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Abstract

The problem of how the scale, or spatial resolution, of reflectance data impacts retrievals of vegetation leaf area index (LAI) is addressed

in this article. We define the goal of scaling as the process by which it is established that LAI values derived from coarse resolution sensor

data equal the arithmetic average of values derived independently from fine resolution sensor data. The increasing probability of land cover

mixtures with decreasing resolution is defined as heterogeneity, which is a key concept in scaling studies. The effect of pixel heterogeneity on

spectral reflectances and LAI retrievals is investigated with 1-km Advanced Very High Resolution Radiometer (AVHRR) data aggregated to

different coarse spatial resolutions. It is shown that LAI retrieval errors at coarse resolution are inversely related to the proportion of the

dominant land cover in such pixel. Further, large errors in LAI retrievals are incurred when forests are minority biomes in non-forest pixels

compared to when forest biomes are mixed with one another, and vice versa. A physically based scaling with explicit spatial resolution-

dependent radiative transfer formulation is developed. The successful application of this theory to scaling LAI retrievals from AVHRR data

of different resolutions is demonstrated. These principles underlie our approach to the production and validation of LAI product from the

Moderate Resolution Imaging Spectroradiometer (MODIS) and the Multi-angle Imaging Spectroradiometer (MISR) aboard the TERRA

platform.

D 2002 Elsevier Science Inc. All rights reserved.

1. Introduction

Vegetation–atmosphere interactions can be conveniently

grouped into biogeophysical (energy and water exchanges)

and biogeochemical (carbon and volatile organic compound

exchanges) themes (Sellers et al., 1997). Models of these

processes, e.g., land surface parameterizations in climate

models, are key tools for evaluating the role of vegetation in

the context of global climate change and variability (Run-

ning et al., 1999). The utility of such models is significantly

enhanced when they can be either forced or tested with

satellite data products, in view of the coverage, repeativity

and consistency of remote sensing products.

One of the key state variables in land surface models is

the vegetation green leaf area index (LAI), defined as half

the all-sided green leaf area per unit ground area. Vegetation

leaf area index governs net radiation and its expenditure

(energy balance), net primary production (carbon fixation),

evapotranspiration and canopy interception (water budget).

As such, there is considerable interest in developing algo-

rithms for the estimation of LAI from satellite measurements

of vegetation reflectance (Knyazikhin, Martonchik, Diner, et

al., 1998; Knyazikhin, Martonchik, Myneni, et al., 1998),

and also to assemble time series of LAI data from the

archive of almost two decades of AVHRR data to study

interannual global vegetation dynamics (Myneni, Tucker,

Asrar, & Keeling, 1998).

Several complicated issues arise when one attempts to

assemble a consistent time series of LAI and other bio-

physical products with data from different instruments. One

needs to account for varying radiometric integrity, spectral
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band widths, calibration, geometry of acquisition, etc. A key

issue in this context is the possibility of varying spatial

resolution of the data from different instruments view angles

from the same instrument. This problem may be posed as,

how can a time series of a particular biophysical product be

developed from data acquired from a series of sensors that

have different spatial resolutions?

The issue of spatial resolution, or scale, of image data has

been addressed previously, usually depending on the appli-

cation. For instance, Nelson and Holben (1986) reported

that a 1.1 km or higher resolution data are required to

identify forested areas. Woodcock and Strahler (1987)

argued that a spatial resolution at which the local variance

reaches its maximum should be taken as the characteristic

scale of scene variation. Other investigators used the con-

cept of entropy to evaluate the feasibility of detecting land

cover changes in coarse resolution data (Townshend &

Justice, 1988).

We are interested in this article on how the data reso-

lution impacts the retrieval of biophysical parameters,

especially LAI. There is conflicting information in the

literature as to whether retrieval methods based on the

normalized difference vegetation index (NDVI) are spatial

resolution dependent or invariant (Hall, Huemmrich, Goetz,

Sellers, & Nickeson, 1992; Friedl, 1996; Hu & Islam, 1997).

Of special interest are issues related to the use of retrieval

methods based on point scale physical models, applied to

coarse spatial resolution data, which inevitably contain land

cover mixtures (Raffy, 1994; Gregoire & Raffy, 1994; Chen,

1999). In other words, how can a physically based retrieval

algorithm be made spatial resolution dependent, such that

scaling of the retrieved biophysical product is accomplished

when the algorithm is executed on data of multiple reso-

lutions?

The goal of scaling is defined here, as a process by which

it is established that values of a certain biophysical product,

LAI in this case, derived from coarse resolution sensor data

should equal the arithmetic average of values derived

independently from fine resolution sensor data. Specifically,

we address the problem of LAI retrievals with a 1-km

Advanced Very High Resolution Radiometer (AVHRR) data

aggregated to different resolutions, in support of our

MODIS and MISR LAI and fraction absorbed photosyn-

thetically active radiation (FPAR) algorithm research.

MODIS and MISR refer to the Moderate Resolution Imag-

ing Spectroradiometer (MODIS) and Multi-angle Imaging

Spectroradiometer (MISR) aboard the TERRA platform

launched by National Aeronautics and Space Administra-

tion (NASA) in December 1999.

The problem addressed here, that of spatial resolution

dependence of algorithms for the retrieval of biophysical

variables, arises in two contexts. The first, as previously

mentioned, is in the context of assembling time series of

biophysical variables with data from sensors of different

spatial resolution. The second is in the validation of mod-

erate resolution (f 1 km) sensor products such as MODIS

and MISR LAI and FPAR. By validation, we mean speci-

fication of the uncertainty in the products in relation to

ground truth data. The latter are often collected at resolu-

tions much finer than the products for practical reasons.

Therefore, the retrieval algorithms must be spatial resolution

dependent so that the products can be validated through

scaling, as defined above.

The organization of this paper is as follows. We begin

with a brief description of the data and the LAI/FPAR

retrieval algorithm used in this study. Then we focus on

data analysis, where we demonstrate the relation between

land cover heterogeneity and spatial resolution, and the

impact of heterogeneity on measured surface reflectances

and LAI retrievals. Then we present a physically based

technique for scaling with explicit spatial resolution-

dependent radiative transfer formulation. We conclude by

providing illustrative results that highlight scaling of LAI

with the MODIS LAI/FPAR algorithm.

2. Data and the LAI algorithm

Land surface reflectances at 1-km resolution from

AVHRR over North America for July 1995 are used in this

study. The data consisted of channels 1 (580–680 nm) and 2

(725–1100 nm) reflectances, that is, the red and near-infra-

red bands, respectively. The data processing included radio-

metric calibration, partial atmospheric corrections,

geometric registration and the production of 10-day max-

imum NDVI value composites (Eidenshink & Faundeen,

2001). A monthly layer based on the maximum NDVI

composite of the three 10-day layers was generated for

further analysis.

