sensor
data (Knyazikhin et al., 1998; Gobron et al., 1999; Chen et al., 2002; Yang
et al., 2006a; Plummer et al., 2006; Baret et al., 2007). The typical target
accuracy required for LAI is approximately 0.5 according to the Global
Climate Observation System (GCOS, 2006). The MODIS stage 1 land
validation efforts for the LAI/FPAR product based on fieldmeasurements
show that MODIS LAI is an overestimate by about 12% (RMSE=0.66)
(WWW1; Yang et al., 2006a). The accuracy in the long term AVHRR LAI
product is based on theMODIS LAI's definition of accuracy asMODIS LAI
serves as the benchmark for our analysis.

In the first of this two paper series (Ganguly et al., in press), we
presented a physically based approach for deriving LAI and FPAR
products from AVHRR data that are of comparable quality to the
MODIS products. The approach is based on the radiative transfer
theory of canopy spectral invariants which facilitates pa-
rameterization of the canopy spectral bidirectional reflectance factor
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(BRF). The methodology permits decoupling of the structural and
radiometric components and is applicable to any optical sensor. How-
ever, it requires a set of sensor-specific values of configurable pa-
rameters, namely the single scattering albedo and data uncertainty, in
order to maintain consistency in the derived products.

In this second paper, we present an evaluation of a new global
monthly LAI data set derived from the AVHRR NDVI for the period July
1981 to December 2006 with the algorithm presented in the first
paper. The outline of this paper is as follows. The implementation of
the algorithm and production of the data set are first detailed. The
data set was evaluated both by direct comparisons to ground data and
indirectly through inter-comparisons with similar data sets. This
indirect validation included comparisons with MODIS and CYCLOPES
LAI products at a range of spatial scales, and correlations with key
climate variables in areas where temperature and precipitation limit
plant growth. The data set was also analyzed to examine spatio-
temporal trends and inter-annual variations in vegetation activity that
have been reported previously in the literature. Direct validation
included comparisons to field data from several campaigns conducted
as part of the Land Product Validation Subgroup (LPV) of the
Committee Earth Observing Satellite (CEOS) (Justice et al., 2000;
Morisette et al., 2006). In the final section, conclusions from the
production and evaluation exercises are presented.

2. Production of the LAI dataset

This section provides a schematic of the algorithm implementation
as well as a brief description of the input datasets and LAI retrieval
mechanism. The MODIS Collection 5 (C5) LAI product over the period
of overlap between the two sensors (2000 to 2002) is taken as a
benchmark in this study. Descriptions related to satellite input data
and land cover classification map are provided in Section 2.1. A step-
by-step implementation of the theoretical framework (Ganguly et al.,
in press) is given in Sections 2.2 and 2.3. The LAI product is described
in Section 2.4.

2.1. Input satellite data and land cover classification map

The 15-day maximum value AVHRR NDVI composites (Holben,
1986) from the NASA GIMMS group for the period July 1981 to
December 2006 are used as the input data in this study (Tucker et al.,
2005). The data are at 8 km spatial resolution in a geographic latitude–
longitude projection and have been corrected for loss of calibration,
view and solar zenith angle variations, contamination from volcanic
aerosols, and other effects not related to vegetation change (Pinzon
et al., 2005; Tucker et al., 2005). The maximum value compositing
diminishes the atmospheric effects such as sensitivity of the AVHRR
wide spectral bands to the presence of water vapor, ozone, etc (Brown
et al., 2006) minimizing residual atmospheric and cloud contamina-
tion (Holben, 1986). The average of the two 15-day maximum value
composites was used to generate the monthly 8 km LAI product.

The latest version (C5) of the MODIS LAI data set was used as a
benchmark in the production of the AVHRR LAI data set (Shabanov et al.,
2005; Yang et al., 2006b). The monthly 1 km MODIS data set was
aggregated to 8 kmspatial resolution. In the aggregationprocess, the LAI
value of the 8 kmpixel is calculated as themean over 1 km LAI values of
high quality only. The high quality retrievals refer to LAI values
generated by the C5 MODIS LAI/FPAR algorithm (Yang et al., 2006b).
Further, the quality flag value for the 8 km pixel is evaluated as the
percentage of the corresponding sixty four 1 km pixels of high quality.
This 8 km MODIS data set was then re-projected to the geographic
latitude–longitude projection from its native ISIN projection. For the
inter-comparison of AVHRR and MODIS LAI (Section 3), only 8 km
MODIS LAI pixels with quality flag values greater than 90% were used
(WWW2, Yang et al., 2006b). Similarly, only main RT algorithm AVHRR
retrievals (Section 2.3) were used when inter-comparing the data sets.

The land cover map (or biome classification map) is a key ancillary
input to the LAI retrieval process. The C5 MODIS LAI/FPAR operational
algorithm references a 1 km eight biome classification map consisting of
the following classes: (1) grasses and cereal crops, (2) shrubs, (3) broadleaf
crops, (4) savannah, (5) evergreen broadleaf forests, (6) deciduous
broadleaf forests, (7) evergreen needleleaf forests, (8) deciduous needle-
leaf forests (Yang et al., 2006a). We used the same map but at 8 km
resolution by retaining themost frequently occurring land cover amongst
the sixty four 1 km pixels (Tian et al., 2002).

2.2. Achieving consistency with the Terra MODIS LAI products

The AVHRR mode of the proposed algorithm accepts inputs of
surface reflectances as projections of the simple ratio (SM=near-
infrared/red reflectances) line onto the red-NIR spectral axes, i.e., the
red and NIR reflectance are proportional to cos α and sin α,
respectively, where α=tan−1(NIR/RED)=tan−1(SM) (Ganguly et al., in
press). Errors in cos α and sin α are determined by errors in the NDVI
data. The consistency conditions of the multi-sensor LAI algorithm
(Ganguly et al., in press) are:

(a) The algorithm should generate a set of acceptable solutions
given AVHRR NDVI;

(b) This set should include all acceptable solutions generated by
the MODIS algorithm when given the corresponding AVHRR
spectral reflectances;

(c) The algorithm should also be capable of admitting AVHRR
spectral reflectances, in addition to NDVI, and generate the
same set of acceptable solutions as the MODIS algorithm.

These conditions ensure that the difference between mean LAI
values from the AVHRR (using NDVI as input) and MODIS (using
spectral reflectance as input) modes of the algorithm is minimized.
Specifically, the adjustment procedure was reduced to finding values
of sensor-specific input plus model uncertainty and single scattering
albedo for which

a) The consistency conditions are met;
b) The retrieval index (RI) is maximized;
c) The difference (RMSE) between AVHRR and MODIS LAI is

minimized.

The retrieval index is the ratio of the number of pixels for which
the algorithm retrieves a value of LAI to the total number of processed
pixels,

RI ¼ numberof retrievedpixels
total number of processedpixels

: ð1Þ

The RI is a function of uncertainties in modeled and observed
reflectances (or, the simple ratio) and the total number of spectral
bands used. In general, the RI increases with increasing values of
uncertainties (Fig. 1a and b) but at the same time, higher values of
uncertainty refer to poor quality input data, and thus, poor quality
retrievals.

