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ABSTRACT 27 

We assess the ability of 18 Earth System Models to simulate the land and ocean carbon cycle for the 28 

present climate. These models will be used in the next Intergovernmental Panel on Climate Change 29 

(IPCC) Fifth Assessment Report (AR5) for climate projections, and such evaluation allows 30 

identification of the strengths and weaknesses of individual coupled carbon-climate models as well as 31 

identification of systematic biases of the models.  32 

Results show that models correctly reproduce the main climatic variables controlling the spatial and 33 

temporal characteristics of the carbon cycle. The seasonal evolution of the variables under 34 

examination is well captured. However, weaknesses appear when reproducing specific fields: in 35 

particular, considering the land carbon cycle, a general overestimation of photosynthesis and leaf area 36 

index is found for most of the models, while the ocean evaluation shows that quite a few models 37 

underestimate the primary production.   38 

We also propose climate and carbon cycle performance metrics in order to assess whether there is a set 39 

of consistently better models for reproducing the carbon cycle. Averaged seasonal cycles and 40 

probability density functions (PDFs) calculated from model simulations are compared with the 41 

corresponding seasonal cycles and PDFs from different observed datasets.  42 

Although the metrics used in this study allow identification of some models as better or worse than the 43 

average, our ranking is partially subjective due to the choice of the variables under examination, and 44 

can be also sensitive to the choice of reference data. In addition, we found that the model 45 

performances show significant regional variations. 46 

 47 

 48 

 49 

 50 

 51 

 52 

 53 
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1. INTRODUCTION 54 

Earth System Models (ESMs) are complex numerical tools designed to simulate physical, chemical 55 

and biological processes taking place on Earth between the atmosphere, the land and the ocean. 56 

Worldwide, only a few research institutions have developed such models and used them to carry out 57 

historical and future simulations in order to project future climate change.  58 

ESMs, and numerical models in general, are never perfect. Consequently, before using their results to 59 

make future projection of climate change, an assessment of their accuracy reproducing several 60 

variables for the present climate is required. In fact, the ability of a climate model to reproduce the 61 

present-day mean climate and its variation adds confidence to projections of future climate change 62 

(Reifen and Toumi 2009). Nevertheless, good skills reproducing the present climate do not necessarily 63 

guarantee that the selected model is going to generate a reliable prediction of future climate (Reichler 64 

and Kim 2008).  65 

ESMs are routinely subjected to a variety of tests to assess their capabilities, and several papers 66 

provide extensive model evaluation (e.g. Tebaldi et al. 2006; Lin et al. 2007; Lucarini et al. 2007; 67 

Santer et al. 2007; Gillett et al. 2008; Gleckler et al. 2008; Reichler and Kim 2008; Schneider et al. 68 

2008; Santer et al. 2009; Tjiputra et al 2009; Knutti et al. 2010; Steinacher et al. 2010; Radić and 69 

Clarke 2011; Scherrer 2011; Chou et al. 2012; Séférian et al. 2012; Yin et al. 2012). In these papers, 70 

the authors describe the performance of climate models by measuring their ability to simulate today’s 71 

climate at various scales from global to regional. Results reported in these papers indicate that not all 72 

models simulate the present climate with similar accuracy. Furthermore, it should be noted that these 73 

papers also highlighted that the best models for a particular region of the Earth do not always achieve 74 

the same degree of performance in other regions. Additionally, the skill of the models is different 75 

according to the meteorological variables examined. 76 

Within this context, the aim of this paper is twofold. The first aim is to quantify how well the CMIP5 77 

(Coupled Model Intercomparison Project phase-5, Taylor et al. 2011) models represent the 20
th

 78 

century carbon cycle over the land and ocean, as well as the main climatic variables that influence the 79 

carbon cycle. 80 
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Traditional model evaluation, or diagnostics (e.g. Collins et al. 2006; Delworth et al. 2006; Johns et al. 81 

2006; Zhou and Yu 2006; Waliser et al. 2007; Lin et al. 2008; Volodin et al. 2009; Marti et al. 2010; 82 

Xavier et al. 2010; Arora et al. 2011; Chylek et al. 2011; Collins et al. 2011; Radić and Clarke 2011; 83 

Watanabe et al. 2011), provide detailed assessments of the strengths and weaknesses of individual 84 

climate models based principally on seasonal and annual timescales, as well as on anomaly maps and 85 

zonal means. 86 

Our model evaluation is performed at three different time scales: first, we analyze the long-term trend, 87 

which provides information on the model capability to simulate the temporal evolution over the 20
th

 88 

century, given GHG and aerosol radiative forcing. Second, we analyze the interannual variability 89 

(IAV) of physical variables as a constraint on the model capability to simulate realistic climate 90 

patterns that influence both ocean and continental carbon fluxes (Rayner et al 2008). Third, we 91 

evaluate the modelled seasonal cycle which, particularly in the Northern Hemisphere, constrains the 92 

model’s simulation of the continental fluxes.  93 

The second aim of the paper is to assess whether there is a set of consistently better models 94 

reproducing the carbon cycle and the main physical variables controlling the carbon cycle. One of the 95 

scientific motivations is that modellers commonly make use of large climate model projections to 96 

underpin impact assessments. So far, IPCC assumed that all climate models are equally good and they 97 

are equally weighted in future climate projections (Meehl et al. 2007). If an impacts modeller wants to 98 

choose the best models for a particular region however, assuming all models are equally good is not a 99 

requirement and models could be ranked, weighted or omitted based on performance.  100 

Contrasting with diagnostics, metrics could be developed and used for such purposes (Gleckler et al. 101 

2008; Maximo et al. 2008; Cadule et al. 2010; Räisänen et al. 2010; Chen et al. 2011; Errasti et al. 102 

2011; Moise et al. 2011; Radić and Clarke 2011).  103 

 104 

 105 

 106 

 107 
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2. MODELS, REFERENCE DATA SETS, AND ASSESMENT OF PERFOMANCES 108 

2.1 CMIP5 simulations 109 

In this study we analyze outputs from 18 coupled carbon-climate models that are based on the set of 110 

new global model simulations planned in support of the IPCC Fifth Assessment Report (AR5). These 111 

simulations are referred to as CMIP5 (Coupled Model Intercomparison Project phase-5). This set of 112 

simulations comprises a large number of model experiments, including historical simulations, new 113 

scenarios for the 21
st
 century, decadal prediction experiments, experiments including the carbon cycle 114 

and experiments aimed at investigating individual feedback mechanisms (Taylor et al. 2011). The 115 

CMIP5 multi-model data set has been archived by PCMDI and has been made available to the climate 116 

research community (http://cmip-pcmdi.llnl.gov/cmip5/). 117 

Here we summarize the physical and biogeochemical model’s performances for the historical 118 

experiment only (i.e. ESMs driven by CO2 concentration). Among all the available CMIP5 ESMs, we 119 

selected the only models simulating both the land and ocean carbon fluxes and reporting enough 120 

variables for our analysis.  121 

The models used in this study, as well as their atmospheric and ocean grids, are listed in Table 1; note 122 

that all the diagnostics and statistics are computed after regridding each model’s output, and reference 123 

datasets, to a common 2x2 degrees grid. In case of carbon fluxes, our regridding approach assumed 124 

conservation of mass, while for the physical fields as well as for the LAI, we used a bilinear 125 

interpolation. 126 

Table 2 reports the land and ocean biogeochemical models used by ESMs, while Table 3 lists the 127 

variables considered in this study with the number of independent realizations (or ensemble member) 128 

for each model/variable. In fact, some models have only one run (realization), but other models have 129 

up to five runs (Table 3). These realizations are climate simulations with different initial conditions. 130 

In the next section, we present results only from the first realization for each individual climate model, 131 

while for the final ranking we use the realization with the highest score for each individual model. In 132 

general it is expected that the ensemble of runs associated with a particular model with the same 133 

external forcing will reproduce very similar seasonal cycle and range of climate variability, 134 
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irrespective of the initial conditions (Errasti et al. 2011). However because of each ensemble member 135 

having its own internal variability (largely unforced), the interannual variability of the ensemble 136 

average is expected to be reduced with respect to one individual simulation; for such reason we 137 

decided to use results from only the first realization, rather than the ensemble mean over the available 138 

realizations. 139 

Our analysis focuses on the historical period (20
th

 century simulations; historical experiment, CO2 140 

concentration driven), which was forced by a variety of externally imposed changes such as increasing 141 

greenhouse gas and sulfate aerosol concentrations, change in solar radiation, and forcing by volcanic 142 

eruptions. Considering the land surface, except for BCC-CSM1, BCC-CSM1-M and INMCM4 all 143 

models account for land use change (Table 2); likewise, except BCC models, NorESM1-ME, and 144 