An important ancillary data layer required for our study

is the six biome North American land cover map, which

was previously developed from a 1-km AVHRR NDVI

data of 1995 and 1996, and ancillary data sources (Lotsch,

Tian, Friedl, & Myneni, 2001). This map segregates global

vegetation into six major biome types depending on

vegetation structure and optical properties, and background

characteristics (Myneni, Nemani, & Running, 1997). The

six biomes include: Grasses and Cereal Crops (biome 1),

Shrubs (biome 2), Broadleaf Crops (biome 3), Savannas

(biome 4), Broadleaf Forests (biome 5) and Needle Forests

(biome 6). Bareland, which is considered as cover type 7

in this study, and water-bodies are also included in this

map. The site-based accuracy of this map is 73% (Lotsch

et al., 2002). The kappa coefficient (j) (Cohen, 1960),

which provides a correction for the proportion of chance

agreement between reference and test data, is 0.68 (Lotsch

et al., 2002). When compared to maps generated from the

same data but classified using the International Geosphere

Biosphere Program (IGBP) classes (e.g., Loveland et al.,

1995; Hansen, Defries, Townshend, & Sohlberg, 2000), the

biomes were mapped with f 5% higher overall accuracy

(Lotsch et al., 2002). It should be noted that this classi-

Y. Tian et al. / Remote Sensing of Environment 84 (2002) 143–159144



fication accuracy analysis is based on sites that are a priori

pure and therefore will not include errors due to sub-pixel

mixing.

Of the six biome types, none of them are mixed Broad-

leaf/Needle Forests. For example, the Natural Resources

Canada Land Cover Map of Canada v2.0 indicates 1377193

km2 of Canada covered by mixed forests vs. 953142 km2

covered by pure Broadleaf or Needle Forests (Cihlar,

Beaubien, Latifovic, & Simard, 1999; Cihlar, Latifovic,

Beaubien, Guindon, & Palmer, submitted for publication).

This may result in an additional uncertainty in our results.

The structural attributes of these biomes are used to

parameterize radiative transfer models (Myneni et al.,

1997). Numerical solutions of the three-dimensional radia-

tive transfer equation are used to model the Bi-directional

Reflectance Factors (BRF) of the biomes for varying sun-

view geometry and canopy/soil patterns (Knyazikhin, Mar-

tonchik, Diner, et al., 1998; Knyazikhin, Martonchik,

Myneni, et al., 1998). The retrieval of LAI and FPAR is

done by comparing the observed and modeled BRFs for a

suite of canopy structures and soil realizations. All canopy

and soil realizations for which the magnitude of the resid-

uals in the comparison does not exceed uncertainties in

observed and modeled BRFs are treated as acceptable

solutions. For each acceptable solution, a value of FPAR

is also evaluated. The mean values of LAI and FPAR

averaged over all acceptable values and their dispersions

are taken as the retrievals and their accuracy (Knyazikhin,

Martonchik, Diner, et al., 1998; Knyazikhin, Martonchik,

Myneni, et al., 1998). This algorithm was prototyped with

POLDER, LASUR, Landsat Thematic Mapper (TM), and

SeaWiFS data (Tian et al., 2000; Zhang et al., 2000; Wang et

al., 2001). The algorithm has been implemented for opera-

tional production of LAI and FPAR from MODIS data.

3. Data analysis

3.1. Characterizing land cover heterogeneity

We aggregated the 1-km AVHRR reflectance data to 4-,

8-, 16-, 32- and 64-km resolutions. We denote the 1-km

pixel as the ‘‘sub-pixel’’ and the aggregated coarse resolu-

tion pixels as the ‘‘pixel’’ for the remainder of this paper. We

assume that each sub-pixel contains only one biome type, in

view of the 1-km resolution of the biome map. The biome

type of a pixel is assigned based on the dominant biome

fraction. We did not account for water-bodies because there

is no reflectance data for water in the AVHRR data set.

Therefore, all aggregations were based on seven land cover

types—biomes 1 through 6, and bareland, also denoted as

land covers 1 through 7. When a pixel contains only one

cover type, it is defined as ‘‘homogeneous’’. Otherwise, it is

heterogeneous. Thus, heterogeneity in this study only indi-

cates that pixels at coarse resolution contain more than one

land cover type. It should be noted that our empirical study

here only considers scaling error between 1 km and coarser

scales and is targeted specifically data sets coarser than 1

km.

We introduce the percentage function (pf) to quantify the

heterogeneity of a vegetated pixel. For a pixel, pfl
(l = 1,. . .,7), is the percent of sub-pixels land cover type l in

the pixel of a given resolution. Note that
P7

l¼1 pf l ¼ 100%.

The index pfj, which corresponds to the percent occupation of

the dominant cover type jwithin the pixel, can also be defined

as the ‘‘purity’’ or homogeneity of that pixel. Pixels with low

pfj value are more heterogeneous than those having high

values of pfj.

The overall percentage function, PF( j), is defined as the

average of pfj over the total number of biome j pixels in

North America at a given resolution. The index PF( j) is also

called the overall purity of biome j at that resolution. If

PF( j) value is higher, on average, biome j is more homoge-

neously resolved at that resolution.

The overall percentage functions PF( j) at 8-km resolu-

tion are given in Table 1. Eight-kilometer resolution pixels

denoted as biome 1 have, on average, about 63.32% of sub-

pixels containing biome 1. That is, the overall biome 1

purity at 8-km resolution is 63.32%. Shrubs (biome 2) are in

general more homogeneously distributed, with about 85.2%

of coverage. On the other extreme, Broadleaf Crops (biome

Table 1

Overall percentage function PF( j) at 8-km resolution

Dominant Sub-pixel land cover type

land cover

type
Biome

1

Biome

2

Biome

3

Biome

4

Biome

5

Biome

6

Bare-

land

Biome 1 63.32 4.63 5.80 7.12 3.56 11.04 4.54

Biome 2 3.77 85.20 0.50 2.45 1.00 2.59 4.50

Biome 3 12.28 1.92 61.30 9.24 6.09 6.51 2.65

Biome 4 10.62 5.66 5.99 62.34 4.89 6.86 3.64

Biome 5 8.50 2.16 3.97 4.44 72.37 7.33 1.22

Biome 6 9.02 2.96 3.84 3.80 3.52 74.93 1.93

Fig. 1. The overall purity PF( j) as a function of spatial resolution.
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3) are most heterogeneous. The overall purities PF( j) are

shown in Fig. 1 as a function of resolution. The purities

decrease with decrease in resolution. Shrubs tend to be most

homogeneously resolved at all resolutions followed by

Broadleaf and Needle Forests, which is possibly indicative

of the natural, that is, undisturbed, state of these biomes.

We divide biome j pixels into three categories for further

analysis. The first group consists of pixels with pfjz 90%;

these are assumed to represent homogeneous pixels. The

second group consists of nominally heterogeneous pixels

with 50%V pfj < 90%. The last group contains the rest, that

is, heterogeneous pixels with pfj< 50%. In Fig. 2a, we see

that the percentage of pixels belonging to group 1 decreases

in a nonlinear fashion with decreasing spatial resolution, in

all biomes. Similarly, the percentage of pixels belonging to

group 3 increases with decreasing spatial resolution (Fig.

2b). This is to be expected in view of increasing mixtures

with increase in pixel area. We conclude that the overall

purity PF( j) decreases with decreasing spatial resolution.

