
1866 IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, VOL. 44, NO. 7, JULY 2006

The Importance of Measurement Errors for Deriving
Accurate Reference Leaf Area Index Maps

for Validation of Moderate-Resolution
Satellite LAI Products

Dong Huang, Wenze Yang, Bin Tan, Miina Rautiainen, Ping Zhang, Jiannan Hu, Nikolay V. Shabanov, Sune Linder,
Yuri Knyazikhin, and Ranga B. Myneni

Abstract—The validation of moderate-resolution satellite leaf
area index (LAI) products such as those operationally gener-
ated from the Moderate Resolution Imaging Spectroradiometer
(MODIS) sensor data requires reference LAI maps developed
from field LAI measurements and fine-resolution satellite data.
Errors in field measurements and satellite data determine the ac-
curacy of the reference LAI maps. This paper describes a method
by which reference maps of known accuracy can be generated with
knowledge of errors in fine-resolution satellite data. The method
is demonstrated with data from an international field campaign
in a boreal coniferous forest in northern Sweden, and Enhanced
Thematic Mapper Plus images. The reference LAI map thus
generated is used to assess modifications to the MODIS LAI/fPAR
algorithm recently implemented to derive the next generation of
the MODIS LAI/fPAR product for this important biome type.

Index Terms—Leaf area index (LAI), Moderate Resolution-
Imaging Spectroradiometer (MODIS), validation of satellite
biophysical products.

I. INTRODUCTION

THE LAND team of the Moderate Resolution Imaging
Spectroradiometer (MODIS) instruments aboard the Na-

tional Aeronautics and Space Administration’s Terra and Aqua
satellites is responsible for the development of algorithms and
validation of various biophysical data products operationally
generated from the sensor data. The products include vegetation
leaf area index (LAI) and fraction of photosynthetically active
radiation (400–700 nm) absorbed by vegetation (fPAR) [1]. LAI
and fPAR are used in climate modeling to describe the exchange
of fluxes of energy, mass (e.g., water and CO ), and momentum
between the surface and the planetary boundary layer [2].

The validation of these biophysical products is presently a
critical aspect of MODIS research. These activities are a key
source of information to users on product accuracy and also
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serve as the basis for further algorithm and product refinement
research. Product validation refers to assessment of product ac-
curacy through comparisons to ground measurements that are
scaled to MODIS resolution [3]. A direct comparison between
sparsely sampled point field measurements and corresponding
moderate-resolution satellite products (1 km) is not feasible be-
cause of scale-mismatch, geolocation errors, and land surface
heterogeneity. Therefore, an intermediate step which involves
scaling of field measurements to the resolution of satellite sensor
products is required.

In the case of LAI validation, the spatial scaling is accom-
plished through the generation of a fine-resolution (20–30 m)
map of an area covering several moderate-resolution pixels,
typically 10 km 10 km. This reference LAI map is derived
from correlations between field measurements and fine-reso-
lution satellite reflectance data over a smaller area (1 km
1 km or 3 km 3 km) within this large region [4]–[6]. The
fine-resolution LAI map when aggregated to the resolution of
the MODIS product serves as the benchmark. Therefore, it is
important to characterize the accuracy of the benchmark itself
in order to have confidence in the validation procedure, and this
is the theme of this paper.

An accurate site-specific relationship between field-measured
LAI and fine-resolution satellite reflectance data must be estab-
lished in order to generate the reference LAI map. A small per-
turbation in either of these data is likely to alter the relation-
ship. These perturbations can arise in many ways. For example,
LAI values at the validation site are derived from measurements
of downward radiation fluxes measured below the vegetation
canopy. The equations at the heart of this derivation are based
on certain assumptions about the spatial and angular distribu-
tion of canopy elements that are often not met in reality. Fur-
ther, the precision of field measurements, especially in case of
sparse vegetation canopies, can be low because of spatial hetero-
geneity. Likewise, the fine-resolution surface reflectance data
have a certain accuracy and precision caused by incomplete at-
mospheric correction, calibration and geolocation errors, etc.
Thus, errors in both field and satellite measurements must be
accounted in order to derive an unbiased site-specific relation-
ship [5], [7].

The objective of this paper is to develop a simple method
that accounts for measurement errors in the generation of a
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fine-resolution reference LAI map. The method will be demon-
strated with data from an international field campaign in a
boreal coniferous forest in northern Sweden, and Enhanced
Thematic Mapper Plus (ETM+) images. The reference LAI
map thus generated will be used to assess modifications to the
MODIS LAI/fPAR algorithm recently implemented to derive
the next generation of the MODIS LAI/fPAR product for this
important biome type.