The RMSE is defined as the root mean square error between the
output AVHRR LAI image and the corresponding MODIS LAI image,

RMSE e;ωð Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
N

∑
N

k¼1
LAIAVHRR e;ω; kð Þ−LAIMODIS kð Þ½ �2

s
: ð2Þ

Here LAIAVHRR represents LAI values generated by the AVHRRmode
of the algorithm given the relative uncertainty ε and the single
scattering albedo ω, and LAIMODIS denotes the aggregated MODIS LAI
values. The summation is performed over all 8 kmvegetated pixels in a
given image. The RMSE is a function of the relative uncertainty, single
scattering albedo, landcover type and the image size. The following
procedure was implemented to achieve efficient production of AVHRR
LAI on a global scale.
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The configurable parameters, relative uncertainty (ε) and single
scattering albedo (ω) at the red, are varied to minimize RMSE and
maximize RI. Since uncertainties in the NIR reflectance are minimally
impacted by the differences in spectral bandwidth and data resolution
(Miura et al., 2000; Van Leeuwen et al., 2006; Section 5 in Ganguly et
al., in press), their values are taken from the correspondingMODIS LUT
and kept constant in the tuning procedure. This process is illustrated
in Fig. 1. The RI increases with increasing values of εRED. A value of εRED
of 30% generally yields a RI value of 90% or more for single scattering
albedo at the red spectral band of less than ~0.2. εRED values greater
than 30% are usually not considered as they represent poor quality
input data (Fig. 3a and b in Tan et al., 2005a,b) and thus unreliable LAI
retrievals. Also, for a preset value of εRED, the RMSE is minimum for a
specific value of ωred (ωred=0.25 in Fig. 1a and ωred=0.22 in Fig. 1b).
Thus, for each vegetation type, an AVHRR LUT can be created
consisting of the spectral BRF values calculated with optimum values
of the single scattering albedo. Optimal values of the relative
uncertainties are then used to specify the merit function (see
Eq. (11) in Ganguly et al., in press).

We performed extensive analyses of the above procedure for all
months of the year 2001, biome-by-biome, in order to examine
variations in the configurable parameters with biome type and month
(Table A1, Appendix A). We found that their optimal values exhibit a
non-negligible variation with respect to the biome type and a weak

sensitivity to the month. For each biome type, mean values over
months are taken as instrument specific configurable parameters and
used to generate global AVHRR LAI time series.

2.3. Global LAI production

Consider an input pixel from the AVHRR NDVI map representing a
certain vegetation class. The algorithm queries the corresponding
AVHRR LUT for this class and calculates the mean value and standard
deviation (dispersion) of LAI from the retrieved solution set (Ganguly
et al., in press). A successful retrieval is classified as a main algorithm
retrieval. If the retrieval is unsuccessful, a backup algorithm similar
to the MODIS approach is adopted, where the input simple ratio will
be used to calculate a LAI value based on NDVI–LAI empirical
relations (Yang et al., 2006a). An additional land cover quality control
flag is incorporated which reports the percentage of the modal land
cover type used in the retrieval of each 8 km AVHRR LAI pixel. A
schematic representation of the algorithm implementation is shown
in Fig. 2.

2.4. LAI data dissemination

The data set is stored as monthly LAI values together with their
standard deviation and quality control flags at 8 km resolution in a
geographic latitude–longitude projection for the period July 1981 to
December 2006. The accuracy of the AVHRR LAI product is comparable
to the MODIS LAI (cf. later sections), but with increased dispersion,
which reflects the lower information content of AVHRR input (NDVI)
compared to the MODIS input (spectral reflectances).

3. Results: comparison with other satellite LAI products

3.1. Assessment of AVHRR LAI for the tuning year

We performed a global scale assessment of the AVHRR LAI data set
for the overlapping year 2001 for which MODIS LAI was used as a

Fig. 2. Flowchart showing global LAI production.

Fig.1. The difference (RMSE) betweenMODIS and AVHRR LAI values (vertical axis on the
left side and solid lines) and the Retrieval Index (vertical axis on the right side and
dashed lines) as a function of the relative uncertainty ε=σRED/RED and single scattering
albedo at red spectral band. Optimal values of the single scattering albedo and the
uncertainty should minimize RMSE and maximize the retrieval index. Simultaneously
available AVHRR NDVI and MODIS C5 LAI data sets over grasses and cereal crops
(panel (a), MODIS tile h10v05) and broadleaf deciduous forests (panel (b), MODIS tile
h12v04) for the year 2001 are used in this example.
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reference for tuning the AVHRR algorithm. The quality of the AVHRR
product depends on the quality of input NDVI and land cover data. The
input land cover map is the same for both MODIS and AVHRR,
therefore the input AVHRR NDVI and/or MODIS reflectance data
determine the quality of retrieved LAI. A pixel data is considered
reliable only if the MODIS quality flag for the corresponding pixel
corresponds to a best quality retrieval and simultaneously has an
AVHRR RT algorithm retrieval. For each biome, all such pixels are
selected for analysis over the course of a year. A month by month
spatial difference, defined as delta LAI (δLAI) for each such pixel over a
particular biome type is calculated as

δLAI ib; jb; tð Þ ¼ AVHRRLAI ib; jb; tð Þ−MODISLAI ib; jb; tð Þ: ð3Þ

Here ib, jb are pixel coordinates for a specific biome “b” and “t” is the
month. Table 1 shows the accuracy (δ̄=mean value of δLAI (ib, jb, t)) and
precision (σ=standard deviation of δLAI (ib, jb, t)) of AVHRR LAI with
respect toMODIS LAI for different biomes and fourdifferentmonths. The
last row inTable 1 shows δ

_
calculated fromannualmaximumLAI values,

which reflect the worst possible case.
The herbaceous biomes (grasses/cereal crops, shrubs, broadleaf

crops, savannas) show a jδ̄j in the range of zero to 0.25 LAI in all the four
months, while the woody biomes (broadleaf and needleleaf forests)
show a jδ̄j from nearly zero to 0.42 LAI. AVHRR LAI underestimates
MODIS LAI especially in the savannas and needleleaf forests. The
accuracy of annual maximum LAI is usually within ±0.6 LAI for most of
the vegetation classes. The precision is always within ±0.65 standard
deviation units. In deciduous broadleaf forests, peak annual AVHRR LAI
overestimates its MODIS equivalent by almost 0.61 LAI. This is due to
uncertainty in input NDVI and differences in the time of the year at
which the peak LAI value exists in these products. These larger
differences suggest that LAI retrievals from NDVI (low information

content) will poorly capture the seasonality in comparison to LAI
retrievals from surface reflectances (higher information content). The
input information content and uncertainties control whether the
retrievals are over- or underestimates, which in our case is not
systematic as shown in Fig. 3 and Table A2 in Appendix A. Pixels with
greater than ±0.6 LAI difference constitute only 3.3% of the total global
vegetated pixels. Overall, the difference values indicate spatio-temporal
agreement between the AVHRR and MODIS LAI data sets as well as
acceptable levels of accuracy (within 0.5 LAI) and precision, suggesting
that the tuning process has been successfully implemented.

3.2. Comparison with MODIS C5 LAI data

The inter-comparison of AVHRR and MODIS data sets for a three
year period (2000 to 2002) is presented here. The choice of these years
is dictated by the availability of latest version of MODIS products (C5).

3.2.1. Global scale inter-comparison
Fig. 4a shows a comparison between the mean monthly AVHRR and

MODIS LAI for eachof the 8 vegetation classes. TheAVHRRvalues explain
97.5% of the variability inMODIS values and on averagewill be in error in
their estimation by 0.18 LAI. This comparison indicates qualitative
agreement between the twodata sets; however, global averaging over all
pixels of a particular vegetation class masks the underlying variability in
LAI amongst those pixels. Therefore, an inter-comparison at regional and
local scales was performed, as reported below.

