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An Algorithm to Produce Temporally and Spatially
Continuous MODIS-LAI Time Series
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Abstract—Ecological and climate models require high-quality
consistent biophysical parameters as inputs and validation
sources. NASA’s Moderate Resolution Imaging Spectroradiometer
(MODIS) biophysical products provide such data and have been
used to improve our understanding of climate and ecosystem
changes. However, the MODIS time series contains occasional
lower quality data, gaps from persistent clouds, cloud contami-
nation, and other gaps. Many modeling efforts, such as those used
in the North American Carbon Program, that use MODIS data
as inputs require gap-free data. This letter presents the algorithm
used within the MODIS production facility to produce tempo-
rally smoothed and spatially continuous biophysical data for such
modeling applications. We demonstrate the algorithm with an
example from the MODIS-leaf-area-index (LAI) product. Results
show that the smoothed LAI agrees with high-quality MODIS
LAI very well. Higher R-squares and better linear relationships
have been observed when high-quality retrieval in each individual
tile reaches 40% or more. These smoothed products show similar
data quality to MODIS high-quality data and, therefore, can be
substituted for low-quality retrievals or data gaps.

Index Terms—Biophysical parameters, gap filling, Moderate
Resolution Imaging Spectroradiometer (MODIS) land products,
remote sensing, time-series data analysis.

I. INTRODUCTION

THE MODERATE Resolution Imaging Spectroradiometer
(MODIS) is a key instrument aboard NASA’s Terra and

Aqua satellites. Terra MODIS and Aqua MODIS image the
entire Earth’s surface every one to two days and provide vital
information for global-change research. MODIS land products,
such as leaf area index (LAI) and fraction of photosynthetically
active radiation, are critical inputs to parameterize or validate
climate and ecosystem process models [1].

The MODIS-LAI product has been validated with indepen-
dent field measurements [2] but, generally, under clear-sky con-
ditions (see the MODIS-land-validation Web site http://landval.
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gsfc.nasa.gov). However, cloud contamination, persistent
clouds, and other suboptimal atmospheric or illumination con-
ditions can reduce data quality and cause missing data in
MODIS multiday land products. Although the MODIS-LAI
product will produce results even under cloudy or suboptimal
condition, care is taken to use the MODIS quality-assessment
(QA) data layers to flag these values as lower or poor quality
[1]. However, this is not acceptable for those ecosystem or
climate models requiring realistic, high-quality, temporally, and
spatially continuous measurements, such as the models being
used in the North American Carbon Program (NACP).

This letter describes a procedure for producing temporally
smoothed and spatially complete MODIS data sets. The pro-
cedure contains two algorithm stages, one for smoothing and
one for gap filling, which attempt to maximize the use of high-
quality data to replace missing or poor-quality observations.
The algorithm uses an augmented version of the TIMESAT
software [3], [4] for interpolation.

We start by describing the algorithm and then by presenting
the results for the MODIS-LAI product, followed by the sum-
mary conclusions and a brief discussion of future plans.

II. ALGORITHM DEVELOPMENT

The TIMESAT program was developed by Jonsson and
Eklundh [3], [4] for analyzing time-series satellite-sensor data.
This program provides the following three different smoothing
functions to fit the time-series data: asymmetric Gaussian (AG);
double logistic (DL); and adaptive Savitzky–Golay (SG) filter-
ing. The adaptive SG-filtering approach uses local polynomial
functions in fitting. It can capture subtle and rapid changes in
the time series but is also sensitive to noise. Both AG and DL
approaches use semilocal methods. They are less sensitive to
the noise and can give a better description on the beginnings
and endings of the seasons [4]. TIMESAT has been used suc-
cessfully to analyze the vegetation index (VI) from time-series
Advanced Very High Resolution Radiometer (AVHRR) data
[4]. Zhang et al. [5] developed a fitting approach independently
using a similar DL function and applied it to the MODIS time-
series data successfully. Beck et al. [6] examined both the DL-
and AG-function approaches and found that the use of either a
DL function or an AG function is appropriate for describing
vegetation dynamics at high latitudes. They also found that
the DL functions describe the normalized difference vegetation
index (NDVI) data better than both the Fourier series and the
AG functions, as quantified by the root-mean-square errors [6].
We tested both the AG and DL approaches in the TIMESAT
program and found that they produced similar results, with
the exception that the AG approach is less sensitive to the
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Fig. 1. Flow diagram of the TIMESAT temporal-fitting and gap-filling
(dashed box) procedure.