II. METHODS

The simple linear regression model has the form
where and are the coefficients of the regression

line and represents measurement errors in . We assume that
has zero mean, constant variance, and zero covariances. The

coefficients and can be estimated by the method of ordinary
least square (OLS) through minimization of the Euclidean dis-
tance between vectors of observed and predicted

variables. Errors in measurements of the dependent variable
do not bias the estimated relationship but can result in poor

precision of the estimator [8]. It is generally assumed that the
vector of observed independent variables is free of any mea-
surement errors, and that measurement errors in are indepen-
dent of . If there are measurement errors in the independent
variable, i.e., , and the measurement error in
is uncorrelated with both the true values and the measurement
errors of the independent variable, the estimate of will be
biased [7]–[9], i.e.,

(1)

Here is the variance of ; denotes the variance
of the measurement error in the dependent variable; and

is the variance of true values. The measurement error and
true values are assumed to be uncorrelated. The coefficient
is called measurement precision in remote sensing [5].

Thus, any measurement error in will result in a bias in
the coefficient . If is positive in the relationship between
field-measured LAI and fine-resolution satellite reflectance
data , the LAI values above the mean will be underestimated
and overestimated below the mean [7]. Any reference or bench-
mark LAI maps generated with regression models that do not ac-
count for measurement errors will not serve the purpose of val-
idation of moderate-resolution sensor products, especially the
MODIS LAI/fPAR products because the corresponding algo-
rithm explicitly accounts for errors in input surface reflectances
[10], [11].

Information on measurement errors can help to improve es-
timates of [12]–[14]. If measurement errors in and are
uncorrelated, then and the true regression coef-
ficient takes the following form [7]:

(2)

Thus, the regression coefficient derived directly from mea-
surements using the OLS method should be multiplied by

to obtain the unbiased estimate. It follows from (1) and (2)
that

(3)

The measurement precision of reflectance data can be
evaluated with data from invariant targets. Successive and repet-
itive reflectance measurements of these surfaces may be used to
characterize the mean, variance, and precision, for we can ex-
pect minimal changes in the reflectance of an invariant surface
if the instrument and the atmospheric correction are stable. The
average relative precision (precision divided by mean) of the
MODIS surface reflectance product for an invariant vegetated
surface was estimated to be about 13% to 15% at the red and
near-infrared (NIR) wavelength [15]. We will use this informa-
tion to estimate the correction coefficient .

Let be the upper limit of relative precision in satel-
lite reflectance data. We shall assume the relative errors to be
distributed in the interval between and . Thus,
the remotely sensed variable can be approximated as

where is a random variable distributed between
1 and 1 which has zero expectation, , and a finite vari-

ance . If the observed variable and its error are inde-
pendent then

(4)

Resolving this equation for one gets

(5)

Substituting this equation into (3) results in

(6)

where is the coefficient of variation of . This
equation will be used to correct the estimate . The intercept
of the linear regression model is given as .

III. REFERENCE LAI MAP AND MODIS LAI PRODUCT

A. Data Used

The Flakaliden field campaign was conducted between June
25 and July 4, 2002 with the objective of collecting data needed
for validation of two MODIS products for needle forests—LAI
and fraction of photosynthetically active radiation (fPAR)
absorbed by the vegetation canopy. There were 39 participants
from seven countries: Sweden, Finland, U.S., Italy, Germany,
Estonia, and Iceland. The Flakaliden is located in northern
Sweden, a region dominated by boreal forests. Leaf area index
data were collected at three forested sites (Fig. 1) located near
the town of Vindeln, with operations based at the Flakaliden
site. The sites were chosen to represent different types of boreal
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Fig. 1. Forested sites where LAI data were collected. These sites are located
near the town of Vindeln, Sweden, with operations based at Flakaliden, a
long-term research site which has been operational since 1987 [16]. The 30 km
� 30 km area for which the reference LAI map was produced is shown as a
parallelogram. This figure is by courtesy of Matt Jolly.

forests, both homogeneous and mixed Norway spruce and
Scots pine stands. The sites are described in some detail below.