3.2. Canopy reflectances and heterogeneity

The data density distribution function was evaluated

for each biome as follows: specify a fine grid cell in the

Fig. 3. Contour plot of data density distribution in the spectral space of red

and near-infrared (RED–NIR) at (a) 1-km resolution, (b) 8-km resolution

from group 1, and (c) 8-km resolution from group 3. Each contour line

separates an area in the spectral space with high data density containing

50% of the pixels from a given biome. Groups 1 and 3 represent biome

purities z 90% and < 50%, respectively.

Fig. 2. Percentage of pixels in groups 1 and 3 as a function of spatial

resolution: (a) group 1, biome purity z 90%, (b) group 3, biome purity

< 50%.
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spectral space of red and near-infrared reflectances

(RED–NIR), count the number of canopy reflectances

in this cell, divide this value by the total number of

pixels in the entire spectral space (Tian et al., 2000). The

location of high density data (50% of all pixels) for each

biome in the RED–NIR space is then plotted (Fig. 3).

These can be interpreted as the set of pixels representing

the most probable patterns of canopy structure for each

of the biomes. For instance, Broadleaf Forests and Crops

are situated at high near-infrared and low red reflectance

locations. Likewise, Needle Forests and Shrubs are

located uniquely in the spectral space. The other biomes,

however, have considerable overlap. The 50% data den-

sity contours at the 1- and 8-km resolution are identical.

However, the density contours from pixels with

pfjz 90%, shown in Fig. 3b, indicate that the biomes

have distinct locations in the spectral space. Broadleaf

Forests have higher near-infrared reflectance than Broad-

leaf Crops, and thus, separate better. Likewise, Grasses

and Savannas also occupy distinct locations. Thus, it is

important to observe homogeneous patches of vegetation

types to deduce their reflectance signatures. Also, it is

possible to identify such homogeneous patches at any

resolution, provided a finer resolution land cover map is

available. This point is further illustrated, in Fig. 3c,

where the biome density contours of heterogeneous pixels

(pfj < 50%) are shown to have considerable overlap in the

spectral space.

The mean red and near-infrared reflectances of homo-

geneous and heterogeneous pixels are shown in Fig. 4 as

a function of spatial resolution. The reflectance magni-

tudes of both kinds of pixels do not change much with

changing resolution. However, the contrast between the

biomes decreases with increasing heterogeneity. This is

observed in both spectral bands. It appears cover mixture,

rather than spatial resolution, which is critical to deter-

mining the spectral signature of a pixel. Also, note that

decreasing pixel resolution does not necessarily lead to

increasing cover type heterogeneity.

An important issue is the degree of spectral variation

in reflectance data from pixels of the same biome type,

and how this changes with resolution and pixel hetero-

geneity. First, we shall assume that the mean red (R̄) and

near-infrared (N̄) reflectance values of homogeneous pix-

els (group 1; pfjz 90%) represent the correct biome

spectral characteristics. Second, we evaluate the average

Fig. 4. Mean red (RED) and near-infrared (NIR) reflectance as a function of spatial resolution: (a) group 1 in RED, (b) group 1 in NIR, (c) group 3 in RED, and

(d) group 3 in NIR. Groups 1 and 3 represent biome purities z 90% and < 50%, respectively.
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distance between pixels from group i (i = 1, 2, 3) and

point (R̄, N̄), which can be understood as the deviation

from representative biome spectral features,

Di ¼
1

Ki

XKi

k¼1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Rk;i � R

�

R
�

� �2

þ Nk;i � N
�

N
�

� �2
s

: ð1Þ

Here Ki is the total number of pixels in group i, Rk,i and

Nk,i are the red and near-infrared reflectance of the kth pixels

in group i. We divided by R
_
and N

_
in Eq. (1) in order to

equally weight the two spectral bands. The resulting dis-

tance values are shown in Fig. 5 as a function of resolution

and biome type. The distance values increase with increas-

ing heterogeneity, as expected. Shrubs have a large distance

value compared to other biomes at a given level of homo-

geneity and resolution, indicating that these are spectrally

heterogeneous media. This spectral variation within a biome

type can also lead to misclassification if the training data set

is not representative of the full range of spectral variations.

3.3. LAI retrievals and heterogeneity

Let Lt denote vegetation LAI values at resolutions 4, 8,

16, 32 and 64 km, obtained by averaging 1-km LAI

retrievals. Let Lc denote LAI retrievals obtained directly

from 4-, 8-, 16-, 32- and 64-km surface reflectance data. The

discrepancy between Lt and Lc defines the response of the

LAI retrieval algorithm to heterogeneity of the medium.

Therefore, we propose the following to quantify the spatial

resolution effect on the algorithm,

RDL ¼ jLt� Lc=Lt: ð2Þ

In the above, RDL denotes LAI error incurred by first

averaging reflectances and then performing LAI retrievals.

The average value of RDL for a given biome is termed here

as the ‘‘overall RDL’’. Likewise, RDFPAR denotes the

discrepancy in FPAR between coarse and fine resolution

retrievals. In general, both RDL and RDFPAR increase with

decreasing resolution because of the nonlinear relation

between reflectances and LAI/FPAR (Fig. 6; RDFPAR

results are not shown for brevity), as noted previously by

Weiss et al. (2000). The contour plots further highlight the

importance of cover heterogeneity (Fig. 6), that is, the

degree of pixel heterogeneity (dominant land cover purity)

determines the discrepancy between coarse and fine reso-

lution retrievals, and thus, the dependence of the algorithm

on the spatial resolution of the data.

We note that RDL values in the case of Needle Forests

are in general higher compared to other biomes. This is

possibly due to the unique reflectance features of needle leaf

canopies. Here, the role of canopy architecture is para-

mount, and when these canopies are mixed with other biome

types, the pixel reflectances are significantly altered, thus,

resulting in larger RDL values. As an example, we compare

the NDVI vs. LAI relation for Needle Forests to that of

Shrubs and Grasses in Fig. 7. These relations show NDVI

values computed from red and near-infrared reflectances

input to the algorithm and the corresponding LAI retrievals.

From these relations, we can argue how differently the input

reflectance data were translated to LAI by the algorithm in

these biomes. From Table 1, we note that among the biomes,

Grasses are most commonly mixed with Needle Forests.

Hence, large RDL values in the case of Needle Leaf Forests.

The LAI/FPAR retrieval algorithm utilizes the Look-Up-

Table (LUT) of the dominant biome of a pixel in the course

of retrieval. The presence of other biomes in the case of

heterogeneous pixels leads to error in LAI and FPAR

retrievals. Thus, it is of interest to evaluate the impact of

minority biome presence on LAI retrievals of heterogeneous

Fig. 5. Average distance in spectral space between biome specific spectral

signature (R̄, N̄) and pixels from (a) group 1, and (b) group 3, at different

spatial resolutions. Groups 1 and 3 represent biome purities z 90% and

< 50%, respectively. The parameters R̄ and N̄ are mean red (RED) and near-

infrared (NIR) reflectance values of homogeneous pixels from group 1. See

text for further information.
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pixels. This is illustrated in Fig. 8, where for each of the

biomes, the relative differences in LAI are shown as a

function of increasing fractions of minority biome type at

a 8-km resolution. It appears that larger LAI errors are

incurred when forests are minority biomes in non-forest

pixels compared to when forest biomes are mixed with one

another. Likewise, larger LAI errors are incurred when non-

forest biomes are a minority biome in forest pixels com-

pared to when non-forest biomes are mixed with one

another. This is in a way not surprising considering the

difference in architecture, that is, the presence of woody

biomass, clumping and structural heterogeneity, between

forest and non-forest biomes.