3.2.2. Regional scale inter-comparison
Grasslands and evergreen needleleaf forests were considered for a

regional scale inter-comparison exercise. Mean seasonal values – DJF
(December to February), MAM (March to May), JJA (June to August),
and SON (September to November) – for a homogeneous region of 100

Table 1
Global scale analysis of LAI differences across different biomes for different months and for annual maximum LAI

Month Biome 1 Biome 2 Biome 3 Biome 4 Biome 5 Biome6 Biome 7 Biome 8

δ̄ σ δ̄ σ δ̄ σ δ̄ σ δ̄ σ δ̄ σ δ̄ σ δ̄ σ

January 0.0393 0.358 0.0139 0.176 0.062 0.50 −0.050 0.922 −0.004 1.798 0.167 0.603 0.036 0.772 0.009 0.107
April −0.069 0.360 0.026 0.246 0.0001 0.479 −0.081 1.049 −0.341 1.879 −0.169 0.619 −0.358 0.457 −0.319 0.162
July 0.145 0.948 0.253 0.942 −0.065 0.813 −0.078 0.942 0.150 1.780 0.421 1.528 −0.236 1.116 −0.147 1.175
October 0.028 0.414 −0.045 0.216 0.076 0.639 −0.012 0.967 −0.018 1.70 0.007 0.683 −0.242 0.474 −0.018 0.176
Peak LAI 0.367 1.207 0.292 1.024 0.402 1.246 0.560 1.399 0.325 1.103 0.610 1.313 −0.202 1.154 −0.146 1.206

δ
_
=mean value of the LAI difference (accuracy). LAI difference is defined as (AVHRR LAI−MODIS LAI).

σ=standard deviation (precision) of the LAI difference.

Fig. 3. Average annual LAI difference (AVHRRminus MODIS) for the year 2001. The grey areas represent changes within ±0.6 LAI units (96.7% of the total vegetated pixels). Areas with
black color represent water bodies and white color denotes non-vegetated pixels or snow. Land pixels with LAI differences greater than ±0.6 represent only 3.3% of the total vegetated
pixels globally.
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by 100 evergreen needleleaf forest pixels in Western Russia were
calculated for the period 2000 to 2002 and shown in Fig. 4b. The R2

(0.895) and RMSE (0.25) indicate good agreement between the two
data sets. The dispersion does not exceed 0.5 LAI. Fig. 4c is a similar
plot for three homogeneous grassland sites, 100×100 pixels each,
located in the Great Plains of the USA, the Sahel and Central Asia.
Again, the R2 (0.84) and RMSE (0.12) indicate a satisfactory agreement
between the two data sets. Some scatter at LAI values greater than 1.25
is seen which is within the accuracy limit of 0.5 LAI (GCOS, 2006).

3.2.3. Local scale inter-comparison
The June to August mean LAI of a homogeneous patch of 50 by 50

evergreen needleleaf forest pixels in western Russia was used for local
scale inter-comparison between the two data sets. Fig. 4d shows the
mean and dispersion of AVHRR LAI as a function of MODIS LAI. The
regression relation in Fig. 4d has R2 of 0.94 and RMSE of 0.32 which
indicate overall correspondence between the two data sets, although
some dispersion can be seen at LAI values greater than 3.

3.3. Comparison with CYCLOPES LAI product

The Carbon Cycle and Change in Land Observational Products from
an Ensemble of Satellites (CYCLOPES) LAI product (version 3.1) was
derived from data from the SPOT/VEGETATION sensor over a 1/112°
plate-carrée spatial grid and 10-day frequency (Baret et al., 2007). This
product has reached a reasonable level of maturity as compared to
MODIS LAI and shows satisfactory agreement with field measured
values of LAI (Weiss et al., 2007). CYLOPES products from a select
Benchmark Land Multisite Analysis and Intercomparison of Products

(BELMANIP) benchmark network of sites (Baret et al., 2006) are
utilized here (Table A3, Appendix A). The land surface type of each
BELMANIP site is defined using the ECOCLIMAP (a global database of
land surface parameters at 1 km resolution in meteorological and
climate models) classification (Masson et al., 2003), which classifies
the land into seven main categories. This inter-comparison was done
for four vegetation types — needleleaf forests, grasslands, savannas
and croplands. For each vegetation type, we chose representative sites
(each site with a dominant biome type), each 50×50 km2 (about 7×7
AVHRR pixels) in area, and calculated the meanmonthly LAI values for
the period 2001 to 2003 using simultaneously available AVHRR and
CYCLOPES pixels that cover the same areas (Fig. 5). Mean values
accumulated over areas composed of 20 or more AVHRR pixels were
used in our inter-comparison analyses.

In grasslands and needleleaf forests, the AVHRR and CYCLOPES LAI
values are close to the 1:1 line— slopes are 0.85 and 0.88, respectively
and corresponding offsets are 0.17 and −0.05 (Fig. 5a and b). They
explain 80% and 68% of the variability in CYCLOPES LAI and will be in
error by 0.32 and 0.47 LAI on average. The correlation between the two
products in the case of croplands is R2=0.77 and for savannas,
R2=0.85; they differ by 0.34 LAI (croplands) and 0.24 LAI (savannas)
(Fig. 5c and d). The deviation of AVHRR-CYCLOPES relationships from
the 1:1 line is larger compared to grasslands and needleleaf forests
(Fig. 5a and b). The deviations can partly be explained by the narrow
dynamic range of LAI values, which is comparable to variation due to
observation errors (Huang et al., 2006; Tan et al., 2005a,b; Wang et al.,
2001). In this example, mean (standard deviation) values of CYCLOPES
LAI over croplands and savannas are 0.87 (0.5) and 0.52 (0.5),
respectively. Corresponding values of the AVHRR LAI are 0.73 (0.2)

Fig. 4. Panel (a) shows comparison between MODIS and AVHRR LAI for the year 2001 (blue color) and 2002 (red color) for different vegetation classes. The LAI values are globally
averaged values for the respective vegetation pixels. A similar comparison betweenMODIS and AVHRR LAI for years 2000–2002 but for different seasons on homogeneous patches of
evergreen needleleaf forests in Western Russia (Panel b) and grasslands in the USA, Sahel and Central Asia (Panel c). Panel (d) shows a comparison between MODIS and AVHRR LAI
values averaged from June to August, 2001, over a homogeneous patch of evergreen needleleaf forests inWestern Russia. For eachMODIS LAI bin, the corresponding AVHRR LAI values
were averaged (red box) to reduce scatter. The error bars represent the dispersion of the AVHRR LAI values within each bin. (For interpretation of the references to color in this figure
legend, the reader is referred to the web version of this article.)
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and 0.56 (0.32). Although there is variation in the comparability
between the two data sets not only across vegetation types but also
across sites with in a vegetation class, the disagreement does not
exceed the disagreement between AVHHR LAI and ground truth data
(Section 5).

4. Comparison with climate variables

In the absence of long term field LAI measurements spanning a
couple of decades, another way to evaluate the data set is to compare
temporal LAI trendswithwell-documented trends in vegetation growth
and their relationship to temperature and precipitation anomalies in
areaswhere these climatic variables limit plant growth (Buermannet al.,
2003). The ability of the LAI data set to track vegetation changes due to
surface temperature variations in the northern latitudes and precipita-
tion changes in the semi-arid regions is evaluated in Sections 4.1 and 4.2.
We isolatewell correlatedmodes of co-variability between temperature,
precipitation and LAI, and assess the relationship to large-scale
circulation anomalies associated with the El Niño-Southern Oscillation
(ENSO) and Arctic Oscillation (AO) in Section 4.3.