Fig. 2. Examples of the original time-series (crosses) and high-quality values
(circled crosses) and the temporal-curve fitting (line).

incomplete time-series data with many data gaps in our
experiments. We used the AG approach in this letter.

The flow diagram for the augmented TIMESAT procedure
is given in Fig. 1. We start with a given continuous MODIS
land-product time series and its associated QA-information
time series. TIMESAT provides a weighting mechanism such
that some values in the time series can be more influential
than others. The initial work with the TIMESAT calculated
the weights for AVHRR-NDVI values by considering cloud
screening [4] using the thresholds of the AVHRR reflectance
and thermal channels [7]. For our algorithm, the initial weights
are based entirely on the MODIS QA layers associated with
a given MODIS product. We assign high weights for higher
quality retrievals and low weights for lower quality retrievals.

After the initial fit from TIMESAT, the algorithm takes one
of the two branches based on the quality of the fit (represented
by the “Succeed?” diamond in Fig. 1). The majority of the
pixels follow the first branch [Fig. 2(a)] where there are enough
high-quality observations to allow TIMESAT to fit a curve
to the time series. The second branch is followed if there are
too many gaps or low-quality data [Fig. 2(b)]. In this case,
TIMESAT fails to fit a curve to the time series; therefore, we
apply a gap-filling strategy. A successful run of TIMESAT

requires that there is no missing time period longer than 0.2
years and that there are less than 25% missing values over the
entire time series (three years).
Case 1—Successful TIMESAT Fit: After applying the

TIMESAT fitting with the initial weights, we adjust the weights
based on the fitted results from the first iteration for a second
pass through the TIMESAT fitting. The revised data weights
for the second run through the TIMESAT are based on the
scaled difference between the original data and the fitted value.
Specifically, the new weights are

w′ = w

[
1
/ (

1 +
|dy|
Sσ

)]
,

if dy ≤ 0 (MODIS value is below TIMESAT curve) (1)

w′ = w

(
1 +

|dy|
Sσ

)
,

if dy > 0 (MODIS value is above TIMESAT curve) (2)

where dy is the difference between the original MODIS value
and the TIMESAT-fitted values, σ is the standard deviation of
{dyi} (standard deviation of residuals from the first fitting,
where i represents all high-quality data), and S is a constant
parameter for the weight adjustment.

This process is similar to the upper envelope weighting
scheme in the TIMESAT software [3], which forces the curve
to fit upper values more closely. The upper envelope option has
been tested for VI and is very effective because high parameter
values normally represent clear-sky conditions or better view-
ing or illumination geometry [3]. Similar to VI, higher LAI
values normally represent retrievals under clear-sky conditions
since cloud contamination tends to reduce reflectance in near-
infrared band and to increase in red band and thus leads to lower
LAI retrievals. Because cloud contamination tends to reduce the
value of vegetation-related parameters, the weight is decreased
if a TIMESAT-fitted value is larger than the retrieved parameter
and vice versa. This enables the TIMESAT fit to more closely
follow the upper envelope of the retrieved parameter values.
Note that only the weights for the MODIS high-quality data
are adjusted in our processing. The weights for the low-quality
data remain the same. We did not use the existing upper enve-
lope option in the TIMESAT software since we need a better
control on the initial weights passed from the MODIS data-
quality flags.
Case 2—TIMESAT Failure to Fit and Gap-Filling Algorithm:

The TIMESAT program can only produce fitted values if there
are enough high-quality data in the time series. No result will
be produced if there are too many missing values because the
fitting function becomes unreliable if it is forced to do so. In
addition, some fits may be unrealistic (e.g., out of the data
range) due to noise or limitations of the fitting function. In these
cases, instead of trying to fit a curve to the smaller number of
high-quality data points, we use a separate gap-filling process.

Our gap-filling algorithm is represented within the dashed
line in Fig. 1. The algorithm uses two major steps. First, it
searches an appropriate seasonal-variation curve for the gap.
Second, it adjusts the seasonal-variation curve to the sparsely
available high-quality observations of the gap.