4. Physically based theory for scaling

Most of the algorithms that estimate surface biophysical

parameters from remote sensing data use vegetation maps as

a priori information to constrain the parameter space. A

Fig. 6. Contour plot of relative difference in LAI derived from unadjusted LAI retrieval algorithm as a function of spatial resolution and pixel heterogeneity

(dominant land cover purity): (a) Grasses and Cereal Crops, (b) Shrubs, (c) Broadleaf Crops, (d) Savannas, (e) Broadleaf Forests, and (f) Needle Forests.
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common problem with land cover characterization is one of

mixture. The designated biome type may be just the

dominant biome type, and other biomes can exist within

the coarse resolution pixel. Pixel heterogeneity is an impor-

tant factor causing variations in surface reflectance data

(Fig. 3). This information should therefore be taken into

account in algorithms in order to correctly interpret data of

different resolutions. In this section, we consider a related

but wider problem, i.e., fusion of biophysical parameters

derived from data acquired by spectroradiometers of differ-

ent spectral bands and different resolutions.

4.1. Definition and background information

Consider two hypothetical spectroradiometers of resolu-

tions, say, 8 and 1 km and which measure at different

wavelength bands. Let R(k) be the surface reflectances of a

8- by 8-km vegetated pixel at wavelength k = k1, k2,. . .kn
provided by the first instrument (instrument 1). Let the same

pixel be sensed by the second instrument (instrument 2) and

ri(b), i= 1, 2,. . ., 64 be surface reflectances at wavelength

b = b1, b2. . .bm at 1-km resolution covering the 8- by 8-km

pixel. Suppose that one uses instruments 1 and 2 reflectance

data independently to produce biophysical parameters at 8-

and 1-km resolution. The fusion (or scaling, if only the

spatial dimension is considered) is said to be accomplished

if the biophysical variable at 8-km resolution is equal to the

mean value of the 1-km resolution retrievals.

Our theoretical investigation is based on the assumption

that the transport equation can describe the radiative regime

in vegetation canopies. This equation has a very simple

physical interpretation; it is a mathematical statement of the

energy conservation law. However, it has been mentioned

by many investigators that the transport equation in its

original form (Ross, 1981) cannot describe certain aspects

of the radiation regime in vegetation canopies because it

does not account for the hot spot effect, i.e., a very sharp

delta-function like maximum about the retro-solar direction

(Marshak, 1989; Verstraete, Pinty, & Dickenson, 1990;

Kuusk, 1985; Myneni et al., 1991; Nilson, 1991; Knyazi-

khin, Marshak, & Myneni, 1992; Li & Strahler, 1992).

Attempts were made to modify it for fitting the observable

reflection (Marshak, 1989; Verstraete et al., 1990; Kuusk,

1985; Myneni et al., 1991; Nilson, 1991; Knyazikhin et al.,

1992; Li & Strahler, 1992). As a result, a rather wide family

of canopy radiation models designed to account for the hot

spot effect conflict with the law of energy conservation

(Knyazikhin, Martonchik, Diner, et al., 1998). Recently,

Zhang, Shabanov, Knyazikhin, & Myneni (2002) showed

that the solution of the transport equation contains a singular

component which has been ignored in all studies on three-

dimensional radiative transfer problems. The singular com-

ponent is responsible for the hot spot effect. This result

justifies the use of the transport equation as the basis for

interpretation of remotely sensed data acquired over vege-

tated land surface.

Let the domain in which the vegetation canopy is located

be a parallelepiped P. Assume that its horizontal and vertical

dimensions coincide with the area of the pixel and the tallest

tree, respectively. We term this parallelepiped P as a 3D

pixel, or simply, pixel. The top, dPT, base, dPB, and lateral

surfaces, dPL, of the parallelepiped P form its boundary

dP= dPT + dPB + dPL. The radiation regime in this medium

is described by the three-dimensional transport equation

(Ross, 1981; Myneni, 1991; Zhang et al., 2002)

X �jIkðr;XÞ þ rðr;XÞIkðr;XÞ

¼
Z
4p

rS;kðr;XV ! XÞIkðr;XVÞdXV: ð3aÞ

Here Ik (in sr� 1) is the monochromatic radiance normal-

ized by the intensity of monodirectional radiation incident

on the top surface of the canopy boundary. It depends on

wavelength k, location r, and direction X; rS,k is the differ-

ential scattering cross-section, and r =G(r,X)uL(r) is the

total interaction cross-section which does not depend on

wavelength (Ross, 1981). The geometry factor G(r,X)

(dimensionless) is the mean projection of leaf normals at r

onto a plane perpendicular to the direction X. It satisfies the

following condition

Z
2pþ

Gðr;XÞdX ¼ p:

The leaf area density distribution function uL(r) (in m2/

m3) is the one-sided green leaf area per unit volume. The

leaf area index can be expressed via the total interaction

cross-section as

LAI ¼

Z
2pþ

dX
Z
V

drrðr;XÞ

pXPYP
¼

Z
V

uLðrÞdr

XPYP
;

Fig. 7. NDVI-LAI relations derived from the 4-km resolution pixels with

purity z 90%.
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where XP and YP are horizontal dimensions of the domain P.

A precise description of these variables can be found in

Ross (1981) and Myneni (1991). Below, the formulation of

Myneni (1991) is adopted.

Let a parallel beam of unit intensity be incident on the

upper boundary, dVT. At the canopy bottom, dPB, and

lateral surfaces, dPL, the fraction of radiation that is

reflected back into the canopy is given by the bi-direc-

tional distribution function ck(rV,XV,X) of the ground and

lateral surfaces. This case is given by the following

boundary conditions:

IkðrT;XÞ ¼ dðX � X0Þ; rTadPT;X � nT < 0; ð3bÞ

IkðrV;XÞ ¼ p�1

Z
X�nV>0

ckðrV;XV;XÞIkðrV;XVÞ

AXV� nVAdXV;X � nV<0; rVadPBþdPL: ð3cÞ

Fig. 8. Relative difference in LAI retrievals as a function of the presence of the minority biome: (a) Grasses and Cereal Crops, (b) Shrubs, (c) Broadleaf Crops,

(d) Savannas, (e) Broadleaf Forests, and (f) Needle Forests, in heterogeneous pixels at a 8-km resolution. See text for further information.
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Here nT and nV are the outwards normals at points

rTadPT and rVadPB + dPL, and X0 is the direction of the

parallel beam. Because Eq. (3a) is normalized by the

intensity of radiation incident in the direction X0, the

boundary condition (3b) does not depend on k.
Solution Ik of the boundary value problem (Eqs. (3a) and