CESM1-BGC none of the models have an interactive land nitrogen cycle (Table 2). 145 

Since considerable uncertainty as to the true forcing remains, the forcing used and its implementation 146 

in the climate model is not exactly the same for all models (Jones et al. 2011). Rather, these runs 147 

represent each group’s best effort to simulate the 20
th

 century climate. The models were spun up under 148 

conditions representative of the pre-industrial climate (generally 1850 for almost all models, see Table 149 

2). From this point, external time varying forcing, consistent with the historical period, was 150 

introduced, and the simulations were extended through to year 2005. 151 

Although the CMIP5 archive includes daily means for a few variables, we focus here only on the 152 

monthly mean model output, since this temporal frequency is high enough to provide a reasonably 153 

comprehensive picture of model performance both in terms of mean state of the system, its seasonal 154 

and interannual variability, and trends. 155 

In this study we focus mostly on the last 20 years of the 20
th

 century simulations (1986–2005). During 156 

this period, in fact, the observational record is most reliable and complete, largely due to the expansion 157 

and advances in space-based remote sensing of vegetation greenness.        158 

 159 

 160 

 161 
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2.2 Reference data 162 

The main focus of this paper is the evaluation of the land and ocean carbon fluxes. However, climatic 163 

factors exert a direct control on the terrestrial and ocean carbon exchange with the atmosphere 164 

(Houghton 2000; Schaefer et al. 2002), therefore we also provide an evaluation of the physical 165 

variables. The main physical factors controlling the land carbon balance are the surface temperature 166 

and precipitation (Piao et al. 2009), but also the cloud cover through its control on incoming radiation 167 

is important for the land carbon balance; however we decided to consider only the two most important 168 

variables influencing the land carbon cycle (Piao et al. 2009). In the ocean, physical fields include sea 169 

surface temperature (SST), which is important for biological growth and respiration rates as well as 170 

air–sea gas exchange, and mixing layer depth (MLD), which influences nutrient entrainment and the 171 

average light field observed by the phytoplankton (Martinez et al. 2002).  172 

Considering the land and ocean carbon fluxes, some of the available datasets used for the comparison 173 

come from atmospheric inversion (discussed in section 2.2.6). To avoid pitfalls arising from weak data 174 

constraints, most inversion studies have relied on regularization techniques that include the 175 

aggregation of estimate fluxes over large regions (Engelen et al. 2002); as matter of fact, aggregating 176 

the observed regional fluxes in space is one way to lower the uncertainty due to the limited 177 

observational constraint (Kaminski et al. 2001; Engelen et al. 2002). Therefore, we only evaluate the 178 

net CO2 fluxes simulated by models at global scale or over large latitudinal bands (see below). For all 179 

other model variables, the evaluation is performed at the grid level, conserving the spatial information. 180 

However, when presenting the results, all model performances are averaged over the following 181 

domains for land variables: Global (90S-90N), Southern Hemisphere (20S-90S), Northern Hemisphere 182 

(20N-90N), and Tropics (20S-20N). Considering the ocean carbon, according to Gruber et al. (2009) 183 

we aggregate results over 6 large regions: Globe (90S-90N), Southern Ocean (90S-44S), temperate 184 

Southern Ocean (44S-18S), Tropics (18S-18N), temperate Northern Ocean (18N-49N) and Northern 185 

Ocean (49N-90N). 186 

In the following sub-sections we describe the different dataset used for the model comparison (see also 187 

Table 3). 188 
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2.2.1 Land temperature and precipitation 189 

Monthly gridded surface temperature and precipitation were constructed from statistical interpolation 190 

of station observations by the Climatic Research Unit (CRU) of the University of East Anglia (New et 191 

al. 2002; Mitchell and Jones 2005). CRU provides a global coverage only for land points between 192 

1901 and 2006 with a spatial resolution of 0.5° (Table 3). Most of previous model-data comparison 193 

studies use ERA40 (or other reanalysis) instead of the CRU dataset, due to the complete global land 194 

and ocean coverage, and the way these reanalysis are built. Specifically, the reanalysis are a 195 

combination of weather model output and a large amount of assimilated different observational data. 196 

Therefore, unlike CRU that is built on statistical principles, the reanalysis are based on physical 197 

principles (Scherrer 2011). Also comparison of the ERA40 dataset with the CRU land temperature 198 

shows good agreement for most regions and the differences are comparatively small in comparison to 199 

the model differences (Scherrer 2011). However, CRU provides data for the entire 20
th

 century 200 

allowing the evaluation of the simulated temperature and precipitation trends.  201 

 202 

2.2.2 Sea Surface Temperature 203 

For the Sea Surface Temperature (SST) evaluation we use the HadISST (Rayner et al. 2003), a 204 

combination of monthly global SST and sea ice fractional coverage on a 1°x1° spatial grid from 1870 205 

to date.  206 

The SST data are taken from the Met Office Marine Data Bank (MDB), which from 1982 onward also 207 

includes data received through the Global Telecommunications System. To enhance data coverage, 208 

monthly median SSTs for 1871–1995 from the Comprehensive Ocean–Atmosphere Data Set 209 

(COADS) were also used where there were no MDB data. HadISST temperatures are reconstructed 210 

using a two-stage reduced-space optimal interpolation procedure, followed by superposition of 211 

quality-improved gridded observations onto the reconstructions to restore local detail (Dima and 212 

Lohmann 2010). SSTs near sea ice are estimated using statistical relationships between SST and sea 213 

ice concentration (Rayner et al. 2003). 214 

 215 



 9 

2.2.3 Mixed Layer Depth 216 

The ocean Mixed Layer Depth (MLD) can be defined in different ways, according to the dataset used. 217 

In this paper, MLD data are from the Ocean Mixed Layer Depth Climatology Dataset as described in 218 

de Boyer Montégut et al. (2004). Data are available in monthly format on a 2°×2° latitude–longitude 219 

mesh and were derived from more than five million individual vertical profiles measured between 220 

1941 and 2008, including data from Argo profilers, as archived by the National Oceanographic Data 221 

Centre (NODC) and the World Ocean Circulation Experiment (WOCE). In order to solve the MLD 222 

overestimation due to salinity stratification, in this dataset the depth of the mixed layer is defined as 223 

the uppermost depth at which temperature differs from the temperature at 10 m by 0.2°C. A validation 224 

of the temperature criterion on moored time series data shows that this method is successful at 225 

following the base of the mixed layer (de Boyer Montégut et al. 2004). 226 

 227 

2.2.4 Terrestrial Gross Primary Production 228 

Gross Primary Production (GPP) represents the uptake of atmospheric CO2 during photosynthesis and 229 

is influenced by light availability, atmospheric CO2 concentration, temperature, availability of water 230 

and nitrogen, and several interacting factors (e.g. atmospheric pollution, harvesting, insect attacks). 231 

Direct GPP observations at global scale and for our reference period (1986-2005) do not exist, since in 232 

the 1980s no measurement sites existed, and satellite observations of GPP were not yet available. 233 

Recently, satellite derived GPP products have been developed (e.g Mao et al. 2012) but do not cover 234 

the reference period. 235 

Here we use GPP estimates derived from the upscaling of data from the FLUXNET network of eddy 236 

covariance towers (Beer et al. 2010). The global FLUXNET upscaling uses data oriented diagnostic 237 

models trained with eddy covariance flux data to provide empirically derived, spatially gridded fluxes 238 

(Beer et al. 2010). In this study, we use the global FLUXNET upscaling of GPP based on the model 239 

tree ensembles (MTE) approach, described by Jung et al. (2009, 2011). The upscaling relies on 240 

remotely sensed estimates of the fraction of absorbed photosynthetically active radiation (fAPAR), 241 

climate fields, and land cover data. The spatial variation of mean annual GPP as well as the mean 242 
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seasonal course of GPP are the most robust features of the MTE-GPP product, while there is less 243 

confidence on its interannual variability and trends (Jung et al 2011). MTE-GPP estimates are 244 

provided as monthly fluxes covering the period 1982-2008 with a spatial resolution of 0.5° (Table 3).   245 

 246 

2.2.5 LAI 247 

Leaf area index (LAI) is defined as the one-sided green leaf area per unit ground area in broadleaf 248 

canopies and as one-half the total needle surface area per unit ground area in coniferous canopies 249 

(Myneni et al. 2002). The LAI data set used in this study (LAI3g) was generated using an Artificial 250 