4.1. LAI variation with surface temperature in the northern latitudes

The northern latitudes, 40° to 70° N, have witnessed a persistent
increase in growing season vegetation greenness related to unprece-
dented surface warming during the period 1981 to 1999 (Myneni et al.,
1997; Slayback et al., 2003; Zhou et al., 2001). This greening was
observed in Eurasia and less prominently in North America (Zhou et al.,
2001). In fact, a decline in greenness was observed in parts of Alaska,
boreal Canada and northeastern Eurasia (Barber et al., 2000; Goetz et al.,
2005). The studies have used AVHRR NDVI data sets. Our slightly longer

LAI data set facilitates a re-assessment of these changes. We calculated
spatial trends (in %) in growing season, April to October, LAI for the
region 40° to 70° N, for the periods 1982 to 1999 and 1982 to 2006. The
greening trend (Fig. 6a) is evident in Eurasia, Northern Alaska, Canada
and parts of North America, for the period 1982 to 1999. When this
analysis is extended to 2006 (Fig. 6b), it is found that large contiguous
areas in North America, Northern Eurasia and Southern Alaska show a
decreasing trend in growing season LAI. This browning trend, especially
in the boreal forests of Southern Alaska, Canada and in the interior
forests of Russia have been reported in recent studies using AVHRRNDVI
data (Angert et al., 2005; Goetz et al., 2005).

The spatial (40°–70° N) and growing season (April to October)
averages of standardized anomalies (anomalies normalized by their
standard deviation) of LAI, NDVI and surface temperature (Hansen et al.,
1999) are shown in Fig. 7 for tundra andneedleleaf forests, separately for
North America and Eurasia. The anomaly of a given variable is defined as
the difference between its growing season (April to October) mean in a
given year and the growing season mean over the 1982 to 2006 time
interval. The standardized anomalies of LAI and NDVI track each other
verywell (Table 2), that is, the long term trends in the LAI product are not
an artifact of the LAI data set or the retrieval algorithm.

Our results indicate that vegetation activity significantly correlates
with trends in surface temperature in the Eurasian and North
American tundra over the entire period of the record (Table 2). This
is consistent with reports of persistent greening in the tundra and
evidence of shrub expansion in northern Alaska and the pan-Arctic
(Goetz et al., 2005; Tape et al., 2006).

A decreasing trend in vegetation greenness is observed after 1996–
97 period despite a continuing warming trend in the North American
needleleaf forests. The regressionmodel of LAI vs. surface temperature
and time is statistically significant at the 10% level for the period 1982

Fig. 5. Panels (a) to (d) show comparison between CYCLOPES and AVHRR LAI values for years 2001 to 2003 and different vegetation classes over the BELMANIP site database. The site
numbers in the legend are given in Table A3 of Appendix A.
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to 1999 but is statistically insignificant for the period 1982 to 2006
(Table 2). Similar patterns are observed in the Eurasian needleleaf
forests also. These results imply a decreasing trend in vegetation
activity possibly due to warming induced drought stress as has been
suggested previously (Barber et al., 2000; Bunn &Goetz, 2006; Lapenis
et al., 2005; Wilmking et al., 2004). There also have been reports of

declining growth and health of white spruce trees in Alaska, enhanced
insect disturbance in southern Alaska, and increase in fire frequency
and severity in Alaska, Canada and Siberia during the past 6 to 7 years
of consistent warming (Soja et al., 2007). These changes buttress the
need for continued monitoring of vegetation activity in these north-
erly regions in the face of unprecedented climatic changes.

Fig. 6. Trends in AVHRR LAI for the growing season, April to October, for the region 40° N to 70° N, for the periods 1982 to 1999 (panel (a)) and 1982 to 2006 (panel (b)). For each 8 km
AVHRR LAI pixel, the April to October mean LAI was regressed on time (years). The slope obtained from this regression, which if statistically significant based on the t statistic at or
lower than 10% level, was converted to a percent trend by multiplying by the number of years times 100 and dividing by the mean April to October AVHRR LAI of 1982.

Fig. 7. Standardized April to October anomalies of AVHRR LAI (green), AVHRR NDVI (blue), and GISS Temperature (red dashed line) for Eurasian and North American needleleaf forests
(panels (c) and (d)) and tundra (panels (a) and (b)) from 1982 to 2006. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of
this article.)
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4.2. LAI variation with precipitation in the semi-arid tropics

The availability of water critically limits plant growth in the semi-
arid tropical regions of the world, especially in grasslands where
precipitation received in thewet months is the primary driver of plant
growth (Hickler et al., 2005; Nemani et al., 2003; Prince et al., 2007).
This relationship provides a basis for evaluating the LAI product by
examining the correlation between LAI and precipitation variations
(Huffman et al., 2007;Mitchell & Jones, 2005). We include NDVI in this
analysis to argue that correlations observed between LAI and
precipitation are not an artifact of the LAI algorithm if they are also
seen in the NDVI data as well.

For the purposes of this analysis, we define semi-arid regions in the
tropics and subtropics as those regions with peak annual NDVI values in
the range 0.12 to 0.55. These regions approximately correspond to areas
with annual total rainfall less than 700 mm. We selected four regions in
the Eastern hemisphere for this study— Sahel, SouthernAfrica, Southeast
Asia and Australia. The Sahelian region consisted of Senegal, Mauritania,
Mali, Burkina Faso, Niger, Nigeria, Chad and Sudan; the Southern African
region consisted of Botswana, South Africa and Namibia; and the
Southeast Asian region spanning Afghanistan, Pakistan and India.

A highly significant correlation between variations in standardized
anomalies of precipitation and annual peak vegetation greenness (LAI or
NDVI) is seen in Australia, Sahel and Southern Africa (Fig. 8; Table 3). A
slightly weaker correlation between these variables is observed in
Southeast Asia. We also observed an increasing trend in precipitation
and greenness in these semi-arid regions during the period of our study
(1981 to 2006), in agreement with several recent reports on greening
and increased precipitation in the Sahelian region (Herrmann et al.,
2005; Hickler et al., 2005; Seaquist et al., 2006). The greenness increase
in Southeast Asia (especially India) is not supported by enhanced
precipitation and is therefore likely due toother factors suchas irrigation
and fertilizer use, but this needs to be further investigated. The strength
of these correlations imbues confidence in the inter-annual variations
embedded in the derived LAI product.

4.3. Canonical correlation analysis

The correlations observed between LAI and temperature in the
northerly regions and between LAI and precipitation in the semi-arid
areas raise a question about the mechanistic basis for these relations. It

has been reported previously that large-scale circulation anomalies, such
as the El Niño-Southern Oscillation (ENSO) and Arctic Oscillation (AO),
explain similar correlations, but at the hemispheric scale (Buermann
et al., 2003). The canonical correlation analysis (CCA) is ideally suited for
this purpose as it seeks to estimate dominant and independentmodes of
co-variability between two sets of spatio-temporal variables (Barnett
and Preisendorfer,1987; Bjornsson andVenegas,1997). The variables are
linearly transformed into two new sets of uncorrelated variables called
canonical variates, which explain the co-variability between the two
original variables, in a descending order. Thus, most of the co-variability
is captured by the first 2 to 3 canonical variates.