(3b)) can be represented as a sum of two components; that is,

Ikðr;XÞ ¼ Ibs;kðr;XÞ þ Irest;kðr;XÞ: ð4Þ

The first component, Ibs,k, describes the radiative regime

within the vegetation canopy bounded by vacuum on lateral

and bottom sides (i.e., ck = 0; ‘‘standard problem’’), and

Irest,k describes additional radiative field due to the inter-

action between the boundary dPB + dPL and the vegetation

canopy. It is well known (e.g., Chandrasekhar, 1960, p. 273;

Stamnes, 1982; Box, Gerstl, & Simmer, 1988) that in the

case of simple slab geometry and a Lambertian surface (i.e.,

ck(rB,XV,X) = qsur,k, rBadPB) the additional term can be

expressed as

Irest;k ¼ qsur;kFbs;kIS;k=ð1� qsur;krS;kÞ: ð5Þ

Here Fbs,k is the downwelling flux at the canopy bottom

for the standard problem; IS,k is the solution to the transport

equation with a normalized isotropic source qS = 1/p (in

sr� 1) located at the medium bottom (‘‘S’’ problem), and rS,k
(dimensionless) is the downwelling flux at the medium

bottom generated by qS. Thus one needs three independent

variables to describe the radiative regime in the plane-

parallel medium. They are (i) reflectance properties of the

underlying surface, which do not depend on the medium;

(ii) Ibs,k and (iii) IS,k, which are surface-independent param-

eters since no multiple interaction of radiation between the

medium and underlying surface is possible, i.e., these

variables have intrinsic canopy information.

Somewhat more complicated techniques, adjoint formu-

lation and Green’s function concept, have been developed to

extend the representations (4) and (5) for the case of three-

dimensional radiation fields (Bell & Glasstone, 1970; Ger-

mogenova, 1986; Ioltukhovski, 1999; Knyazikhin, Marton-

chik, Myneni, et al., 1998; Knyazikhin & Marshak, 2000).

Our investigation is based on an approximation of the

boundary value problem (Eqs. (3a)–(3c)) by Eqs. (4) and

(5) proposed in Knyazikhin et al. (1998) (see also Appendix

A). Uncertainties in such an approximation are assumed to

be known which are input to MODIS and MISR LAI/FPAR

algorithms (Knyazikhin, Martonchik, Diner, et al., 1998;

Knyazikhin, Martonchik, Myneni, et al., 1998). In this case,

the energy conservation law can be written as

rk ¼ rbs;k þ
qsur;k

1� qsur;krS;k
tbs;ktS;k;

rbs;k þ tbs;k þ abs;k

¼ 1; rS;k þ tS;k þ aS;k ¼ 1: ð6Þ

Here rbs,k, tbs,k, and abs,k (rS,k, tS,k, and aS,k) are canopy

reflectance, transmittance and absorptance for the standard

problem (for the ‘‘S’’ problem).

It was shown (Knyazikhin, Martonchik, Diner, et al.,

1998; Knyazikhin, Martonchik, Myneni, et al., 1998; Pan-

ferov et al., 2001) that, in the case of the standard and S

problems, some simple algebraic combinations of leaf and

canopy spectral transmittances and absorptances eliminate

their dependencies on wavelength through the specification

of two canopy-specific wavelength independent variables.

Under the above assumptions, these variables and leaf

optical properties govern the law of energy conservation

(6) in vegetation canopies at any given wavelength of the

solar spectrum. These results constitute the basis for our

approach to scaling, or more broadly, fusion, in the sense of

the definition given previously.

4.2. Spatial resolution-dependent radiative transfer for-

mulation

Solar radiation scattered from a vegetation canopy and

measured by satellite-borne sensors results from interaction

of photons traversing through the foliage medium, bounded

at the bottom by a radiatively participating surface. There-

fore, to estimate the canopy reflectance, three important

variables must be carefully formulated: the architecture of

the canopy, the optical properties of foliage elements, and

the background surface reflectance properties. Specification

of the first two variables depends on the definition of the

foliage element or scattering center. An individual leaf, for

example, should be taken as the basic foliage element to

describe photon transport in a vegetation canopy of a small

area (about 0.1–0.3 ha) (Knyazikhin, Miessen, Panferov, &

Gravenhorst, 1997). Optical properties of tree crowns and

their distribution in the canopy space can be used to estimate

the radiation regime in an extended canopy. In both cases,

the three-dimensional transport equation relates properties

of the scattering centers to the radiative regime of the

medium. The former allows estimation of the radiation field

at the leaf scale, while the latter describes the interaction of

photons with trees, which is appropriate for interpretation of

reflectances at coarse resolution. The reflective properties of

the tree crown are determined by its leaf optical properties

and architecture. Therefore, solutions of the transport equa-

tion that describe canopy radiation regime at the leaf and

crown scales are not independent. This allows us to relate

these solutions to the biophysical parameters defined at

different scales, or spatial resolutions. The major issue is,

of course, how the coefficients appearing in the transport

equation vary with spatial resolution.

Consider the vegetation canopy located in the pixel P. To

approximate the canopy structure, we introduce a spatial

mesh by dividing P into fine grid cells. We term the ratio R,

the total number of cells in P to the volume of P, as the

resolution of the model, or a scale at which photon transport

and interaction are formulated. This parameter determines
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the accuracy in the modeled mean radiation quantities of the

pixel (Knyazikhin et al., 1997).

Photons interact with scattering centers that reside in

these cells. We assume that, for a cell containing M scatter-

ing centers, the intensity scattered by the cell is the sum of

intensities scattered by the individual scattering centers (Van

de Hulst, 1981). That is, photons experience only a single

interaction with the scattering centers inside the cell. This

assumption allows the use of the radiative transfer equation

to describe photon interactions with scattering centers. Thus,

the total interaction and differential scattering cross-sections

that appear in the transport equation are cell averages of the

cross-sections calculated for individual scattering centers.

The solution of the transport equation provides mean

intensity over the cell around the spatial point r in direction

X (Ross, 1981, p. 144).

The specification of the scattering centers and scale R

must be consistent in order to predict correct canopy

reflectance for the pixel. For example, in the case of a

coniferous forest (Picea abies (L.) Karst) of domain

P= 25	 30	 29 m, a model resolution of R = 8 (or cell

size of 50	 50	 50 cm) and a 1-year shoot of size 5–7 cm

as the scattering center guarantees accurate evaluation of

mean canopy reflectance over a horizontal area of about 10

m2 (Knyazikhin et al., 1997). It should be emphasized that

the scattering properties of the shoot must be known in order

to formulate the differential scattering cross-section. At this

scale, a single needle cannot be taken as the scattering center

because photons undergo multiple interactions within the

shoot, and thus, the above assumption is violated for a cell

of 50	 50	 50 cm.

In this manner, we introduce three spatial attributes of the

medium, namely, pixel size, scale, and scattering centers to

describe its radiative behavior. Under the consistency

assumption, the radiation regime in this medium can be

described by the three-dimensional transport Eq. (3a). The

total interaction cross-sections, r, and the differential scat-

tering cross-sections, rS,k, depend on the scale R and the

definition of the scattering centers. The reflectance meas-

ured by satellite-borne sensors is the solution to the boun-

dary value problem (Eqs. (3a)–(3c)) averaged over the

pixel. By definition, the total interaction cross-section rds
is the probability that a photon, while traveling a distance

ds, hits a scattering center. Because the photon interacts with

leaves at any wavelength, this probability is wavelength

independent.