Flakaliden Research Area (Site 1): LAI data were collected
in six plots of planted 40-year-old Norway spruce (Picea Abies
(L.) Karst). Each plot is a 50 m 50 m area. Measurements
were made on a six by three grid set up in the center of the plot.
Four of the plots had been subjected to nutrient optimization
since 1987. The long-term nutrient treatment had resulted in
drastic effects on stand structure and production [16]. Global
positioning system (GPS) coordinates were also recorded. The
mean LAI of the six plots is 3.64 STD .

Site 2: This site represents a uniform pine stand composed of
Scots pine (Pinus Sylvestris). A 100 m 100 m plot within the
stand was chosen for sampling. Leaf area index and GPS mea-
surements were collected on a 20 m 20 m grid point corners
within this plot. The mean LAI and STD for this site are 0.98
and 0.05, respectively.

Site 3: This site is a 1 km 1 km mixed needle leaf forest
stand typical of the vegetation in a 200 km 200 km area around
Flakaliden. The site was divided into four 1-km east-to-west
transects spaced about 250 m apart. Leaf area index and GPS
measurements were made at every 10 to 20 m along these tran-
sects. The mean LAI and STD are 1.87 and 0.6, respectively.
Fig. 2 shows a histogram of LAI values collected at the three
sites.

Leaf area index was measured with a LAI-2000 plant canopy
analyzer. Readings were taken using a 45 restrictor. LAI values
were calculated according to Miller’s derivation [17], which is
the default method used by LAI-2000. These values are esti-
mates of effective leaf area index. The MODIS LAI product
in the case of needle canopies is also effective leaf area index
because the algorithm considers shoots as the basic foliage el-
ements and retrieves shoot silhouette area index [18]–[20]. It
should be noted that the default method converts canopy gap
fraction into LAI under the assumption of uniformly distributed
foliage elements and, moreover, the LAI-2000 cannot distin-
guish between foliage and woody material. This can cause bi-
ases in relationships between MODIS and field effective LAIs.

Fig. 2. Histogram of LAI values collected at three forest sites. Mean LAI is
1.83. STD is 1.04.

A cloud-free Landsat ETM+ image from August 20, 2002
was registered to the ground sampling points using aerial
photographs with accurate coordinates. The ETM+ digital
counts were converted to reflectance by the dark object sub-
traction method [21]. Data from bands 3 (red, 630–690 nm),
4 (NIR, 780–900 nm), and 5 [shortwave infrared (SWIR),
1550–1750 nm] were used in this study. There were 46 ETM+
pixels within which field LAI measurements were taken. The
average of local LAI values is assumed to be the LAI of the
corresponding ETM+ pixel.

B. Linear Regression Model

The reduced simple ratio (RSR) [22] is used to derive a linear
regression model

RSR (7)

where , , and are the red, NIR, and SWIR re-
flectances, respectively, and the and
are the minimum and maximum SWIR reflectance found in the
ETM+ image. Several studies suggested the use of SWIR re-
flectance and the RSR to account for the impact of understory
reflectances [22].

If errors in spectral reflectances are independent, the relative
error in the RSR can be obtained by differentiating (7) and ne-
glecting second- and higher order terms

RSR
RSR

RSR

(8)

where , red, NIR, are relative errors in ETM+ surface
reflectances, and represents normalized by

. Although errors in ETM+ surface re-
flectance can be different than errors in MODIS data, we use em-
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Fig. 3. Correlation between the RSR and LAI. The regression line obtained
with the standard OLS method is LAI = 0:45 � RSR + 0:19. The regression
model changes to LAI = 0:560 � RSR � 0:24 after applying the correction
procedure which accounts for measurements errors.

pirical estimates of the upper limit of the relative precision de-
rived for the MODIS red and NIR spectral bands, ;

, [11] and a theoretical estimate for the MODIS
SWIR band, [11], [24]. Thus, the relative pre-
cision can be estimated from above as

. The coefficient of variation calculated for the
46 ETM+ pixels is 0.57. The correction factor calculated from
(6) takes the value 1.26. The variance is set to 1/3, which cor-
responds to a uniformly distributed random variable .

It should be noted that the above assumption about spec-
tral independence of errors is not always true. In this case,
information about interdependences of spectral reflectances
is needed to evaluate the relative precision. Their interdepen-
dences are usually given by a system of nonlinear equations

, which, in turn, determines a
true value of . This information was not available at time
of this research, and thus (8) was used to estimate the relative
precision.