For the CCA in the North, each year is denoted as a variable (1982 to
2006, that is, 25 variables in total) and each pixel as an observation
(the total number of observations is the number of vegetated pixels in
the latitudinal zone 45° N and 65° N). The two sets of variables for CCA
are the spring time (March to May) LAI and surface temperature
anomalies at 1° resolution (Buermann et al., 2003). The anomalies
were normalized by their respective standard deviation. The tem-
perature and the LAI anomaly fields for each grid box were area-
weighted with the square root of the respective grid box area to avoid
geometrical effects (Buermann et al., 2002; North et al., 1992). Each of
the set of 25 (time) variables was transformed to Principal
Components (PCs) using singular value decomposition. In each case,
only the first six PCs were retained as they explain a large fraction of
the variance in the input set of variables. In the CCA, each canonical
variate is a time series which accounts for a certain fraction of the co-
variability between the variables (PCs). The first two canonical variates
derived from each set of six PCs explained about 50% of the co-
variability between the two sets of variables in our case.

We use the September to November (SON) NINO3 index (WWW3)
to represent ENSO because the sea surface temperature anomalies
then approach peak values during an ENSO cycle (Dai et al., 1997).
Fig. 9a shows that the correlation between SON NINO3 index and
first canonical variate related to LAI is very low (r=0.1). The same is
true for the correlation between SON NINO3 index and the first
canonical variate related to temperature anomalies. This is in con-
trast to a strong correlation reported in Buermann et al. (2003) for
the period 1982 to 1998. This decline in correlation may be due to
weak ENSO activity and/or changes in teleconnection patterns since
the 1998–2000 period (WWW4). The correlation between the Arctic
Oscillation (AO) index and the second canonical variates of both LAI

Table 2
Relationship between LAI, NDVI and Temperature anomalies in Eurasia (EA) and North America (NA) during the time period 1982 to 2006 and 1982 to 1999

LAI=βo+β1·Temp+β2·t+ε ΔLAI=βo+β1·ΔTemp+ε NDVI=βo+β1·Temp+β2·t+ε ΔNDVI=βo+β1·ΔTemp+ε

R2 β1 t staticstic R2 β1 t staticstic R2 β1 t staticstic R2 β1 t staticstic

NA tundra 0.235 0.02 1.41c 0.07 0.012 1.28c 0.05 0.004 0.65c 0.07 0.005 (1.28)c

(0.373) (0.032) (1.83)b (0.2) (0.021) (1.80)b (0.317) (0.009) (1.67)c (0.27) (0.007) (1.79)b

NA 0.29 0.03 (0.92)d 0.01 0.011 0.5d 0.20 0.01 1.52c 0.14 0.007 (1.89)c

Needleleaf forest (0.02) (0.02) (0.48)c (0.008) (0.030) (0.10)d (0.14) (0.01) (1.33)c (0.1) (0.006) (1.31)c

NA (all biomes) 0.04 0.019 0.44d 0.009 0.007 0.46d 0.11 0.008 1.34c 0.157 0.007 (2.1)b

(0.23) (0.01) (1.25)b (0.006) (0.006) (1.13)c (0.33) (0.009) (1.84)b (0.181) (0.007) (1.82)b

EA tundra 0.42 0.028 1.73b 0.2 0.025 2.41b 0.05 0.006 1.02c 0.17 0.007 2.16b

(0.75) (0.042) (3.73)a (0.45) (0.34) (3.43)a (0.40) (0.007) (1.82) b (0.31) (0.006) (2.01) b

EA 0.18 0.09 1.70c 0.27 0.09 2.91b 0.26 0.01 2.48b 0.3 0.01 3.71a

Needleleaf forest (0.43) (0.13) (2.29)b (0.30) (0.11) (2.57)b (0.6) (0.017) (2.94)b (0.4) (0.011) (2.61)b

EA (all biomes) 0.12 0.06 1.46c 0.30 0.06 3.0a 0.11 0.009 1.546c 0.38 0.009 3.87a

(0.63) (0.082) (2.53)b (0.43) (0.075) (3.06)a (0.7) (0.012) (3.10)a (0.44) (0.009) (3.42)a

LAI and NDVI are April–October average values between 40° N and 70° N. Temp (temperature) is the near surface air temperature anomalies (base period 1951–1980) between 40° N
and 70° N.
aStatistically significant at the 0.001 level.
bStatistically significant at the 0.05 level.
cStatistically significant at the 0.1 level.
dStatistically insignificant.
βo and β1 are regression coefficients and ε is the stochastic error term. LAI, NDVI, and Temp are all expressed as standardized anomalies. ΔLAI, ΔNDVI, and ΔTemp are the respective
first differences.
The bracketed terms represent the regression statistics for the time period 1982–1999. The un-bracketed terms represent regression statistics for the period 1982–2006.
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and temperature is reasonably strong (0.45 and 0.61, respectively;
Fig. 9b), consistent with the strong correlations reported by
Buermann et al. (2003) for the period 1982 to 1998. Thus, the AO
seems to continue to be a prominent driver of surface temperature
(Thompson and Wallace, 1998) and plant growth variability in the
northern latitudes.

We also performed CCA on standardized anomalies of annual
maximum LAI and precipitation for the semi-arid regions of 40° N to
40° S latitudinal zone (cf. Section 4.2). The first two canonical variates
explained about 50% of the co-variability between annual peak LAI
and precipitation anomalies. A reasonable correlation is seen between
the September to November NINO3 index and the first canonical

variates of LAI and precipitation (0.33 and 0.32, respectively; Fig. 9c),
consistent with several previous reports of ENSO influence on inter-
annual variability in tropical and sub-tropical precipitation (Dai &
Wigley, 2000; Ropelewski & Halpert, 1987). The correlation between
the second canonical variates and the AO index is weak (Fig. 9d) which
is not surprising as the AO is not known to be a driver of precipitation
and thus plant growth variability in these regions.

In summary, the strong ENSO driven linked variations between
northern vegetation greenness and surface temperature observed
during the 1980s and 90s have weakened since 2000. The AO in-
fluence however continues to be strong. In the tropical and sub-
tropical regions, the ENSO influence on linked variations between

Fig. 8. Standardized anomalies of annual peak AVHRR LAI (green line), annual peak AVHRR NDVI (blue line) and annual peak (three wettest month CRU+TRMM) precipitation (red
dashed line) for the semi-arid regions (panels (a)–(d)) from 1981 to 2006. (For interpretation of the references to color in this figure legend, the reader is referred to theweb version of
this article.)

Table 3
Relationship between annual maximum LAI, NDVI and three wettest month precipitation anomalies in the semi-arid tropics from 1981 to 2006

LAI=βo+β1·Prec+ε ΔLAI=βo+β1·ΔPrec+ε NDVI=βo+β1·Prec+ε ANDVI=βo+β1·ΔPrec+ε

R2 β1 t statistic R2 β1 t statistic R2 β1 t statistic R2 β1 t statistic

Sahel 0.547 0.741 5.39a 0.475 0.665 4.56a 0.730 0.854 8.06a 0.647 0.758 6.50a

South Africa 0.782 0.885 9.28a 0.639 0.831 6.39a 0.693 0.832 7.36a 0.670 0.880 6.79a

South East Asia 0.149 0.386 2.05b 0.403 0.476 3.94a 0.167 0.408 2.19b 0.60 0.554 5.87a

Australia 0.371 0.609 3.76a 0.355 0.548 3.56a 0.546 0.739 5.38a 0.420 0.594 4.08a

Semi-arid tropic regions/pixels in our study refer to NDVI climatology values of 0.12 to 0.55 and 3 wettest months' precipitation values of less than 700 mm of rainfall.
aStatistically significant at the 0.001 level.
bStatistically significant at the 0.05 level.
βo and β1 are regression coefficients and ε is the stochastic error term.
LAI and Prec (precipitation) are all expressed as standardized anomalies. ΔLAI, ΔNDVI, and ΔPrec are first differences of the standardized anomalies.
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semi-arid vegetation greenness and precipitation continues to be
apparent. These results further add confidence in the LAI data set as
we are not only able to reproduce previously reported results but also
update them.