Neural Network (ANN) from the latest version (third generation) of GIMMS AVHRR NDVI data for 251 

the period July 1981 to December 2010 at 15-day frequency (Zhu et al. 2013). The ANN was trained 252 

with best-quality Collection 5 MODIS LAI product and corresponding GIMMS NDVI data for an 253 

overlapping period of 5 years (2000 to 2004) and then tested for its predictive capability over another 254 

five year period (2005 to 2009). The accuracy of the MODIS LAI product is estimated to be 0.66 LAI 255 

units (Yang et al. 2006); further details are provided in Zhu et al. (2012). 256 

 257 

2.2.6 Land-atmosphere and ocean-atmosphere CO2 fluxes 258 

The net land-atmosphere (NBP) and ocean-atmosphere (fgCO2) CO2 exchange estimated by CMIP5 259 

models are compared with results from atmospheric inversions of the Transcom 3 project (Gurney et 260 

al. 2004; Baker et al. 2006), an intercomparison study of inversions (Gurney et al. 2002, 2003, 2004, 261 

2008). Within this project a series of experiments were conducted in which several atmospheric tracer 262 

transport models were used to calculate the global carbon budget of the atmosphere. 263 

Transcom 3 results represent the a posteriori surface CO2 fluxes inferred from monthly atmospheric 264 

CO2 observations at a set of GLOBALVIEW stations after accounting for the effects of atmospheric 265 

transport on a prescribed a priori surface flux, which is corrected during the atmospheric inversion 266 

(Gurney et al., 2003). In other words, the goal of the atmospheric inversion process is to find the most 267 

likely combination of regional surface net carbon fluxes that best matches observed CO2 within their 268 
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error, given values of prior fluxes and errors, after those fluxes have been transported through a given 269 

atmospheric model (Gurney et al., 2003, 2008). 270 

Flux estimates from atmospheric inverse models are comprehensive, in the sense that all ecosystem 271 

sources and sinks, fossil fuel emissions, and any other processes emitting or absorbing CO2 (e.g. 272 

aquatic CO2 fluxes, decomposition of harvested wood and food products at the surface of the Earth) 273 

are, in principle, captured by the inversion CO2 fluxes results.  274 

Transcom 3 also provides an ensemble mean computed over 13 available atmospheric models in the 275 

period 1996-2005 at a spatial resolution of 0.5°. The use of several models was motivated because 276 

large differences in modelled CO2 were found between models using the same set of prescribed fluxes 277 

(Gurney et al. 2004). However it is argued that an average of multiple models may show 278 

characteristics that do not resemble those of any single model, and some characteristics may be 279 

physically implausible (Knutti et al. 2010). In absence of any other information to select the most 280 

realistic transport models, Gurney et al. (2002) used the “between-model” standard deviation to assess 281 

the error of inversions induced by the transport model errors. In addition, Stephens et al. (2007) 282 

suggest that an average taken across all models does not provide the most robust estimate of northern 283 

versus tropical flux partitioning. Additionally, they point to three different models as best representing 284 

observed vertical profiles of [CO2] in the Northern Hemisphere (Stephens et al. 2007). For such 285 

reasons, instead of using the Transcom 3 ensemble mean and the “between-model” standard deviation, 286 

we used results from the only JMA model (Gurney et al. 2003), being one of the three models 287 

suggested by Stephens et al. (2007) and the only one available in our reference period 1986-2005.  288 

We also use results from the Global Carbon Project (GCP, http://www.tyndall.ac.uk/global-carbon-289 

budget-2010), which estimates, using several models and observations, the ocean-atmosphere and 290 

land-atmosphere CO2 exchange (Le Quéré et al. 2009). These results are the most recent estimates of 291 

global CO2 fluxes for the period 1959-2008. Within this project, the global ocean uptake of 292 

anthropogenic carbon was estimated using the average of four global ocean biogeochemistry models 293 

forced by observed atmospheric conditions of weather and CO2 concentration (Le Quéré et al. 2009). 294 

The global residual land carbon sink was estimated from the residual of the other terms involved in the 295 
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carbon budget, namely the residual land sink is equal to the sum of fossil fuel emissions and land use 296 

change less the atmospheric CO2 growth and the ocean sink (Le Quéré et al. 2009). From the GCP 297 

analysis, the NBP can easily be computed as the difference between the residual sink and the land use 298 

change. 299 

Finally, in addition to the inversion and GCP data, for the ocean-atmosphere flux we also use results 300 

from Takahashi et al. (2002, 2009). This product contains a climatological mean distribution of the 301 

partial pressure of CO2 in seawater (pCO2) over the global oceans with a spatial resolution of 4° 302 

(latitude) x 5° (longitude) for the reference year 2000 based upon about 3 million measurements of 303 

surface water pCO2 obtained from 1970 to 2007 (Takahashi et al. 2009). It should be noted that 304 

Takahashi et al. (2002) data are used as prior knowledge in many atmospheric inversions, suggesting 305 

that the two datasets are not completely independent.  306 

Although the difference between the partial pressure of CO2 in seawater and that in the overlying air 307 

(ΔpCO2) would be a better reference data set for the oceanic uptake of CO2, in this study we have used 308 

the net sea-air CO2 flux (fgCO2) to be consistent with the land flux component of this paper. The net 309 

air-sea CO2 flux is estimated using the sea-air pCO2 difference and the air-sea gas transfer rate that is 310 

parameterized as a function of wind speed (Takahashi et al. 2009). 311 

 312 

2.2.7 Vegetation and soil carbon content 313 

Heterotrophic organisms in the soil respire dead organic carbon, the largest carbon pool in the 314 

terrestrial biosphere (Jobbagy and Jackson 2000); therefore the soil carbon, through the heterotrophic 315 

respiration, represents a critical components of the global carbon cycle.  316 

There are several global datasets that include estimates of soil carbon to a depth of 1 m. Generally, 317 

there are two different approaches to creating such datasets: (1) estimation of carbon stocks under 318 

natural, or mostly undisturbed, vegetation using climate and ecological life zones (2) extrapolation of 319 

soil carbon data from measurement in soil profiles using soil type (Smith et al., 2012). 320 

The Harmonized World Soil Database (HWSD) developed by Food and Agriculture Organization of 321 

the United Nations (FAO 2012) and International Institute for Applied Systems Analysis (IIASA) is 322 
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the most recent, highest resolution global soils dataset available. It uses vast volumes of recently 323 

collected regional and national soil information to supplement the 1:5000000 scale FAO-UNESCO 324 

Digital Soil Map of the World. It is an empirical dataset and it provides soil parameter estimates for 325 

topsoil (0–30 cm) and subsoil (30–100 cm), at 30 arc-second resolution (about 1 km). 326 

The CMIP5 ESMs do not report the depth of carbon in the soil profile, making direct comparison with 327 

empirical estimates of soil carbon difficult. For our analysis, we assumed that all soil carbon was 328 

contained with the top 1 meter. Litter carbon was a small fraction of soil carbon for the models that 329 

reported litter pools; thus, we combined litter and soil carbon for this analysis and refer to the sum as 330 

soil carbon. 331 

For the HWSD, the major sources of error are related to analytical measurement of soil carbon, 332 

variation in carbon content within a soil type, and assumption that soil types can be used to extrapolate 333 

the soil carbon data. Analytical measurements of soil carbon concentrations are generally precise, but 334 

measurements of soil bulk density are more uncertain (Todd-Brown et al. 2012). 335 

In addition to the soil carbon, also the vegetation carbon is a key variable in the global carbon cycle. In 336 

the 1980s, Olson et al. (1985) developed a global ecosystem-complex carbon stocks map of above and 337 

below ground biomass following more than 20 years of field investigations, consultations, and 338 

analyses of the published literature. Gibbs (2006) extended Olson et al.'s methodology to more 339 

contemporary land cover conditions using remotely sensed imagery and the Global Land Cover 340 

Database (GLC, 2000). For this analysis we used the data created by Gibbs (2006), with a spatial 341 

resolution of 0.5 degree.  342 

 343 

2.2.8 Oceanic Net Primary Production 344 

Oceanic integrated net primary production (NPP or intPP) is the gross photosynthetic carbon fixation 345 

(photosynthesis), minus the carbon used in phytoplankton respiration. NPP is regulated by the 346 

availability of light, nutrients and temperature and affects the magnitude of the biological carbon 347 

pump. Oceanic export production (EP) exerts a more direct control on air-sea CO2 fluxes, however 348 
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due to limited EP data we assess models compared to NPP estimates. In addition, we used the NPP to 349 

be consistent with the use of GPP in the land section of the study, however often it is argued that a 350 

proper validation of biological oceanic models should be based on the comparison of surface 351 

chlorophyll concentration rather than phytoplankton primary production.  352 

We used NPP estimated from satellite chlorophyll by the Vertically Generalised Production Model 353 