For the first step, we developed two strategies for establishing
an appropriate seasonal-variation curve. In the first strategy,
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the algorithm searches for the pixels with the same land-cover
type (from MOD12Q) within a small window around the pixel.
Within these nearby pixels, the algorithm checks if there are any
“case 1,” the successful TIMESAT temporal curves. If more
than one “case 1” pixel is found, we choose the one with the
highest quality from all candidates. We start with a small search
window (11 × 11 MODIS 1-km pixels). If such a pixel is not
available either due to too many gaps or to no matching land-
cover type, the program automatically increases the search-
window size. We set the number of pixels on the next new
search to be equal to the number of pixels on the previous test. If
a seasonal-variation curve cannot be located within the defined
maximum search distance (120 × 120 MODIS 1-km pixels
or about 1◦), then the second strategy is used for this pixel.
In the second strategy, the algorithm averages all high-quality
seasonal-variation curves for each land-cover type within a tile
and builds a tile-level seasonal-variation pattern for each land-
cover type. The tile-level seasonal variation of the same land-
cover type is then used for this pixel. This process ensures that
an appropriate TIMESAT seasonal curve can always be located,
whether it is from a nearby pixel or from the tile-level seasonal
curve. We refer to this chosen seasonal curve as the “ancillary
seasonal curve.”

Once the ancillary seasonal curve fn(t, c) is found, a re-
gression transform function r(x) is computed such that the
temporal-variation curve of the gap pixel can be computed
using r(fn(t, c)). The parameters of this transform function are
determined strictly by the high-quality data pairs between the
case-2 pixel with gaps and the ancillary seasonal curves using
least square approach with cost function

Mg(ti, c) = r (fn(ti, c)) + ε (3)

where subscript n represents the neighbor pixel, subscript g
represents the current gap pixel, ti represents the ith production
date, c represents the land-cover type, ε is the error between
the gap and curve values, Mg(ti, c) represents all the available
high-quality MODIS data of the gap pixel, and fn(ti, c) is
the TIMESAT seasonal-variation curve from the neighbor pixel
(strategy 1) or tile-level average (strategy 2). We use the second-
order polynomial function for the computation, i.e., r(x) =
ax2 + bx + c. The seasonal-variation curve fg(t, c) of the gap
pixel is computed using

fg(t, c) = r (fn(t, c)) . (4)

The algorithm allows flexibility in the time window used
to compute the transfer function. In the extreme, the function
can be fit with all the high-quality data pairs from the entire
time series being considered. Alternatively, the algorithm can
use a local window of high-quality data pairs within a subset
period, centered on the date of the gap being filled. There is a
tradeoff between having enough observations to fit the transfer
function versus a small enough window to capture interannual
data variations. In this letter, we used a one-year period as the
local moving time window in a way that a gap pixel at each
production date is computed from the two half-year periods
before and after.

III. INITIAL RESULTS

The algorithm is now discussed with an example using
collection 4 (C4) MODIS-eight-day-LAI products from 2001 to
2005 as inputs to produce smoothed and gap-filled MODIS-LAI
data for North America from 2001 to 2005. The final output
includes three LAI layers and three QA layers. The three LAI
layers include the original MODIS LAI, the smoothed and gap-
filled LAI, and the composed LAI. The composed LAI uses
high-quality LAI from the original MODIS product but replaces
low-quality retrievals with smoothed and gap-filled LAI. Each
layer has a corresponding QA layer.

The approach that we discussed previously is applicable to
most tiles in North America. However, some high-latitude tiles
need special attention because of too many missing values
caused by extreme solar geometries during winter. For these
tiles, we use the minimum snow-free LAI from all production
periods to replace the missing or snow-covered values with
initial weights the same as low-quality retrievals (0.25). Issues
with snow cover warrant similar considerations for other appli-
cations or MODIS products.

Each LAI value is first weighted according to the quality
flags embedded in the MODIS product. A summary of qual-
ity analysis and validation activities of the collection 3 (C3)
MODIS-LAI product by Yang et al. [8] indicates an overestima-
tion of LAI for all six biomes by about 12% (RMSE = 0.66).
MODIS LAI retrieved from the radiative-transfer model (main
algorithm) with the best quality can reach an accuracy of 0.3
LAI for cropland [8], [9] and 0.5 LAI for needleleaf forest [8],
[10]. This overestimation of LAI has been addressed in C4 and
was further refined in collection 5 (C5) processing [11], [12].
Generally, the quality-control flags embedded in the MODIS-
LAI product reflect the retrieval quality reasonably well.

For MODIS-eight-day-LAI product (MOD15A2), the initial
weights are assigned as follows.

1) w = 1.0 for LAI retrievals from the radiative-transfer
model (high quality) or for LAI retrieval that reaches
saturation.

2) w = 0.25 for retrievals from an empirical model.
3) w = 0.0 for all invalid and fill values.

Saturated LAI values are assigned high weights since those
values are normally retrieved under clear-sky condition and
reach the limits of optical remote sensing. They represent high-
quality values in our current approach.