5. Validation with ground truth data

The validation of coarse resolution satellite products with ground
measurements is a complicated task for several reasons — scaling

Fig. 9. Correlation between the standardized time series of the first canonical factor (CF-1, panels (a) and (c)) and second canonical factor (CF-2, panels (b) and (d)) with NINO3 and AO
indices in the northern and tropical/sub-tropical regions.

Table 4
Validation of AVHRR LAI with fine resolution LAI maps over different sites

Site name Year (Month) Area coverage Biome δLAI, field σLAI, field δLAI, AVHRR σLAI, AVHRR

HARVa 2001 281⁎281 Deciduous broadleaf 5.370 0.852 5.260 0.561
(July) (25 m) forests

KONZb 2001 282⁎282 Grasslands 3.080 1.2584 2.584 1.325
(July) (25 m)

TAPAc 2002 281⁎281 Evergreen broadleaf 4.140 1.530 6.110 0.987
(Feb) (25 m) forests

NOBSd 2001 282⁎282 Needleleaf forests 2.890 1.621 1.960 0.423
(Jul) (25 m)

Alpilles 2001 335⁎335 Grasses/cereal crops 1.030 0.890 0.890 0.265
(Mar) (30 m)

Roukolahti 2001 500⁎500 Needleleaf forest 2.28 0.835 1.920 0.528
(Jun) (20 m)

Canada 2000 1000⁎1000 Needleleaf forests 3.530 1.495 4.001 1.318
Kejimikujik (Jul) (30 m)
Canada 2001 7680⁎7364 Needleleaf forests 1.885 0.858 1.750 0.419
(Thompson) (Jul) (30 m)
Canada 2000 8930⁎8692 Needleleaf forests 2.390 1.080 1.402 0.532
(Watson Lake) (Jul) (30 m)
Canada 2003 800⁎800 Needleleaf forests 3.568 1.155 3.011 1.145
(Larose) (Aug) (30 m)

Mean (δ) and dispersion (σ) are measured with respect to valid retrievals over both field and satellite measured values.
Data reference for HARV, KONZ, NOBS and TAPA sites: BigFoot Measurements, Cohen et al. (2006).
Data reference for all the sites from Canada: Fernandes et al. (2005).
Data reference for Alpilles and Ruokolahti sites: Tan et al. (2005a,b) and Wang et al. (2004).

a HARV: Harvard Forest LTER, Massachusetts, USA.
b KONZ: Konza Prairie LTER, Kansas, USA.
c TAPA: Tapajos, Brazil.
d NOBS: BOREAS NSA, Canada.
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of plot level measurements to sensor resolution, geo-location un-
certainties, limited temporal and spatial sampling of ground data,
field instrument calibration, sampling errors, etc. (Buermann et al.,
2002; Huang et al., 2006; Tan et al., 2005a,b; Weiss et al., 2007; Yang
et al., 2006a). In an indirect validation approach, such as inter-
comparison of satellite products, the effects of co-registration and
differences in spatial resolution can be minimized if the satel-
lite products are compared at a coarser resolution (Tarnavsky et al.,
2008; Weiss et al., 2007). In a direct validation such as with field
measurements, spatial re-sampling is not always feasible because of
inadequate sampling on the ground. The MODIS experience of LAI
validation will be used to evaluate the AVHRR LAI data set. This work
was performed within the purview of the Land Product Validation
(LPV) LAI subgroup of the Committee Earth Observing Satel-
lites' Working Group on Calibration and Validation (CEOS WGCV).
Currently, a large number of US and international investigators par-
ticipate in this activity by sharing field measured LAI/FPAR data as
well as high-resolution maps though the ORNL DAAC Mercury sys-
tem (Justice et al., 2000; Morisette et al., 2006). This large and
growing data base provides the most up-to-date and comprehensive
information needed for validation of LAI products. The scarcity of
field LAI measurements during the 1980s and 90s represents a more
challenging problem. Nevertheless, we attempted to utilize the avail-
able field data from multiple campaigns (Table A4, Appendix A)
and high-resolution LAI maps (Table 4) to validate the AVHRR LAI
product.

5.1. Validation with field/plot level observations

Most field measurements are typically several plot level samples
within a small homogeneous region representing a certain vegetation
type. An ideal field sampling of LAI must adequately represent its
spatial distribution and cover the natural dynamic range within each
major land cover type at the site (Yang et al., 2006b). On the other
hand, the satellite retrievals cover an entire region of interest, but at a
coarse scale. If the sampling in both cases is adequate, the LAI
distributions from field measurements and satellite retrievals should
ideally converge to the true intrinsic distribution of the vegetation
class in a given region at a given time (Buermann et al., 2002). In this
study, we selected sites with plot level measurements over homo-
geneous patches of a vegetation type. A pixel-by-pixel comparison

between AVHRR LAI and reference field LAI values is not feasible for at
least three reasons — first, the actual spatial location of the
corresponding pixels in the two LAI maps may not match because of
geo-location uncertainties and pixel-shift errors due to the point
spread function (Tan et al., 2006); second, the AVHRR LAI algorithm
generates a mean LAI value from all possible solutions corresponding
to possible variation in input due to observation and model un-
certainties (Knyazikhin et al., 1998). Therefore, the retrieved LAI value
for a single 8 km pixel can differ from its measured counterpart, but
the mean LAI of multiple pixels over a homogeneous patch may be
valid (Wang et al., 2004); third, the spatial sampling for a particular
field site can aggregate to an area which can be less than or equal to a
single 8×8 km2 AVHRR LAI pixel.

Mean LAI values from the 44 fieldmeasurements (28 sites) listed in
Table A4 in Appendix Awere used in this analysis. Monthly AVHRR LAI
values from nearby pixels with the same vegetation type were
averaged. This averaging window, centered on the field site, was
typically about 2 by 2 or 4 by 4 pixels depending on the areal extent of
the field site. The results of comparison for all the six major vegetation
classes indicate that the AVHRR product underestimates field LAI by
about 7% for LAI values greater than 1 (Fig. 10a). Additionally, we
compared the temporal profile of LAI over three sites, Konza (grass-
lands), Mongu (savannas), and Harvard forest (broadleaf deciduous
forest), forwhich there aremore than one field value over the course of
one or more years. Fig. 10b shows that the seasonal dynamics of in situ
LAI over the Mongu site are well captured by the AVHRR LAI product,
but are underestimates by 0.01–0.4 LAI. Similarly, the AVHRR LAI
captures values of in situ LAI at the other two sites (Fig. 10a and c), but
here the field samples are limited to a single measurement per year.
For the Harvard forest site (Fig. 10c), the dip in the MODIS LAI values
(July–Sep) is attributed to the retrieval anomalies over the broadleaf
forests due to limited accuracy of atmospheric correction (Fig. 10c in
Yang et al., 2006a). The number of high quality retrievals during the
growing season is mostly restricted by aerosol contamination of the
MODIS data (Fig. 9 in Yang et al., 2006a).