(VGPM) (Behrenfeld and Falkowski 1997). The VGPM computes marine NPP as a function of 354 

chlorophyll, available light, and temperature dependent photosynthetic efficiency. The NPP, estimated 355 

with the Sea-viewing Wide Field-of-view Sensor (SeaWiFS) from 1997-2007, is a monthly dataset 356 

with a spatial resolution of about 6 km. 357 

As well as previous datasets (GPP-MTE, LAI, Transcom 3 and GCP data derived CO2 fluxes), it 358 

should be noted that although this is one of the best available global NPP products it is not actually 359 

data, rather a model estimate dependent on parameterisations (the temperature dependent assimilation 360 

efficiency for carbon fixation and an empirically determined light dependency term). 361 

 362 

2.2.9 Uncertainty in the observed dataset 363 

One limitation of most of the above chosen reference datasets is that it is in general difficult to 364 

estimate their observational errors (except for Bayesian inversions that explicitly come with 365 

uncertainty estimates). Sources of uncertainty include random and bias errors in the measurements 366 

themselves, sampling errors, and analysis error when the observational data are processed through 367 

models or otherwise altered. In short, the quality of observational measurements varies considerably 368 

from one variable to the next (Gleckler et al. 2008) and is often not reported.  369 

Errors in the reference data are frequently ignored in the evaluation of models. It is often argued that 370 

this is acceptable as long as these errors remain much smaller than the errors in the models (Gleckler 371 

et al. 2008). A full quantitative assessment of observational errors by the estimation of its impact on 372 

the model ranking is however beyond the scope of this study.  373 
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Nevertheless, we would report that some of the reference data used for model validation show relevant 374 

problems. For instance, the ocean NPP is calculated from SeaWiFS satellite chlorophyll data which 375 

contains a significant uncertainty of ~30% (Gregg and Casey, 2004).  376 

The MLD and SST data sets have a lack of observations in the Southern Ocean compared to other 377 

regions, hence the uncertainty in these data sets is greatest in the Southern Ocean (De Boyer Montégut 378 

et al. 2004).  379 

It is also argued that CRU has been designed to provide best estimates of interannual variations rather 380 

than detection of long-term trends and (Mitchell and Jones 2005).  381 

Finally, the soil databases are based on a limited number of soil profiles and extrapolated to other 382 

areas according to soil type. Climate or land cover and management are usually not considered so that 383 

these data have high associated uncertainty.  384 

 385 

2.3 Assessment of model performances 386 

A series of measures of analysis are employed here for model evaluation and ranking; the model 387 

performances are evaluated at every grid point and then aggregated over the different land and ocean 388 

sub-domains. However, as previously described in section 2.2 the atmospheric inversion estimates do 389 

not provide any reliable information at grid cell level, therefore for land-atmosphere and ocean-390 

atmosphere CO2 fluxes only the evaluation is performed using regional averages of the CO2 fluxes. In 391 

the following we describe the diagnostics used for model evaluation and the metrics used for model 392 

ranking. 393 

 394 

2.3.1  Diagnostics definition 395 

Climatic trends for land surface temperature, land precipitation and SST are estimated by the linear 396 

trend value obtained from a least square fit line computed for the full period 1901-2005 of data, while 397 

for the LAI, and GPP due to the unavailability of data before 1982, the trends are computed in the 398 

same way but for the reference period 1986-2005.  399 
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Looking at simulated interannual variability, the root-mean square error (RMSE) is not an appropriate 400 

measure for characterizing this aspect of model performance because there is no reason to expect 401 

models and observations to agree on the phasing of internal (natural unforced) interannual variations 402 

(e.g., the timing of El Niño events) (Lin 2007; Gleckler et al. 2008). Standard measures of model 403 

mean variability such as the ratio of the standard deviation of the model means divided by the standard 404 

deviation of the means in the reference data set suffer from the serious problem that regions with too 405 

large/small IAV can cancel out and therefore give a too optimistic picture of model performance 406 

(Gleckler et al. 2008; Scherrer, 2011). To avoid these cancellation effects the Model Variability Index 407 

(MVI) as introduced by Gleckler et al. (2008) and Scherrer (2011) is used here to analyze the 408 

performance for each model, as given by:  409 

 410 

 

2

, ,

,

, ,

M O

x y x yM

x y O M

x y x y

s s
MVI

s s

 
   
 

 (1) 411 

 412 

where ,

M

x ys  and ,

O

x ys  are the standard deviations of the annual time series of models and observation for 413 

a given variable, at each grid-point (x, y). Using this simple index of performance, we compare each 414 

model’s variability at every grid cell and then average over the different sub-domains in the period 415 

1986-2005. Perfect model–reference agreement would result in a MVI value of 0. The MVI provides a 416 

good measure to assess differences between model and reference data standard deviations and allow us 417 

to identify consistent biases in the standard deviations of single models. The definition of a MVI 418 

threshold value that discriminates between ‘good’ and ‘bad’ is somewhat arbitrary. Scherrer (2011), in 419 

his CMIP3 validation paper, defined a MVI < 0.5 as a good representation of IAV. In this paper we 420 

use the same threshold, although in case of biological variables the MVI could be much larger than 421 

0.5.  422 

Often it is also argued that a 20-year window could be not long enough for characterizing the long 423 

time-scale variance of a model (Wittenberg 2009; Johnson et al. 2011). This means that when the MVI 424 

is being computed over the last 20 years there is an implicit assumption that the variability is 425 
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representative of the full length of the simulation. To test whether this is the case, we also have 426 

accounted the MVI for the physical variables over the period 1901-2005, and we found a relevant 427 

reduction in the MVI of global surface temperature, precipitation and SST compared to the MVI 428 

computed in the period 1986-2005 (not shown). This confirms that a 20-year windows is pretty 429 

marginal in characterizing what the actual variability of the model is. However, considering this work, 430 

while for climate variables it is possible to compute the MVI from the beginning of last century, in 431 

case of all the other variables the data are limited to the only last 20 years, therefore we decided to 432 

analyze the MVI over the period 1986-2005 to be consistent between physical and biological 433 

variables.  434 

 435 

2.3.2 Metrics definition 436 

Two different skill scores are used for the model ranking. In the case of mean annual cycle we check 437 

the ability of models to reproduce both the phase and amplitude of the observations during the period 438 

1986-2005. Starting for monthly mean climatological data, we use the centered root-mean square 439 

(RMS) error statistic to account for errors in both the spatial pattern and the annual cycle. Given a 440 

model (M) at the grid-point (x, y) and the reference dataset at the same location (Ox,y), the errors of the 441 

model m (
2

,

m

x yE ) is calculated as follow: 442 

 443 
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 445 

where t corresponds to the temporal dimension, N is the number of months (i.e. 12), and 
,x y

M  and 446 

,x y

O are the mean values of the model and reference data, respectively, at the grid point (x,y).  447 

In order to get an error between 0 and 1 (where 0 corresponds to poor skill and 1 perfect skill), we 448 

normalize the error of the model m dividing it by the maximum error computed considering all the 449 

models at the grid point (x,y). Therefore the relative error (Re) of a single model m becomes: 450 
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 452 

Unlike Gleckler et al. (2008) that normalized their seasonal skill score by the median of the RMS 453 

errors computed considering all the models, here we decided to divide by the maximum RMS error in 454 

order to have a skill score ranging between 0 and 1. 455 

The second skill score used for model ranking is based on the comparison of Epanechnikov kernel-456 

based probability density functions (PDFs; Silverman 1986) of models with observations (Perkins et  457 

al., 2007). This skill score provides a very simple but powerful measure of similarity between data and 458 

observations since it allows to compare both the mean state and the interannual variability of a given 459 

variable by calculation of the common area under the two PDFs (Maximo et al. 2008). If models 460 

perfectly reproduce the observed condition, the skill score would equal 1, which is the total area under 461 

a given PDF. On the contrary, if a model simulates the observed PDF poorly, it will have a skill score 462 

close to 0, namely there is not any overlap between the observed and modelled PDF. Note that despite 463 

this seeming to be similar to the Kolmogorov–Smirnov test for the similarity of PDFs, there is a 464 

fundamental difference between them: the Kolmogorov–Smirnov test is based on the maximum 465 

difference between cumulative PDFs, whilst the skill score is based on the common area under the 466 