The magnitude of scattering per volume unit is described

using the single scattering albedo

xkðR; r;XÞ ¼

Z
4p

rS;kðR; r;X ! XVÞdXV

rðR; r;XÞ :

Let gk(R, r, X!XV) be the differential scattering cross-

section normalized by the single scattering albedo, i.e.,

rS,k(R, r, X!XV) =xk(R, r, X)gk(R, r, X!XV). For

simplicity, the single scattering albedo is assumed constant

with respect to spatial, r, and directional, X, variables, and g

is independent of wavelength. In this case, the solutions Ibs,k
and IS,k depend on values of the spectral single scattering

albedo, which in turn depends on wavelength. This allows

their parameterization in terms of single scattering albedo

rather than wavelength. Therefore, wavelength dependence

will be suppressed in further notations. The value of the

single scattering albedo x will be added to the argument list

of the solution Ibs,k and IS,k.

Consider an extended vegetation canopy contained in a

parallelepiped P. Let VoP be another parallelepiped con-

tained in P. The top, dVT, base, dVB, and lateral surfaces,

dVL, of the parallelepiped V form its boundary

dV= dVT + dVB + dVL. Integration of Eq. (3a) over V and

the full solid angle 4p leads to the form of law of energy

conservation law (Titov, 1998)

AðxÞ þ Fþ
T ðxÞ þ Fþ

B ðxÞ ¼ F�
T ðxÞ þ F�

B ðxÞ

þ F�
L ðxÞ � Fþ

L ðxÞ; ð7Þ

where A is radiant energy absorbed by V; FT
F, FB

F and FL
F

are radiant fluxes penetrating into (sign ‘‘� ’’) and exiting

(sign ‘‘ + ’’) the canopy through the top (subscript ‘‘T’’),

base (subscript ‘‘B’’) and lateral sides (subscript ‘‘L’’) of the

parallelepiped V, i.e.,

FF
m ðxÞ ¼

Z
dVm

dS

Z
FX�nðrÞ>0

IxðR; r;XÞjX � nðrÞj;

m ¼ T; B; or L:

Here, n(r) is the outward normal at points radV, and
Ix(R, r, X) is the solution of boundary value problem (Eqs.

(3a)–(3c)). Under assumptions formulated in the previous

section, we can restrict our discussion here to the case of a

completely absorbing background beneath the canopy, i.e.,

FB
� = 0.

Titov (1998) introduced horizontal transport of radiant

energy as E =FL
��FL

+. It follows from Eq. (7) that the

amount of energy absorbed (A/FL
�), reflected (FL

+/FL
�), and

transmitted (FB
+/FT

�) by the volume V is not necessarily

equal to 1; it can be greater or less than 1, depending on

the sign of E. The magnitude of horizontal transport

depends on mean length, l, of photon lateral migration in

the medium (Titov, 1998). If the horizontal sizes, xV and

yV, of V are substantially greater than l, the horizontal

transport E/FT
�b1. This condition is fulfilled for a hori-

zontally homogeneous medium. If xV, yVf l, the average

of Eq. (7) over number NxNy of pixels, such that NxxVHl,

NyyVHl, results in E/FT
�c 0 (Titov, 1998). This property

is used to adjust the radiative transfer Eq. (3a) to simulate

surface reflectances at a given resolution by choosing an

appropriate model resolution R and definition of the

scattering center (Knyazikhin et al., 1997). It means that

the definition of scattering centers and model resolution
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should be chosen such that the horizontal size of the fine

cell is comparable to l. This allows us to account for

horizontal transport within the pixel. The transport equa-

tion at this scale can be extended to evaluate surface

reflectances of horizontally homogeneous coarse pixels.

The reflectance of a heterogeneous coarse pixel, however,

cannot be taken as the average of reflectances calculated

for fine resolution pixels because this technique does not

account for the radiative properties of neighboring pixels.

Neglecting horizontal transport can lead to uncontrollable

errors in the interpretation of measured data (Titov, 1998).

The transport equation, therefore, should be adjusted for

the resolution of data.

4.3. Scaling of reflection and absorption properties of

scattering centers

Consider a volume V that can be taken as the scattering

center. The radiative response of V at a point raV to a point

mono-directional source located at a point r0 on the boun-

dary dV of the volume V is the Green’s function, G(r0, r,

X0!X), where X0 and X are directions of the incident and

reflected radiation streams, respectively (Case & Zweifel,

1967). The volume Green’s function satisfies Eq. (3a) and

the boundary condition

Gðr0; rV ;X0 ! XÞ ¼ dðrV � r0ÞdðX � X0Þ;
rVadV : ð8Þ

The extinction coefficient r, the single scattering albedo

xk, and the normalized differential scattering cross-section g

which characterize properties of the volume V at the fine

scale R0 are assumed known. We investigate properties of

Green’s function using operator theory (Vladimirov, 1963;

Richtmyer, 1978) by introducing the differential, L, and

integral, S, operators,

LI ¼ X �jI þ rðR0; r;XÞIðr;XÞ;

SI ¼
Z
4p
gðR0; r;XV ! XÞIðr;XVÞdXV:

Given the assumption above regarding the single scatter-

ing albedo x and the normalized differential scattering

cross-section g, the differential and integral operators are

wavelength independent. In terms of these notations, the

equation for the Green’s function can be rewritten as

LG =xSG. Its solution Gx can be represented as the sum,

i.e., Gx =Q +ux. Here, the wavelength independent func-

tion Q is the probability density that a photon in the direct

beam will arrive at r along the direction of incident radiation

without suffering a collision. It satisfies the equation LQ = 0

and the boundary conditions specified by Eq. (8). The

second term, ux, describes photons scattered in the volume

V. It satisfies Lux=xSux +xSQ and zero boundary con-

ditions. By stating T= L� 1 S, the transfer equation for ux

can be transformed to

ux ¼ xTux þ xTQ:

Substituting ux =Gx�Q into this equation results in an

operator equation for Gx (Zhang et al., 2002)

Gx � xTGx ¼ Q: ð9Þ

It follows from Eq. (9) that Gx�xTGx does not depend

on x, and involves the validity of the following relationship

Gx � xTGx ¼ Ga � aTGa ¼ Q; ð10Þ

where Gx and Ga are Green’s functions corresponding to

single scattering albedos x and a, respectively. Eq. (10) was
originally derived by Zhang et al. (2002).

Let i(V, x) be volume absorption a(V, x) normalized by

1�x, i.e., i(V, x) = a(V, x)/(1�x). This variable is the

average number of photon interactions with the scattering

centers in V before either being absorbed or exiting V. It can

be expressed via Green’s function as

iðV ;xÞ ¼
Z
4p
dXV

Z
V

drrðR0; r;XÞ

Gxðr0; r;X0 ! XVÞ=Anðr0Þ � X0A: ð11Þ

Multiplying Eq. (10) by the extinction coefficient r and

integrating over V and all directions X result in

iðV ;xÞ � xpiðxÞiðV ;xÞ
¼ iðV ; aÞ � apiðaÞiðV ; aÞ ¼ qðV Þ: ð12Þ

Here

piðxÞ ¼

Z
V

dr

Z
4p

rðR0; r;XÞwxðR0; r;XÞdX

iðxÞAnðr0Þ � X0A
; ð13aÞ

qðV Þ ¼

Z
4p
dX

Z
V

drrðR0; r;XÞQðr;X0Þ

Anðr0Þ � X0A
; ð13bÞ

where wx = TGx. The coefficient pi(x) is approximated by

p0(V), where p0(V) is the positive eigenvalue of the operator

T (Appendix A) which is determined by intrinsic structural

properties of V. Eq. (12) expresses the energy conservation

law for the volume V.