5.2. Validation with fine resolution LAI maps

Another approach to validation involves generation of fine reso-
lution LAI maps from ground measurements and high-resolution
satellite imagery such as ETM+, SPOT, ASTER, etc. using the so-called

Fig. 10. Panel (a) shows a comparison of AVHRR LAI with field measurements for the six major vegetation classes. Altogether 44 field data values were used (Table A4 of Appendix A).
The AVHRR LAI product is an underestimate by about 7%. Panels (b)–(d) show the temporal profile of AVHRR LAI (blue line), MODIS LAI (red line, MODIS starts from April 2000) and
corresponding field values (green squares) for different vegetation classes. The vertical bars (blue and green) represent the standard deviation associated with the data. (For
interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
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transfer function (Yang et al., 2006b). The transfer function could be
empirical methods (Chen et al., 2002; Weiss et al., 2002), physical
models (Tan et al., 2005a,b), or hybrid approaches (Weiss et al., 2002).
Currently, several fine resolution maps are being disseminated via the
ORNL DAAC Mercury system (Morisette et al., 2006). Maps from ten
sites representing large homogeneous patches of distinct land cover
types were used in this analysis (Table 4). The typical areal extent of
these maps is between 50 km2 to 100 km2, except for the Canada
Center for Remote Sensing sites (576 km2–70,000 km2). LAI distribu-
tions derived fromblocks of 5 by 5 to 10 by 10 8 kmAVHRR pixels were
compared to LAI distributions from the fine resolution maps (Fig. 11).
The AVHRR blocks were larger (30×30) for the Manitoba Black Spruce
forest site at Thompson and the needleleaf forest site at Watson Lake.

Table 4 shows the mean values (δ) and corresponding dispersions
(σ) for the distributions displayed in Fig. 11. In comparing the AVHRR
LAI and fine resolution LAI distributions, there is a consistent un-
derestimation at most sites possibly related to scale and land cover
heterogeneity (Tian et al., 2002). The two distributions in general look
different in terms of the dispersion from the mean value and this can
be attributed to the differences in spatial scale and sampling strategies
in generating the fine resolution maps. The difference in mean values
from the distributions agree well for the Canadian sites, with |δLAI,
AVHRR−δLAI,field| of 0.47 LAI for the Kejimikujik conifer site and 0.13 LAI
for the Manitoba Black Spruce forest at Thompson. For the Alpilles
(grasses/cereal crops) and Ruokolahti (needleleaf forest) sites, the
mean values of the distributions differ by about 0.14 and 0.36 LAI,
respectively. As for the Konza, Harvard forest and Larose sites, the
mean values differ by about 0.11 to 0.55 LAI. However, the AVHRR
values for the broadleaf forest at Tapajos site in the Amazon
underestimate the actual LAI values significantly, possibly due to
poor NDVI quality as a result of persistent cloud cover andwater vapor
contamination. Significant underestimation in AVHRR values over the
needleleaf forests is also observed for the NOBS site (0.93 LAI) and for
the Watson lake site in Canada (0.98 LAI). The disagreement in the
NOBS site is mainly due to landcover heterogeneity where the
majority of the pixels are mapped as woody savannas and related
classes (less than 60% tree cover) by BigFoot, but as evergreen

needleleaf forests in the MODIS product (Cohen et al., 2006). The
mean LAI retrievals from MODIS LAI over the NOBS site overestimate
the BigFoot values by as much as 2 during peak growing season
(Cohen et al., 2006), which is also reflected in the AVHRR retrievals. It
is also to be noted that the Canadian product for the Manitoba black
spruce forest at the NOBS site cannot be directly compared to the
NOBS LAI maps from BigFoot due to differences in processing
methods, plot scales and sampling schemes. Overall, amongst the
ten sites, the AVHRR LAI values are in agreement to field observations
at six of the select sites within an accuracy of 0.5 LAI.

6. Concluding remarks

In this second of two part series, the evaluation of a new global
monthly AVHRR LAI data set for the period July 1981 to December
2006, derived from AVHRR NDVI is presented. The production of long
term LAI data sets involves a host of inter-sensor related issues like
differences in spatial resolution, spectral characteristics, uncertainties
due to atmospheric effects and calibration, information content, etc. In
the first paper, we introduced a physically based algorithm for the
retrieval of LAI from AVHRR NDVI. The theoretical approach is based
on the radiative transfer theory of spectral invariants and describes in
detail the physical constraints as well as the conditions required to
generate LAI fields of quality comparable to MODIS LAI products.

The theme of this paper is establishing the validity and accuracy of
the derived LAI product. The evaluation of the data set is done both
through direct comparisons to ground data and indirectly through
inter-comparisons with similar data sets. This included comparisons
with existing LAI products (MODIS and CYCLOPES LAI products for the
2000 to 2003 period of overlap) at a range of spatial scales, and
correlations with key climate variables in areas where temperature
and precipitation limit plant growth. There is an overall agreement
between the AVHRR andMODIS data sets at scales ranging from global
to regional to pixel. At the global scale, the AVHRR values explain 97.5%
of the variability in the MODIS product and will be in error in their
estimation by 0.18 LAI, on average. The regional and pixel-scale inter-
comparison suggests an average error of less than 0.3 LAI. Comparison

Fig. 11. Histograms from fine resolution LAI maps (blue color) and AVHRR LAI (red color) over different sites. Information about the sites is given in Table 4 together with values of
accuracy and precision inferred from these distributions. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
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with CYCLOPES LAI indicates satisfactory agreement in most of the
biomes with RMSE values less than 0.5 LAI. The data set was also
analyzed to reproduce well-documented spatio-temporal trends and
inter-annual variations in vegetation activity in the northern latitudes,
where temperature limits plant growth, and semi-arid areas, where
precipitation limits plant growth. Additionally, to assess themechanistic
basis behind the observed correlations between LAI and temperature
in the northern latitudes and LAI and precipitation in the semi-arid
tropics, we used a multivariate data-reduction technique (canonical
correlation analysis) to isolatewell correlatedmodes of spatio-temporal
variability between LAI and the climate variables. The isolated modes
suggest El Niño-Southern Oscillation and Arctic Oscillation as key
drivers of linked inter-annual variations in vegetation greenness and
precipitation in the semi-arid regions and, vegetation greenness and
surface temperature in the northern latitudes, respectively.