PDF curves (Errasti et al. 2011). Starting from yearly data, and given Zx,y the common area under the 467 

observed PDF ( ,

O

x yz ) and the simulated PDF ( ,

M

x yz ) at the grid point (x,y): 468 

 469 
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the skill score at a given geographical location is computed in the following way: 472 
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where sx,y is the numerical value of the skill score (0≤sx,y≤1), N is the number of intervals used to 475 

discretize the PDF estimated by means of the Epanechnikov kernels (in this study, N=100), and w is a 476 

weight (Table 4) introduced in order to give lower weight at the grid points where models are 477 

expected to poorly reproduce the observations. In fact, models are expected not to faithfully reproduce 478 

the observation in some specific regions such as in area of complex topography (i.e. in mountainous 479 

regions the coarse resolution of models does not allow to correctly reproduce the right temperature 480 

pattern) or over specific surface cover (ex. costal regions, ice-covered area, sparse vegetated points). 481 

This measure is however imperfect: a model that is able to simulate the tails of a distribution well (i.e. 482 

extreme events like heat waves or cold spells, drought or heavy rain) would be very valuable, but if it 483 

simulates the more common regions of the PDF poorly it could score badly overall. Conversely, a 484 

model could appear skilful by simulating all the probabilities one or two standard deviations from the 485 

mean while being poor towards the tails (Maximo et al. 2008).  486 

In general, models that properly simulate the observed mean value of a given variable, namely they 487 

fall into the range of +1σ of the observed PDF, are able to reproduce at least the 68.2% of the 488 

reference data. Maximo et al. (2008) defined as ‘adequate’ those models with a skill score greater than 489 

0.9; this value was chosen since it allows identification of not only models that correctly capture the 490 

mean value, but also those models that capture a considerable amount of the interannual variability.  491 

However, a threshold of 0.9 is too large when aggregating the skills over sub-regions, therefore in this 492 

study we consider a model as having relevant skill when it simulates at least 1σ of the observed PDF. 493 

This method has already been used for AR4 ranking over Australia (Perkins et al. 2007; Maxino et al. 494 

2008), Spain (Errasti et al. 2011) and CORDEX regions (Jacob et al. 2012). In their study, Errasti et 495 

al. (2011) removed all the points below a threshold value of 0.7 to avoid models characterized by very 496 

poor values affecting the overall score. However, this latter procedure is questionable since over large 497 

sub-regions removing the points with a skill lower than 0.7 will favour only the points with good 498 

agreement to observations and any poor performance of models related to severe bias will not be 499 

regarded. Additionally, removing all the points below a particular low threshold (e.g. 0.05) can lead to 500 

an overestimation of a model’s skill. For this reason, in order to compute the regional skill score we 501 



 20 

apply a weighted mean, giving relatively large weights to points where the skill score exceed 0.75 and 502 

low importance to points where the score is poor (Table 4). We also have computed the ranking 503 

without weighting the skill scores (not shown) and we found that the weights only change the models 504 

skill values, leaving unchanged the overall ranking. 505 

In addition, for those variables we are unable to build the PDFs due to the lack of yearly data (e.g.soil 506 

carbon, vegetation carbon and MLD) the skill score is computed using the bias between a given model 507 

(M) and the reference data (O). Given the bias (B) of the model m at the grid point (x,y): 508 

 509 

 , , ,

m

x y x y x yB M O   (6) 510 

 511 

the skill score is computed following the equation 3. It should also be noted that normalizing the skill 512 

score calculations in this way yields a measure of how well a given model (with respect to a particular 513 

reference data set) compares with the typical model error, namely it leads to a more optimistic skill 514 

compared to the PDF-based skill score.   515 

 516 

3. CMIP5 MODELS PERFORMANCES DURING THE 20
th

 CENTURY  517 

Since the simulation of physical variables will affect the simulation of the carbon cycle, we first 518 

briefly show how CMIP5 models reproduce these variables and then we focus on the carbon cycle 519 

performances. In particular, the evaluation of climatic variables is needed to assess whether any bias in 520 

the simulated carbon variables can be related to poor performances of the ESMs reproducing physical 521 

variables or is mainly due to the poor representation of some biogeochemical processes into the 522 

biological components of ESMs. 523 

 524 

3.1 Land surface temperature, land precipitation, SST and MLD evaluation 525 

The temporal evolution of global mean surface temperature, for the land points only (without 526 

Antarctica), is shown in Figure 1 (upper panel) for the CMIP5 simulation as well as for the 527 

observations derived data-product (CRU).  528 
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Like for the AR4 results (Solomon et al. 2007), the CMIP5 simulations of 20
th

 century that incorporate 529 

anthropogenic forcing (including increasing greenhouse gas concentrations and aerosols 530 

concentrations), as well as natural external forcing (volcanoes, change in solar radiation) are able to 531 

correctly reproduce the observed temperature anomaly, the observed data being systematically within 532 

the grey shading representing the range of variability of CMIP5 models. Plotting the CMIP5 533 

temperature time series as anomalies with respect to the base period 1901–1930, all the models exhibit 534 

a general upward temperature trend (Figure 1); the net temperature increase over the historical period 535 

is determined primarily by a balance between the warming caused by increased GHGs and the cooling 536 

over some regions associated with increasing aerosols.  537 

The ensemble mean suggests that CMIP5 models correctly reproduce the transient drop in global 538 

mean temperatures owing to main volcanic eruptions followed by gradual recovery over several years 539 

(Figure 1). Larger interannual variations are seen in the observations than in the ensemble mean, 540 

consequently, mainly during the first 50 years, the observed evolution lies outside the 90% confidence 541 

limits diagnosed from the CMIP5 ensemble spread (red shading). This result is related with the multi-542 

model ensemble mean that filters out much of the natural variability (unforced and forced, i.e. 543 

volcanic, solar, and aerosols) simulated by each of the CMIP5 models. In addition, the ensemble 544 

spread (i.e. range of model variability) shows an increase with lead time, reflecting the loss of 545 

predictability associated with the different climate sensitivities, i.e. with the different model responses 546 

to forcing (Solomon et al. 2007; Hawkins and Sutton 2009).  547 

In Figure 1 (lower panels) we present, for each model, the mean surface temperature over the period 548 

1986-2005, the MVI computed in the same temporal period, and the trend during 1901-2005. On the 549 

x-axis, models falling at the left (right) of observations indicate a cold (warm) bias, while on the y-axis 550 

models above (below) the observations have a stronger (lower) trend than observations.  551 

The comparison with CRU data shows that in general few models have a warm bias (within 1 °C), 552 

while most of the models have a cold bias (Figure 1). Poor performances have been found for the 553 

INMCM4 model: specifically, its global cold bias is around 2.3 °C, with the minimum found in 554 

northern hemisphere (1.8 °C), and a maximum in the tropics (3.2 °C). Conversely, the best 555 
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performances have been found in IPSL-CM5A-MR, MPI-ESM-LR, MPI-ESM-MR and GFDL-556 

ESM2M models that are consistently closer to CRU data. Looking at the trends, however, IPSL-557 

CM5A-MR and GFDL-ESM2M generally seem to be closer to the observations than MPI-ESM-LR 558 

and MPI-ESM-MR.  559 

On the other hand, GFDL-ESM2M shows the poorest performances reproducing the observed IAV, 560 

having a MVI larger than 1.4 at global scale, while only few models show a MVI lower than 0.5 561 

(indicating a good representation of the simulated IAV). The best results in terms of simulated IAV 562 

are found in the Northern Hemisphere, where several models show a MVI lower than 0.5; conversely, 563 

in the tropics most of models have a MVI larger than 1.    564 

In Figure 2 (upper panel) we compare precipitation changes during the 20
th

 century over land surfaces 565 

as reconstructed from station data (CRU) and simulated by individual CMIP5 models; shown are 566 

annual anomalies with respect to the period 1901-1930.  567 

The CMIP5 models correctly reproduce the precipitation variability: specifically, for most of the time 568 

the reference data falls inside the range of variability of models, identified by the grey shading. 569 

Explosive volcanoes eruptions prescribed to models introduce anomalies in the simulated historical 570 

precipitation as seen by temperature; a clear precipitation reductions around the year 1991 associated 571 

with the Pinatubo eruptions is found in both CRU data and CMIP5 simulations.  572 

Looking at the multi-model ensemble mean, it does not reproduce the amplitude of temporal evolution 573 

in 20
th

 century terrestrial precipitation (see also Allan and Soden 2007; John et al. 2009; Liepert and 574 