Fig. 3 shows variation in LAI with respect to the RSR. The
regression of LAI with respect to the RSR with the OLS method
is LAI RSR . After applying the correction
technique which accounts for errors in satellite observations, as
described earlier, the linear regression model changes to LAI

RSR . The is 0.81 in both cases.

C. Comparison of Reference and MODIS LAI Maps

A previous study on the validation of Collection 4 MODIS
LAI product at a coniferous forest site in Finland found the
product to be accurate to within 0.5 LAI but the precision to
be much worse than expected [4]. This suggested a need for
algorithm refinements. Several modifications have been imple-
mented in the version of the algorithm slated for Collection 5
processing [25]. A prototype of the MODIS LAI product gen-
erated with this Collection 5 algorithm is tested here with data
from the Flakaliden campaign. To this end, a 30 km 30 km
area near Flakaliden (Fig. 1) was selected as the test site for

Fig. 4. Correlation between the reference and MODIS LAI values. The
regression line obtained with the standard OLS method is LAI =

0:67LAI + 0:9. The regression model changes to LAI =

0:99LAI + 0:29 after applying the correction procedure which
accounts for precision of the reference LAI values.

comparing the MODIS product to reference LAI values. There
are two ways to generate such reference LAI values.

First, by regressing field-measured LAI and the corre-
sponding ETM+-based RSR and using this regression model
(Fig. 3—OLS regression line) to generate a 30-m resolution
LAI map of the 30 km 30 km study area. This fine-resolution
map is then aggregated to 1-km resolution and compared to the
corresponding MODIS product. The MODIS LAI will be taken
as the independent variable when regressing its values and the
reference map in our analyses since its precision is known.
The regression line gives the best possible prediction of the
“true LAI” given MODIS product. In this case, the resulting
regression line is LAI LAI , i.e., the
MODIS LAI values overestimate “the true values” above the
mean LAI and underestimates below the mean. This neither
validates nor invalidates the MODIS product because the model
used to generate the fine-resolution reference LAI map did not
take into account errors in field LAI measurements and ETM+
surface reflectances.

Second, by regressing field-measured LAI and ETM+ based
RSR using the correction technique which explicitly accounts
for errors in satellite observations [see (6)] (Fig. 3—Corrected
regression line). The resulting fine-resolution map of the 30 km

30 km study area is then aggregated to 1-km resolution and
compared to the corresponding MODIS LAI product (Fig. 4)
without accounting for the precision of the MODIS product.
The regression between the reference LAI and MODIS product
is LAI LAI . Although a better corre-
spondence is obtained, agreement between reference values
and MODIS product is still poor. Again, this neither validates
nor invalidates the MODIS product because this comparison
does not take into account the precision of the MODIS LAI
values.

The precision of the MODIS LAI product is about 0.2 [5],
[15]. Taking this precision into account through the correction
method developed in this paper, the resulting regression is
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LAI LAI . This clearly shows much
better comparability between the MODIS product and the
reference values. Thus, it is important to account for both: 1)
errors in fine-resolution satellite-based surface reflectances
in building an empirical model for generating fine-resolution
reference LAI maps and 2) precision of the moderate-resolu-
tion satellite sensor products, such as the MODIS LAI, when
comparing the reference and retrieved values.

IV. CONCLUSION

Validation refers to assessment of a satellite sensor product’s
accuracy through comparisons to ground measurements. A
direct comparison between sparsely sampled point field mea-
surements and corresponding moderate-resolution satellite
products (1 km) is not feasible because of scale-mismatch,
geolocation errors, and land surface heterogeneity. Therefore,
scaling of field measurements to the resolution of satellite
sensor products is a key intermediate step in validation. In
the case of LAI validation, the spatial scaling is accomplished
through the generation of a fine-resolution (20–30 m) map of
an area covering several moderation resolution pixels, typ-
ically 10 km 10 km. This reference LAI map is derived
from correlations between field measurements and fine-reso-
lution satellite-measured reflectance data over a smaller area
(1 km 1 km or 3 km 3 km) within this large region. The
fine-resolution LAI map when aggregated to the resolution
of the MODIS LAI product serves as the reference field. The
analysis presented in this paper shows that it is important to
account for both:1) errors in field measurements of LAI and
fine-resolution satellite-based surface reflectances in building
empirical models for generating fine-resolution reference LAI
maps and 2) precision of the moderate-resolution satellite
sensor product, such as the MODIS LAI, when comparing it to
reference values.
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