The coefficient q(V) is the probability that a photon

entering V along X0 will undergo one interaction with

scattering centers defined at the scale R0. Given q(V), one

can derive the extinction coefficient for another volume

consisting of scattering centers V. The absorption and

reflection properties of this coarse volume are determined

by a(V, x) = q(V)[1�x]/[1� p0(V)x] and Green’s function

Gx. These coefficients describe photon interactions with
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vegetation at coarse scale R that, in turn, are determined by

photon transport at the fine scale R0.

4.4. Scaling of surface reflectances

Consider an extended vegetation canopy that occupies a

parallelepiped P of horizontal dimensions XP and YP. Under

assumptions formulated earlier, we can restrict our discus-

sion here to the standard problem. The pixel P consists of N

fine resolution pixels Pk; that is, P ¼
PN

k¼1 Pk. Let R0 be the

scale of Pk. Attenuation and scattering of photons within the

fine resolution pixel Pk is given by the total interaction

cross-section rk and the single scattering albedo xk. These

variables are assumed to be constant with respect to the

spatial variable r within Pk and take on a zero value outside

the pixel Pk. This allows us to express the total interaction

cross-section r and the single scattering albedo x for the

coarse pixel P at the scale R0 as

rðR0; r;XÞ ¼
XN
k¼1

rkðR0;XÞ; xðR0; rÞ ¼
XN
k¼1

xkðR0Þ:

Note that the single scattering albedo for the pixel P

depends on the spatial variable r. Let a parallel beam of unit

intensity be incident on the upper boundary of P along X0.

Multiplying Eq. (3a) by the extinction coefficient r and

integrating over P and all directions X and normalizing by

XPYPl0, where l0 =An0�X0A, and n0 is the outward normal

to the upper boundary of P, one obtains

iðPÞ �
XN
k¼1

xkhrkWiPk
¼ qðPÞ: ð14Þ

Here W= TI, and h�iPk denotes integration over Pk and

the full solid angle 4p normalized by XPYPl0.
Let p0(P) be the positive eigenvalue of the operator T

corresponding to the scale R0 (Knyazikhin, Martonchik,

Diner, et al., 1998; Knyazikhin, Martonchik, Myneni, et

al., 1998). Integrating Eq. (11) over the upper boundary of P

and accounting for Eq. (12) result in p0(P)c hrWiP/i(P).
This involves

hrkWiPk
¼

hrkWiPk

iðPÞ iðPÞ ¼
hrkWiPk

hrWiP
iðPÞp0ðPÞ:

The latter allows us to approximate Eq. (14) as

iðPÞ � -p0ðPÞiðPÞ ¼ qðPÞ; ð15Þ
where

- ¼
XN
k¼1

xk

hrkWiPk

hrWiP
; ð16Þ

is the single scattering albedo at a scale that accounts for

photon interaction with sub-pixels Pk. The solution of the

transport equation corresponding to the single scattering

albedo - satisfies the energy conservation relationship

specified by Eq. (15). This shows that a re-evaluation of

the single scattering albedo is required to force the transport

equation formulated at scale R0 to simulate coarse pixel

reflectances without violating the energy conservation law.

It also means that the single scattering albedo is the basic

parameter of the transport equation that describes variations

in surface reflectance due to changing spatial resolution.

4.5. Scaling of LAI field

We adjusted the transport equation as described above to

simulate the radiation regime in vegetation canopies

bounded by a parallelepiped P0 of horizontal dimensions

30	 30 m with an uncertainty of 20% (Knyazikhin et al.,

1997). The model resolution is R0 = 8. A single leaf and a 1-

year shoot of size 5–7 cm were taken as scattering centers

in Broadleaf and Needle Forests, respectively. The single

scattering albedo coincides with leaf albedo in this case,

which is defined as the fraction of incident radiation flux

density that the leaf transmits and reflects. The leaf albedo is

a measurable parameter. A data bank of leaf optical proper-

ties was assembled from various sources, and analyzed to

obtain the mean and variance spectrum as a function of

biome type. This information is used to model canopy

reflectance at a 30-m resolution.

For the purpose of LAI and FPAR retrieval, global

vegetation is stratified into six architectural types or biomes

(Myneni et al., 1997) as mentioned previously. Each biome

is represented by wavelength independent eigenvalues of

the operator T that quantify canopy structures, wavelength-

dependent patterns of ground reflectances and one single

pattern of leaf spectral albedo per biome. The solution of the

transport equation can be expressed explicitly in terms of

these variables (Knyazikhin, Martonchik, Diner, et al.,

1998; Knyazikhin, Martonchik, Myneni, et al., 1998). Thus,

surface reflectances can be simulated as a function of

resolution and wavelength bands of the spectroradiometer.

It follows from the parameterization of global vegetation,

that Eq. (16) contains six different values of the single

scattering albedo. Therefore,

- ¼
X6
l¼1

xl

X
xk¼xl

hrkWiPk

hrWiP
: ð17Þ

A rough estimation of Eq. (17) can be performed as follows.

One approximates the solution I in the definition of W by

the normalized positive everywhere eigenvector ek of the

operator T defined on Pk. This yields

hrkTekiPk
¼ hrkpkðPkÞekiPk

¼
pðPkÞ

Z
4p
dX

Z
Pk

rkekðr;XÞdr

XPYPAl0A
¼ pðPkÞ

XPYPAl0A
:
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The eigenvalue p(Pk) is determined by the intrinsic structural

properties of Pk and takes on values between 0 and 1

(Knyazikhin andMarshak, 1991). Assuming that the structure

of a given biome type has equal probability of occurrence, the

average value of p(Pk) over biome type is 0.5. LetNk andNveg

be the number of pixels Pk belonging to biome k and the total

number of vegetated pixels Pk, respectively. Taking into

account rk = 0 for non-vegetated pixel, one obtainsX
xk¼xl

hrkWiPk

hrWiP
¼ Nl

Nveg

¼ pf l
1� pf7

: ð18Þ

Substituting Eq. (18) into (17) results in

- ¼ 1

1� pf 7

X6
l¼1

xlpf l: ð19Þ

Thus, given the percentage function pfl (l = 1,. . ., 7) of each
coarse resolution pixel, one can redefine the single scatter-

ing albedo according to Eq. (19). The use of this single

scattering albedo in Eq. (9) results in a relationship for

canopy transmittance similar to Eq. (13a) with a wavelength

independent constant determined by the operator T. Solution

Fig. 9. Contour plot of relative difference in LAI derived from adjusted LAI retrieval algorithm as a function of spatial resolution and pixel heterogeneity

(dominant land cover purity): (a) Grasses and Cereal Crops, (b) Shrubs, (c) Broadleaf Crops, (d) Savannas, (e) Broadleaf Forests, and (f) Needle Forests.
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of the transport Eq. (3a) with this single scattering albedo,

therefore, provides a correct partition of incoming solar

radiation between canopy reflection, transmission and

absorption.