Previdi 2009), being the observations larger than the 90% confidence limits diagnosed from the 575 

ensemble spread (blue shading). As already described for the temperature, the averaging process 576 

partially filters out the IAV.  577 

The evaluation of precipitation for every model is given in Figure 2 (lower panels). The best 578 

performances reproducing global precipitation are found in IPSL-CM5B-LR, BCC-CSM1-M and MPI 579 

models. BCC-CSM1, HadGEM2-ES, and HadGEM2-CC models show a slight wet bias (less than 40 580 

mm/y), while CanESM2, IPSL-CM5A-LR and IPSL-CM5A-MR have a dry bias of about 80 mm/y. 581 

All the other models overestimate global precipitation with a bias of about 100 mm/y. In the Southern 582 
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Hemisphere several models match the CRU data well, while IPSL-CM5A-LR and IPSL-CM5A-MR 583 

showing a dry bias, and NorESM1-ME and CESM1-BGC have a strong wet bias. In the tropical 584 

region, quite a few models are able to reproduce the mean precipitation, while in the Northern 585 

Hemisphere, except CanESM2, all the models show a wet bias.  586 

Looking at the IAV none of the models has a MVI close to the threshold of 0.5; the best results are 587 

found in the Southern Hemisphere for the Hadley models. As expected, the worst performances 588 

reproducing the precipitation IAV occur in the tropical region, reflecting the inability of these models 589 

in reproducing the interannual variations in the hydrological cycle (Lin 2007; Scherrer 2011); as 590 

already suggested by Wild and Liepert (2010) inadequacies in the simulation of surface radiation 591 

balance may contribute to the poor simulation of IAV during the 20
th

 century. In addition, 592 

shortcomings in the representation of the natural variability in atmosphere/ocean exchanges of energy 593 

and water that result in variations of convection and consequently in cloudiness and humidity can 594 

contribute to a poor representation of precipitation IAV in CMPI5 models (Lin 2007; Wild and Liepert 595 

2010). 596 

The evaluation of the trend show that at global scale and in the tropical region several models are close 597 

to CRU, while in the Southern and Northern Hemisphere in general the models are not capable to 598 

capture the observed wettening trend. This is particularly evident in the Southern Hemisphere where 599 

the CMIP5 models show an ensemble trend around zero, while the CRU data gives a positive trend of 600 

5.5 mm/decade over the period 1901-2005.  601 

In order to understand the source of this mismatch between CMIP5 models and CRU data, we also use 602 

precipitation data from the Global Precipitation Climatology Project (GPCP) (Adler et al., 2003) for a 603 

further comparison. The GPCP trend in the Southern Hemisphere during the period 1979-2005 is -604 

0.4+9.5 mm/decade, while CRU shows a strong positive trend of 13+10mm/decade over the same 605 

period; this suggests that the two datasets show a completely different trend. Although these results 606 

are affected by a large uncertainty, it is often argued on the reliability of CRU for the long term trends 607 

(Mitchell and Jones 2005). 608 
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Figure 3 (upper panel) shows the temporal evolution of global mean SST. Unlike the observed surface 609 

temperature that is scatted around the CMIP5 ensemble mean and falls in the middle of the gray 610 

shading, the observed SST is markedly above the ensemble mean, particularly during the period 1940-611 

1970.  612 

The CMIP5 ensemble mean shows an increasing trend, with declining periods in the early 1960’s and 613 

1990’s as a consequence of the cooling due to the Agung and Pinapubo eruptions, and a sharper rise in 614 

the post 1960 period. The HadISST data shows an overall more linear increase than the CMIP5 model 615 

ensemble mean. Similar to the land temperature trend, the SST trend is primarily a balance between 616 

warming caused by GHG concentrations in the atmosphere and cooling resulting from aerosol 617 

emissions, modulated by the heat uptake by the ocean. Thus, factors regulating the heat uptake by the 618 

ocean such as changes in the thermohaline circulation, and upwelling have an effect on SST. 619 

Aerosols from volcanic eruptions can lower SST at the time of the eruption and for a few years 620 

following the eruption. The CMIP5 models simulate a drop in SST as a result of the main volcanic 621 

eruptions, as can be seen in Figure 3 (upper panel). 622 

Figure 3 (lower panels) shows that the increasing trend in SST is evident in all regions for all the 623 

CMIP5 models except in the high latitude Southern Hemisphere where GFDL-ESM2M shows a 624 

cooling and the high latitude Northern Hemisphere where GFDL-ESM2G displays a cooling. It should 625 

also be noted that the trend for BNU-ESM has been computed over the period 1950-2005, rather than 626 

in the period 1901-2005, and it explains why this model exhibits this large trend compared to both 627 

observations and other CMIP5 models.  628 

Most of the models show a cold bias, particularly in the Northern Hemisphere, and a lower trend than 629 

the observations, particularly in the Southern Hemisphere. At the global scale most of the models 630 

display a cold bias, with IPSL-CM5A-LR having the largest cold bias (1 °C). All models except IPSL-631 

CM5A-LR, IPSL-CM5A-MR, MPI-ESM-LR and BCC-CSM1 show a lower trend than observations, 632 

with the lowest trend being in HadGEM2-ES, which has an increase of 0.4 °C/decade less than is seen 633 

in observations. The interannual variability is fairly well simulated by CMIP5 models, with a MVI 634 

lower than 1.5 in most of the sub-domains and for most of the models; however, severe problems 635 
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reproducing the IAV are found in the high latitude Northern Hemisphere where most of models 636 

generally show a MVI larger than 2. Since we also found poor performances for a few models in 637 

reproducing the IAV in the Southern Hemisphere, the poor skill could be related to sea ice cover that 638 

affects both measured and modelled SST. 639 

As already described in section 2.2.3 the reference MLD dataset is a climatology, therefore it is not 640 

possible to provide the same evaluation used for the other physical variables. However, the MLD 641 

seasonal cycle allows identification of some importance differences between models, and also allows 642 

the identification of possible bias when compared to observations. Figure 4 shows the seasonal 643 

performance of each of the models in comparison to observed MLD (De Boyer Monégut et al., 2004). 644 

In general all the models simulate the basic seasonal cycle. However, in all the models (except the 645 

Hadley models) there is a consistent slight deep bias at the global scale, with a strong bias found in 646 

MPI-ESM-LR and MPI-ESM-MR.   647 

The large global bias found in MPI models is related to a very deep mixed layer in the Weddell gyre, 648 

the aggregation of regions means that the entire Southern Ocean MLD is over estimated during austral 649 

winter. However it must also be considered that deep mixed layers of up to 800m are indeed observed 650 

in this region (Rintoul and Trull 2001). In addition, there is a lack of observations in the Southern 651 

Ocean compared to other regions and therefore there are biases in the data, which is based on 652 

individual profiles of temperature and salinity. 653 

The biases are less pronounced in the Northern Hemisphere, however several models display a deep 654 

bias, particularly in winter. Most of the models show a shift in the timing of the maximum and 655 

minimum MLD compared to the observations, with the maximum occurring 1 month later. This would 656 

have a knock on effect on other components of the model, such as the timing of the spring bloom. 657 

Summer MLDs are better simulated as there is less variability at this time, with summer depths 658 

between approximately 10 and 50m in all sub-regions. 659 

It should also be noted that some inconsistencies between CMIP5 models might arise due to differing 660 

definitions of mixed layer depth between the CMIP5 modelling groups. 661 

 662 
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3.2 CMIP5 land carbon 663 

The land-atmosphere CO2 flux, or net exchange of carbon between the terrestrial biosphere and the 664 

atmosphere (NBP), represents the difference between carbon uptake by photosynthesis and release by 665 

plant respiration, soil respiration and disturbance processes (fire, windthrow, insects attack and 666 

herbivory in unmanaged systems, together with deforestation, afforestation, land management and 667 

harvest in managed systems) (Denman et al. 2007). In Figure 5 we compare the temporal evolution of 668 

simulated global land-atmosphere CO2 flux with the GCP global carbon budget estimates (Le Quéré et 669 

al. 2009). Mainly thanks to CO2 fertilization effect, the CMIP5 ensemble mean shows increasing 670 

global land CO2 uptake between 1960 and 2005 with large year-to-year variability. The temporal 671 

variability of the land carbon is primarily driven by variability in precipitation, surface temperature 672 

and radiation, largely caused by ENSO variability (Zeng et al. 2005). Specifically, the observed land 673 

carbon sink decreases during warm climate El Niño events and increases during cold climate La Niña 674 

and volcanic eruption events (Sarmiento et al. 2009). Consistent with surface temperature results 675 

(Figure 1), CMIP5 models do capture the right NBP response after volcanic eruptions, but are not 676 

meant to reproduce the observed phase of ENSO variability (Figure 5).  677 

The CMIP5 multi-model ensemble land-atmosphere flux (± standard deviation of the multi-model 678 

ensemble) evolved from a small source of -0.31±0.52 PgC/y over the period 1901-1930 (with a mean 679 

year-to-year variability of ±0.33 PgC/y) to a sink of 0.7±0.6 PgC/y in the period 1960-2005 (with a 680 

mean yearly variability of ±0.69 PgC/y), while GCP estimates show a weaker land sink of 0.36±1 681 