Recall that, in our second iteration with the TIMESAT, only
weights for high-quality data are adjusted in our processing.
Weights for low-quality data remain the same. We use S = 2.0
as our weighting-adjustment constant value. This means that,
for the weights listed here, according to (1), there should be
at least six standard-deviation differences between the original
and the fitted values for a high-quality LAI retrieval (w =
1.0) reduced to the same weight as a low-quality retrieval
(w = 0.25). We constrain the adjusted weight in the range of
0.25–4.0, which ensures that the MODIS high-quality retrievals
still get higher weights than the low-quality retrievals even if
they are below the TIMESAT curve from the first iteration.

Fig. 3 shows an example of the fittings from the DL-function
and SG-filtering approaches and the two iterations of fitting
LAI time-series data using the AG functions. We used all the
available LAI data from 2001 to 2005. This site (86.7102◦ W,
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Fig. 3. Example of fitting MODIS-LAI data (crosses) with TIMESAT DL
function (short-dashed line), SG filtering (long-dashed line), and AG function
based on the following two different weighting schemes: the first time-fitting
attempt (AG) based on LAI quality flags only (thin solid line) and the two-
iteration approach (AG–AG) with a revised weighting scheme (thick solid
line). The two-iteration approach shows a better fitting result to high LAI
values, as well as high-quality data. High-quality retrievals (main algorithm)
are highlighted in circles.

35.1625◦ N) shows a very good seasonal cycle of a typical
deciduous broadleaf forest. In the figure, the short-dashed line
and the long-dashed line represent results from the DL-function
and SG-filtering approaches, respectively. The SG-filtering ap-
proach is sensitive to the noisy data in the summer season. The
thin solid line represents the results from the first TIMESAT
AG fit using weights based on the LAI quality flags. In this
iteration, the high LAI values are underestimated even though
the total fitting error is minimized particularly in the summer
of 2002 and 2003 (same for the DL approach). The weights on
the high-quality data are then adjusted based on the difference
between the first fit and the original values. After the second
iteration (AG–AG) using the revised weights, the fit results
(thick solid line) capture high LAI values better. It also shows a
more consistent five-year seasonal variation. The weights of the
noisy data in the summer of 2002 and 2003 have been reduced
and bring the fitted curve closer to the upper values.

As discussed in the MODIS-LAI-validation references [8]–
[13], it is preferred that MODIS-LAI validation be performed
at the patch scale. The same land-cover type within a patch
size shows similar patterns of seasonal variation. Therefore, as
discussed in Section II, it is reasonable to use the seasonal-
variation pattern from a neighboring pixel with same MODIS
biome type as an a priori information for a case-2 gap pixel.
With this extra a priori information available, we scale the
seasonal-variation curve to match the sparsely available high-
quality LAI values. Moody et al. [14] used a similar approach to
fill MODIS-albedo missing values from historical high-quality
albedo data and temporal curves from neighbor pixels and
produced a value-added MODIS-albedo data set successfully.

Fig. 4 shows a particularly challenging time series that was
well characterized by our algorithm. The seasonal curve (solid
line) is from a case-2 pixel (88.8395◦ W, 46.1125◦ N) fit using
the seasonal-variation curve of a neighbor pixel with the same
land-cover type (deciduous broadleaf forest, short-dashed line)
and selected high-quality MODIS-LAI data (solid circles). In
this example, our gap-filling approach captured the seasonal
trend and fit to both high-quality (circled crosses) and low-
quality (crosses only) MODIS retrievals well even though we
only selected five high-quality data in the test.

Since MODIS high-quality LAI retrievals have been assessed
and validated (as validated stage 1) via field measurements,

Fig. 4. Seasonal-variation curve from local adjustment gap-filling algorithm
(solid line) captures seasonal trends from selected high-quality MODIS-LAI
data (in solid circles) and seasonal-variation curve from a neighbor pixel with
same land-cover type (deciduous broadleaf forest, short-dashed line).

Fig. 5. Linear relationships of high-quality MODIS retrievals and smoothed
LAI show a good agreement in the scatter plots (a) of slope and intercept and
(b) of R2 and percentage high quality. Each point in the figure is computed
based on one tile from one-year data. Note that the intercept is in LAI units.

we can validate the smoothed LAI data indirectly by compar-
ing smoothed LAI to the high-quality MODIS-LAI product.
Fig. 5(a) shows the scatter plot of the intercepts and slopes
of the smoothed LAI and the MODIS high-quality LAI based
on each tile. In the figure, each point represents the result of a
tile from the high-quality MODIS retrievals and the smoothed
LAI based on one year of LAI data. The point (intercept = 0,
slope = 1.0) means a perfect match. This figure shows, gener-
ally, a good agreement between the MODIS high-quality LAI
data and the smoothed LAI data, particularly for those tiles with
higher R2 (> 0.9, filled circles in figure). The R2 plot based on
the percentage of high-quality retrievals [Fig. 5(b)] reveals that
a better agreement can be achieved if a high percentage of high-
quality retrievals is available. The R-squares are all above 0.8
and reach as high as 0.9 when high-quality retrievals are 40% or
more temporally and spatially within a tile in the fitting and gap-
filling production period. There are about 50% tiles in the North
America, which have 40% or more high-quality measurement.