Finally, the derived LAI data were compared to field measurements
and high-resolution LAI maps from a host of sites. The comparison
with plot scale measurements over biome specific homogeneous

patches indicates a 7% underestimation in the AVHRR LAI when all
major vegetation types are considered. The error in mean values
obtained from distributions of AVHRR LAI and high-resolution field
LAI maps for different biomes is within 0.5 LAI for six out of the ten
selected sites. These validation exercises though limited by the
amount of field data, and thus less than comprehensive, nevertheless
indicate comparability between the LAI product and field measure-
ments. In summary, the inter-comparison with other short-term LAI
data sets, evaluation of long term trends with known variations in
climate variables, and validation with field measurements together
build confidence in the utility of this new 26 year LAI record for long
term vegetation monitoring and modeling studies.
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Appendix A. Ancillary tables

Table A1
Retrieval Index (RI), RMSE and mean single scattering albedo for different continents

LC North America Eurasia Afro-Asia South America

ωred ωNIR RI Δ ωred ωNIR RI Δ ωred ωNIR RI Δ ωred ωNIR RI Δ

1 0.20 0.84 99 0.33 0.18 0.84 100 0.24 0.22 0.88 98 0.33 0.20 0.84 99 0.50
2 0.16 0.84 99 0.31 0.15 0.84 100 0.36 0.20 0.87 99 0.15 0.16 0.84 99 0.18
3 0.25 0.94 100 0.36 0.25 0.94 100 0.28 0.25 0.92 97 0.37 0.20 0.94 99 0.38
4 0.25 0.94 99 0.62 0.20 0.94 99 0.42 0.25 0.92 99 0.55 0.25 0.94 98 0.65
5 0.22 0.84 99 1.41 0.16 0.84 100 1.46 0.25 0.74 90 1.06 0.25 0.84 86 0.82
6 0.16 0.84 99 0.46 0.15 0.84 99 0.40 0.25 0.84 99 0.82 0.16 0.84 99 0.52
7 0.18 0.84 100 0.45 0.18 0.84 100 0.32 0.20 0.74 97 0.87 0.18 0.84 98 0.95
8 0.18 0.84 100 0.29 0.18 0.84 100 0.26 0.20 0.74 100 0.13 0.18 0.84 N/A N/A

LC North America Eurasia Afro-Asia South America

LC frequency (%) LC frequency (%) LC frequency (%) LC frequency (%)

1 15.168 25.223 17.969 7.823
2 36.805 35.578 27.214 14.806
3 7.483 4.699 7.846 7.747
4 7.549 2.543 27.393 27.043
5 6.845 0.278 15.645 38.839
6 4.825 3.388 2.009 1.950
7 21.322 21.972 1.931 1.790
8 0.004 6.310 0.001 0

Hereωred andωNIR are yearlymean values of single scattering albedo at red and NIR spectral band. “Δ” is the RMSE and “RI” refers to the retrieval index. LC in column one refers to the
land cover type: 1 — grasses; 2— shrubs; 3— broadleaf crops; 4— savannas; 5 — evergreen broadleaf forests; 6 — deciduous broadleaf forests; 7— evergreen needleleaf forests; 8—

deciduous needleleaf forests. RI is expressed as percentage.

Table A2
Mean percentage difference and mean difference between global AVHRR and MODIS C5
LAI

LAI bins % Mean difference Mean difference Number of pixels (%)

0–0.5 38.185 0.105 30.875
0.5–1.0 6.439 0.033 27.635
1.0–1.5 −10.223 −0.126 19.193
1.5–2.0 −5.459 −0.090 8.078
2.0–2.5 −1.280 −0.028 3.044
2.5–3.0 0.966 0.027 1.823
3.0–3.5 1.403 0.045 1.750
3.5–4.0 1.097 0.040 2.075
4.0–4.5 −1.755 −0.076 2.524
4.5–5.0 −5.971 −0.284 2.194
5.0–5.5 −9.283 −0.482 0.745
5.5–6.0 −12.747 −0.718 0.062
6.0–6.5 −20.505 −1.260 0.0003

Here “difference” refers to average annual LAI difference (AVHRR minus MODIS) for the
year 2001.

Table A3
BELMANIP sites used for CYCLOPES LAI and AVHRR LAI inter-comparison

Site name (country) Site ID Lat Lon Biome type

ARM/CART Shilder (USA) 32 36.93°N 96.86°W Grasses
Konza (USA) 36 39.08°N 96.57°W Grasses
Larzac (France) 44 43.93°N 3.12°E Grasses
Barrax (Spain) 35 39.07°N 2.10°W Broadleaf crops
Alpilles (France) 43 43.80°N 4.74°E Broadleaf crops
Plan-de Dieu (France) 45 44.20°N 4.95°E Broadleaf crops
Fundulea (Romania) 47 44.40°N 26.58°E Broadleaf crops
Tshane (Botswana) 7 24.00°S 21.83°E Savannas
Okwa (Botswana) 8 22.40°S 21.71°E Savannas
Mongu (Zambia) 11 15.44°S 23.25°E Savannas
Burkina, Ghana (Burkina Faso) 385 10.86°N 3.07°W Savannas
Kejimikujik (Canada) 48 44.35°N 65.19°W Needleleaf forests
Thompson, Manitoba (Canada) 81 56.05°N 98.15°W Needleleaf forests
NOBS-BOREAS NSA (Canada) 82 53.66°N 105.32°W Needleleaf forests
Jarvselja (Estonia) 85 58.30°N 27.26°E Needleleaf forests
Ruokolahti (Finland) 88 61.52°N 28.71°E Needleleaf forests
Hirsinkanjas (Finland) 89 62.64°N 27.01°E Needleleaf forests
Flakaliden (Sweden) 90 64.11°N 19.47°E Needleleaf forests
Rovaniemi (Finland) 91 66.45°N 25.34°E Needleleaf forests
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Summary of MODIS LAI field campaigns used for validation with AVHRR LAI

Site (country) Lat/Lon Biome type Date LAI

Bondville, Illinois (AGRO, USA) 40.007°N/88.292°W Broadleaf crops Aug 2000 3.60
Fundulea (Romania) 44.410°N/26.570°E Broadleaf crops (Mar, May) 2001 1.071, 1.878

Jun 2002 1.309
(May, Jun) 2003 1.063, 1.10

Barrax (Spain) 39.060°S/2.100°W Broadleaf crops Jul 2003 0.965
Alpilles (France) 43.810°N/4.750°E Grasses/cereal crops Mar 2001 0.928

Jul 2002 1.054
Haouz (Morocco) 31.660°N/7.600°W Shrubs Mar 2003 1.20
Turco (Bolivia) 18.240°S/68.200°W Shrubs Apr 2003 0.10
Konza Prairie (USA) 39.080°N/96.570°W Grasses Jun 2000 1.96
Dahra (Senegal) 15.350°N/15.480°W Grasses/savannas Aug 2001 2.00

Aug 2002 0.40
Pandamatenga (Botswana) 18.650°S/25.500°E Savannas Mar 2000 1.24
Maun (Botswana) 19.920°S/23.600°E Savannas Mar 2000 1.52
Mongu (Zambia) 15.440°S/23.253°E Savannas Apr 2000 1.90

Sep 2000 0.80
Tessekre North 15.810°N/15.070°W Shrubs Aug 2002 0.35
Tessekre South (Senegal) Shrubs Aug 2002 0.30
Tshane (Botswana) 24.160°S/21.893°E Savannas Mar 2000 0.78
Okwa (Botswana) 22.400°S/21.713°E Savannas Mar 2000 1.28
Hirsikangas (Finland) 62.520°N/27.030°E Needleleaf forests Aug 2003 2.548

Jun 2005 1.419
Ruokolahti (Finland) 61.320°N/28.430°E Needleleaf forests Jun 2000 2.06
Harvard Forest (HARV, USA) 42.530°N/72.173°W Deciduous broadleaf forests Jul 2000 5.08

Jul 2001 5.50
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Jul 2002 5.70
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The references regarding further description of site characteristics are provided in Table 1 of Yang et al., 2006a and Table 4 of this paper.
Detailed methodologies and documentation of field campaigns can be obtained from http://mercury.ornl.gov/ornldaac/ and http://lpvs.gsfc.nasa.gov/lai_intercomp.php.
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