PgC/y during the latter period. As already shown for the physical variable, the GCP IAV (±1 PgC/y) is 682 

larger than the IAV of multi-model ensemble (±0.6 PgC/y) owing to the averaging process that 683 

partially filters out the IAV. 684 

At the regional level, the evaluation is performed against the atmospheric inversions, the GCP 685 

estimate being only global. Individual model performances reproducing the land-atmosphere CO2 686 

fluxes over different regions are given in Figure 6. The global value of land-atmosphere flux from 687 

JMA atmospheric CO2 inversion in the period 1986-2005 is 1.17±1.06 PgC/y, with GCP showing a 688 

slightly lower global mean (0.75±1.30 PgC/y).  689 
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As shown in Figure 6 quite a few models correctly reproduce the global land sink: in particular, 690 

MIROC-ESM (0.91±1.20 PgC/y) IPSL-CM5A-LR (0.99±1.18 PgC/y), IPSL-CM5A-MR (1.27±1.54 691 

PgC/y), HadGEM2-CC (1.33±1.44 PgC/y), MIROC-ESM-CHEM (1.45±1.21 PgC/y), and BNU-ESM 692 

(1.55±1.37 PgC/y) simulate global NBP within the range of reference datasets. CanESM2 (0.31±2.32 693 

PgC) underestimates the land sink, as does NorESM1-ME (-0.09±1.03 PgC/y) and CESM1-BGC (-694 

0.23±0.78 PgC/y), these latter models showing a global carbon source in our reference period, in 695 

contradiction with the atmospheric inversion and GCP estimates. Despite showing a realistic mean 696 

uptake, GFDL-ESM2M (0.67±4.53 PgC/y) has severe problems reproducing the IAV, GFDL-ESM2G 697 

(0.72±2.58 PgC/y) showing a strong reduction in IAV compared to GFDL-ESM2M. 698 

In the Transcom 3 inversions the Southern Hemisphere land is found to be either carbon neutral or a 699 

slight source region of CO2 (-0.25±0.23 PgC/y) potentially due to deforestation; CMIP5 results in 700 

general put a slight carbon sink in this region and only a few of the models (IPSL-CM5A-MR, IPSL-701 

CM5A-LR, CESM1-BGC, and MIROC-ESM) agree with observations  (Figure 6).   702 

Inversions place a substantial land carbon sink in the Northern Hemisphere (2.22±0.43 PgC/y), while 703 

tropical lands are a net source of carbon (-0.8±0.75 PgC/y) due to deforestation.  704 

Looking at the Northern Hemisphere all CMIP5 models predict a CO2 sink, despite an overall 705 

underestimation. Possible reasons for this underestimation could be the poor representation of forest 706 

regrowth from abandoned crops fields (Shevliakova et al. 2009), as well as the absence of sinks due to 707 

nitrogen deposition for most models (Dezi et al. 2010). It should also be noted that Stephens et al. 708 

(2007) found JMA having a weaker sink in the Northern Hemisphere compared to the other inversion 709 

datasets, therefore using an other inversion model from TRANSCOM would further increase the 710 

mismatch between CMIP5 models and the inversion estimates over this sub-domain. 711 

Over the tropical region several models simulate a carbon source, i.e. CESM1-BGC (-0.24±0.55 712 

PgC/y), MIROC-ESM (-0.24±0.79 PgC/y), NorESM1-ME (-0.11±0.74 PgC/y), and GFDL-ESM2G (-713 

0.03±1.52 PgC/y), the rest of the ESM simulating a tropical sink, with IPSL-CM5B_LR (0.97±1.30 714 

PgC/y) simulating the strongest carbon sink. 715 
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In Figure 7 the seasonal evolution of simulated land-atmosphere CO2 fluxes is compared against the 716 

JMA atmospheric inversion estimates. While at global scale and in the Northern Hemisphere only 717 

CanESM2 has serious problems reproducing the net uptake of carbon during spring and summer 718 

months due to increasing GPP over respirations and the release of carbon during autumn and winter 719 

months owing to respiration processes, in the Southern Hemisphere and in the tropics some models do 720 

not capture the right seasonal cycle. The performances of CMIP5 models are particularly poor in the 721 

tropics, where most of the models are shifted by a few months or are even anti-correlated with 722 

observations. Looking at surface climate, quite a few models do correctly reproduce the right phase of 723 

temperature and precipitation in the tropics, therefore this suggests that the poor performances 724 

reproducing the right NBP phase are not directly related with bad skills simulating surface climate. 725 

Among other possibilities, missing or coarse parameterization of harvesting, fires and LUC might 726 

helps to explain the seasonal cycle discrepancy between models and data, as well as the well known 727 

problems related to tree rooting depth (Saleska et al. 2003; Baker et al. 2008). Additionally, it should 728 

also be noted that there are no CO2 station data in the tropics, and consequently the seasonal cycle 729 

estimates might suffer from large uncertainty (Gurney et al. 2004). It is also remarkable that in the 730 

tropics the amplitude of the NBP seasonal cycle is small, therefore it is partially expected that models 731 

do not perfectly reproduce the flat temporal evolution.   732 

In the following, we try to identify the causes that might lead to wrong land-atmosphere CO2 fluxes, 733 

namely we check how CMIP5 models reproduce the GPP, the LAI, and soil and vegetation carbon 734 

pools. Note that like GPP, the heterotrophic respiration (RH) is a key variables affecting NBP; 735 

however, owing to the lack of global datasets, the RH evaluation is not performed in this study.   736 

The comparison of GPP simulated by CMIP5 models with estimates derived from FLUXNET site-737 

level observations using a multiple tree ensemble (MTE) upscaling approach (Jung et al. 2009, 2011) 738 

shows that all the models overestimate the GPP over the period 1986-2005 (Figure 8). In general we 739 

can identify two groups of models: the first group has a mean global GPP value ranging from 106 to 740 

140 PgC/y, which despite an overall overestimation is reasonably similar to the value of 119+6 PgC/y 741 
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found in MTE (where 6 PgC/y is the uncertainty due to the different approaches used to estimate the 742 

MTE-GPP), and a second group that has a mean global GPP value greater than 150 PgC/y.      743 

Using eddy covariance flux data and various diagnostic models (a similar approach used by Jung et al. 744 

2009), Beer et al. (2010) provide an observation-based estimate of this flux at 123±8 PgC/y in the 745 

period 1998-2005 consistent with result of Jung et al. (2009), while MODIS GPP estimates (Mao et al. 746 

2012) indicate a mean value of 114 PgC/y over the period 2000-2005. These results suggest that IPSL, 747 

GFDL and MPI models strongly overestimate the global GPP (Figure 8). We note that recent studies 748 

suggest that current estimates of global GPP of 120 PgC/y may be too low, and that a best guess of 749 

150–175 PgC/y (Welp et al. 2011) or 146±19 PgC/y (Koffi et al. 2012) better reflects the observed 750 

rapid cycling of CO2. In light of these recent results, one could suggest that the best CMIP5 models 751 

are those having a global GPP value greater than 150 PgC/y. However it is argued that Welp et al. 752 

(2011) have used only a limited number of observations and a very simple model for their studies, 753 

while Koffi et al. (2012) cannot distinguish the best estimate of 146±19 PgC/y from a different 754 

assimilation experiment yielding a terrestrial global GPP of 117 PgC/y. For such reasons our reference 755 

dataset for GPP still remains the MTE-GPP of Jung et al. (2011).  756 

With the clear exception of high latitudes, annual GPP or LAI zonal means follow precipitation zonal 757 

distributions, i.e. more productive ecosystems are found in correspondence of precipitation maxima. 758 

Therefore, as a first approximation, the precipitation is the main limiting factor for the photosynthesis 759 

across the globe, temperature being mainly limiting at high latitudes (Piao et al. 2009). In fact too high 760 

temperatures could produce a negative effect on GPP, while a wet bias would generally be a benefit 761 

for the GPP. Looking at Figure 2, we can exclude that the bias in GPP is caused by a wet bias in 762 

precipitation, since the models that systematically overestimate the GPP are in fact the closer to the 763 

observed precipitation. Therefore there are other reasons explaining the systematic overestimation of 764 

global mean GPP in all the CMIP5 models. Firstly, most of these models do not consider nutrient 765 

limitation on GPP (Zaehle et al. 2010; Goll et al. 2012); it should be noted that the few models 766 

simulating the N cycling are the closer to the reference data. Second, the parameterization of the 767 

impact of tropospheric ozone on reducing GPP is not implemented yet in the models; Sitch et al. 768 
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(2007) and Wittig et al. (2009) quantified that ozone leads to a mean global GPP reduction of about 769 