Fig. 6(a) shows a scatter plot of the smoothed LAI versus
all the high-quality MODIS LAI for North America tiles from
the beginning of the four seasons (eight-day production periods
starting from January 1, 2004, April 6, 2004, July 11, 2004,
and October 15, 2004). The smoothed LAI has a very high
correlation with the high-quality MODIS-LAI data with R2 =
0.826, and the points fall close to the 1-to-1 line (slope = 0.998,
intercept = −0.206). We also did a cross comparison by taking
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Fig. 6. Good agreement can be seen from the scatter plots of (a) all MODIS
high-quality LAI and the smoothed LAI (y = 0.998∗x + 0.206, R2 = 0.826)
and (b) excluded MODIS high-quality LAI and the smoothed LAI (y =
0.966∗x + 0.230, R2 = 0.787) based on North America tiles on January 1,
2004, April 6, 2004, July 11, 2004, and October 15, 2004.

out 10% of the MODIS high-quality values randomly from
TIMESAT processing and then by comparing the smoothed
results to the excluded high-quality data. Fig. 6(b) shows a
scatter plot of the smoothed LAI versus the excluded high-
quality data from the different seasons. The smoothed LAI
shows slightly reduced but still a very high correlation with
these excluded high-quality data (slope = 0.966, intercept =
0.230, R2 = 0.787). Since high-quality MODIS-LAI data in
C4 have been validated and show good agreement with field
measurements, Figs. 5 and 6 show that, in most cases, the
smoothed and gap-filled LAIs have an accuracy similar to
the original high-quality retrievals from the radiative-transfer
approach. This also means that it is reasonable for the smoothed
LAI to be substituted for low-quality retrievals or data gaps.

IV. CONCLUSION AND DISCUSSION

MODIS land products provide high-quality-data sources for
climate, weather forecast, and ecological models. However,
these products need to be further processed to remove data gaps
and low-quality data caused by cloud contamination or algo-
rithm limitations before they can be used in models directly.
To archive this goal for the NACP, we developed an algorithm
using the TIMESAT software to smooth and to gap-fill MODIS-
LAI time-series data. For our example, comparisons between
the MODIS high-quality LAI data and the smooth LAI data
agree very well with an overall R2 = 0.921 for North America.
The agreement of individual tiles (regions) depends on the num-
ber of high-quality retrievals within that tile. High R-squares
and better linear relationships are observed when high-quality
retrievals reach 40% or more. As the smoothed LAI product
shows similar data quality to the MODIS high-quality LAI, it is
therefore reasonable to substitute low-quality retrievals or gaps
in the original MODIS data with the smoothed product.

Although the smoothed LAI product has a good agreement
with MODIS high-quality data, they may not, however, agree
with ground measurements particularly when there were large
gaps in the time series during critical plant-growing stages
(such as the short-peak summertime at high-latitude areas). Our
current smoothing algorithm cannot capture seasonal variations
if the MODIS data lack enough information. A future possible
remedy would be to introduce historical data into the smoothing
algorithm based on the assumption that temporal curves are
similar year to year.

Results demonstrated in this letter are based on the MODIS
C4 processing. As MODIS C5 products become available,

we will reprocess our products using the C5 data. Since our
algorithm places an emphasis on MODIS high-quality data,
improvements in C5 products should improve our smoothed
products as well. Preliminary C5 processing for LAI indicates
that there will be more high-quality retrievals even at higher
latitudes. This is encouraging, given the results in Fig. 6, as
more high-quality retrievals imply that our smoothed values are
closer to a one-to-one agreement with the high-quality data.

In this letter, we successfully demonstrated temporal fitting
and gap filling based on three- and five-year MODIS-LAI data
over North America. In future production, we will use a three-
year moving-window approach to produce a smoothed product
for each of the middle years. We will continue our tests by
including different ecosystem regions such as tropical and high-
latitude regions for global applications and expand the applica-
tion of the algorithm to other continuous MODIS land products.
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