The realization of this radiative transfer based scaling

theory is illustrated in Fig. 9, where the relative discrepancy

in retrieved LAI (RDL; Eq. (2)) is shown as a function of

spatial resolution and pixel heterogeneity for the six biomes.

Note that the RDL does not exceed the uncertainty in the

model used simulate radiation regime in vegetation canopies

at the scale R0 = 8. This figure is similar to Fig. 6, except

that the Look-Up-Tables of the LAI/FPAR estimation algo-

rithm have been tuned based on theoretical considerations

given above. We note a dramatic decrease in RDL in all

cases, including the case of large pixels with significant

heterogeneity. Based on the definition of RDL, which is the

difference between Lt and Lc (Eq. (2)), tuning of the Look-

Up-Tables by adjusting the single scattering albedo as per

Eq. (19) to minimize RDL, constitutes the physics based

approach to scaling. Also, this is consistent with our

definition of scaling, given earlier as, the process by which

it is established that values of a certain biophysical product,

LAI in this instance, derived from coarse resolution sensor

data equal the arithmetic average of values derived inde-

pendently from fine resolution sensor data. It should be

noted uncertainties in the reference 1-km LAI field are

unknown, and thus, the RDL does not characterize the

quality of retrievals. However, the RDL indicates that the

proposed technique can reduce scaling errors due to spatial

scale effects.

5. Concluding remarks

The effect of spatial resolution of reflectance data on

retrievals of LAI is addressed in this article. Problems

related to data resolution arise in the context of assem-

bling time series of biophysical variables with data from

sensors of different spatial resolution, fusion of data of

different instruments and in the validation of moderate

resolution sensor products. We define the goal of scaling

as the process by which it is established that values of a

certain biophysical product, LAI in this instance, derived

from coarse resolution sensor data equal the arithmetic

average of values derived independently from fine reso-

lution sensor data. Pixel heterogeneity is defined in terms

of fractional presence of different land covers, for the

purposes of scaling. The effect of pixel heterogeneity on

spectral reflectances and LAI retrievals is investigated

with the 1-km AVHRR data aggregated to different

coarse spatial resolutions. Pixel heterogeneity is shown

to increase as the resolution of the data decreases. LAI

retrieval errors at coarse resolution are inversely related

to the proportion of the dominant land cover in such

pixel. Further, large errors in LAI retrievals are shown to

occur when forests are minority biomes in non-forest

pixels compared to when forest biomes are mixed with

one another, and vice versa. A physically based technique

for scaling with explicit spatial resolution-dependent radi-

ative transfer formulation was developed. The mean

length of photon lateral migration in the medium, which

characterizes the magnitude of horizontal transport, is

used to imbue resolution dependence to the radiative

transfer equation. Spatial resolution dependence of

absorption and reflection properties of the scattering

centers is accomplished via the use of a Green’s function

formulation. Pixel heterogeneity is accounted by modifi-

cations to the single scattering albedo that the transfer

equation admits through the use of land cover fractions.

The successful application of this theory to scaling LAI

retrievals from AVHRR data of different resolutions

demonstrates a capability to validate moderate resolution

(f 1 km) LAI and FPAR products from MODIS and

MISR. It should be noted that our empirical study only

considers scaling error between 1 km and coarser scales

and is targeted specifically data sets coarser than 1 km.

Therefore, replication of our empirical study with a 30-m

fine resolution imagery over large areas is needed.
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Appendix A

Consider Eq. (3a) with boundary conditions expressed by

Eqs. (3b) and (3c). In the MODIS and MISR LAI/FPAR

retrieval algorithm, the boundary conditions (Eq. (3c)) for

the lateral surface and base of the domain P are replaced by

vacuum conditions, i.e., ck(rL,X,XV) = 0 (rLadVL) and ck(rB,

X,XV) = qsur,kc0(rB,X) (rBadVB). Here qsur,k and a wave-

length independent function c0(rB,X,XV) are the effective

ground reflectance and anisotropy respectively (Knyazikhin,

Martonchik, Diner, et al., 1998; Knyazikhin, Martonchik,

Myneni, et al., 1998). Given these assumptions, the solution

of the boundary value problem (Eqs. (3b) and (3c)) can be

expressed in the forms (4) and (5), where IS is the solution to

the transport equation with a normalized anisotropic hetero-

geneous wavelength-independent source, c0(rB,X,XV) (in

sr� 1) located at the surface underneath the vegetation

canopy, and rS,k (dimensionless) is the downwelling flux

at the canopy bottom generated by c0(rB,X,XV). Note that

boundary conditions of the standard and ‘‘S’’ problems are

wavelength independent. This results in a relation between

canopy interception im(k0) and transmittance tm(k0), for the
standard (m = ‘‘bs’’) and ‘‘S’’ (m = ‘‘S’’) problems at an

arbitrary chosen reference wavelength k0, and interception
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im(k) and transmittances tm(k) at all other wavelengths k in

the solar spectrum (Knyazikhin, Martonchik, Myneni, et al.,

1998; Panferov et al., 2001),

imðkÞ ¼
1� xðk0Þp0ðV Þ
1� xðkÞp0ðV Þ

imðk0Þ;

tmðkÞ ¼
1� xðk0Þpt;mðV Þ
1� xðkÞpt;mðV Þ

tmðk0Þ: ðA1Þ

where p0(V) and pt,m(V) are canopy structure-dependent and

wavelength-independent variables. The variable p0(V) is the

maximum positive eigenvalue of the operator T.

It follows from Eqs. (A1) and (12) that the equality

iðV ;xÞ
iðV ; aÞ ¼ 1� ap0ðV Þ

1� xp0ðV Þ
¼ 1� apiðaÞ

1� xpiðxÞ ;

holds true for any a and x. This relationship can be

rewritten as

1� apiðaÞ
1� ap0ðV Þ

¼ 1� xpiðxÞ
1� xp0ðV Þ

:

The former can be fulfilled for any a and x if and only if

(a) pi(a) = 1/a or (b) 1� api(a) = 1� ap0(V). Let us assume

that pi(a) = 1/a. Substituting pi(a) = 1/a into Eq. (12) results

in q(V) = 0. It follows from Eq. (13b) that q(V)>0 (if r p 0)

and thus, our assumption is not true. Condition (b) is valid if

and only if pi(a) = p0(V). Thus, if Eq. (A1) is valid the right-

hand side of Eq. (13a) does not depend on x. Small

deviations of Eq. (A1) from exact equality do not result in

large variation in the right-hand side of Eq. (13a).

A similar relationship can be derived for canopy trans-

mittance. It should be emphasized that canopy reflectance

rm(k) does not possess the spectral invariant property (A1)

(Panferov et al., 2001). This variable should be estimated

via the energy conservation law, namely, rm(k) = 1� tm(k)
� am(k).
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