20% during the historical period as compared with a simulation without elevated tropospheric ozone. 770 

Finally the original FLUXNET stations data sets used in the MTE approach are affected by 771 

uncertainties originating from u* filtering (Papale et al. 2006), gap-filling (Moffat et al. 2008), and 772 

flux partitioning (Reichstein et al. 2005; Lasslop et al. 2009). In addition, uncertainties increase when 773 

extrapolating to the globe, which also carries uncertainties related to the accuracy and spatial-temporal 774 

consistency of global forcing data (Jung et al. 2011).  775 

A further comparison with results from different process-based terrestrial carbon cycle models forced 776 

offline by observed climate (i.e. CRU) shows that the land surface components of the CMIP5 ESMs 777 

still overestimate the GPP when forced by observations. Specifically, Piao et al (2013) found that the 778 

global terrestrial GPP averaged across 10 models forced by observed climate is 133±15 PgC/y, with 779 

ORCHIDEE and CLM4 having a mean global GPP of 151±4 PgC/y over the period 1982-2008, and 780 

TRIFFID showing a global GPP of about 140 PgC/y, consistent with our results from the IPSL-CM5 781 

models, CESM1-BGC and the HadGEM2 models respectively. Since TRIFFID does not show any 782 

relevant bias reduction between the online and offline version and although the bias in ORCHIDEE is 783 

slightly lowered when forced by observed climate, we can exclude that the coupling generates this 784 

large bias in GPP. 785 

Looking at the interannual variability of GPP, in the tropics and in the Northern Hemisphere no model 786 

captures the IAV of the observation based product, all models simulating larger GPP IAV that the one 787 

given by the MTE-GPP. Several models show relatively good performances in the Southern 788 

Hemisphere despite none of these models show a MVI value close to the good performance threshold 789 

of 0.5 defined by Scherrer (2011). The poor performances found in the tropics and in the Northern 790 

Hemisphere affect the global MVI and all the models show a MVI larger than 3.  791 

However, it is worth seriously questioning the realism of the MTE-GPP product regarding its 792 

magnitude of interannual variability and in particular in the tropics (Zhao and Running 2010). Most of 793 

the MTE GPP sensitivity to temperature and precipitation is learned from the spatial variability of the 794 

FLUXNET data, not its interannual variability. Also, there are virtually no FLUXNET sites in the 795 
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tropics to train the MTE product. The MTE tropical temporal variability is hence derived from the 796 

spatial variability of temperate ecosystems. Hence, we prefer not to use the MTE-GPP IAV as a target 797 

for CMIP5 models’ evaluation. 798 

All models predict a significant increase in vegetation productivity at global scale from 1986 to 2005, 799 

although the magnitude of the trend from all the CMIP5 models (ranging from 0.2 PgC/y
2
 to 0.66 800 

PgC/y
2
) is significantly larger than MTE estimates (0.09 PgC/y

2
). Again, one could question the MTE-801 

GPP trend as atmospheric CO2 fertilization was not explicitly accounted for in MTE-GPP framework. 802 

Also, the MTE-GPP trend may be affected by changing satellite products of vegetation activity before 803 

and after 1998. Hence, we prefer not to use the MTE-GPP trend as a target for CMIP5 models’ 804 

evaluation. 805 

In the Southern Hemisphere almost all CMIP5 models do not show any relevant increase in vegetation 806 

productivity, being the trend scattered around zero, while over the Northern Hemisphere and tropics 807 

all the models exhibit a positive trend in GPP.      808 

In Figure 9 we compare the phase of the mean annual cycle of CMIP5 models with the GPP from the 809 

MTE dataset. At global scale, all the CMIP5 models correctly reproduce the phase of the seasonal 810 

cycle of GPP. In particular, over the globe and Northern Hemisphere the CMIP5 models capture the 811 

GPP minimum during winter and fall and the summer GPP maximum related to the spring leaf out and 812 

maximum growing season, while in the Southern Hemisphere, the models reproduce the phase of the 813 

winter GPP minimum. Several problems are found in the tropical regions and only a few of the models 814 

(BCC-CSM1, INMCM4, HadGEM2-ES, and NorESM1-ME) are able to accurately reproduce the 815 

phase of the GPP seasonal cycle in this region. IPSL-CM5A-LR and IPSL-CM5A-MR models, 816 

indeed, show in the Northern Hemisphere (and a global scale as well) a strong positive bias of GPP 817 

during JJA. Since the evaluation of precipitation does not show a coincident wet bias, this suggest that 818 

the land surface component of the IPSL models overestimates the GPP in summer, maybe because this 819 

model does not have N-limitations or because the water stress is not strong enough during the peak 820 

growing season. 821 
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The comparison of simulated LAI with a global data set derived from satellite data is presented in 822 

Figure 10. However, before describing model’s deficiencies we would highlight that there are several 823 

limitations in the satellite observations that could explain the mismatch between the LAI data set and 824 

CMIP5 results.  825 

The remote sensing LAI products are estimates derived from top-of-the-atmosphere reflectances, and 826 

use different sensors and algorithms (Los et al. 2000; Myneni et al. 2002). Therefore, the quality of 827 

LAI retrievals is limited by the intrinsic characteristics of the sensor systems, the dynamic of the 828 

signal received at the satellite level, and the physical properties of the target (Gibelin et al. 2006). For 829 

instance, cloud cover hides the surface and produces discontinuities in time series. In addition, the 830 

layers of a vegetation canopy cast shadow and LAI of lower layers near the ground may not be well 831 

documented. This may yield a 30% underestimation in the case of clumped canopies (Roujean and 832 

Lacaze 2002). This occurs mostly for dense forested areas and fully developed crops. On the other 833 

hand, over semiarid ecosystems, soil brightness contaminates sufficiently the signal to restrict its 834 

sensitive response to LAI increase. Similarly, high reflectance of snow may hamper an accurate LAI 835 

retrieval at high latitudes at springtime (Gibelin et al. 2006). 836 

Similarly to the temperature, precipitation, and GPP evaluation, the overall behaviour of CMIP5 837 

models reproducing the LAI is analyzed by comparing the yearly mean simulated value with the 838 

satellite-derived data set. In Figure 10 we present, for each model, the mean LAI, the trend, and the 839 

MVI computed in the period 1986-2005 for different sub-domains. 840 

Looking at the mean global value, only INMCM4 and CanESM2 models capture the main features of 841 

the global pattern, while all the remaining models overestimate the global LAI. Serious problems have 842 

been found in BNU-ESM and GFDL models, all showing a global LAI above 2.4, while the reference 843 

values is much lower (1.45). We found BNU-ESM having severe problems in reproducing the right 844 

amplitude of LAI in the tropics (Figure 10) and the GFDL models completely unable to reproduce the 845 

eastward gradient over Europe and Asia, as well as overestimating the LAI in North America (Anav et 846 

al 2013). Consequently as shown in Figure 10 in the Northern Hemisphere GFDL-ESM2G and 847 

GFDL-ESM2M are far outliers and the global result is affected by this erroneous pattern. This 848 
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problem is likely due to the initialization of the vegetation during the spin up phase: in fact the GFDL 849 

land model only allows coniferous trees to grow in cold climates, i.e. deciduous trees and grass do not 850 

grow in these cold regions. As a result, coniferous trees are established in areas where there should be 851 

tundra or cold deciduous trees (Anav et al 2013). Additionally, since all CMIP5 models were spun up 852 

for many thousands of years, in case of GFDL models the coniferous vegetation eventually builds up 853 

high LAI. It is also noteworthy that this positive bias in LAI does not significantly affect the GPP in 854 

the Northern Hemisphere (Figure 8).  855 

Over the Southern and Northern Hemispheres as well as in the tropical bounds we found a general 856 

tendency by CMIP5 models to overestimate the LAI and only a few models are close to the 857 

observation.  858 

There are several reasons to explain the large overestimation of LAI by CMIP5 models. First, the high 859 

GPP could lead to a surplus of biomass stored into the leaves. Also the missing parameterization of 860 

ozone partially explains the LAI overestimation due to the GPP: specifically Wittig et al. (2009) and 861 

Anav et al. (2011) found that ozone leads to a mean global LAI reduction of about 10-20% during the 862 

historical period as compared with a simulation without elevated tropospheric ozone. Finally, as the 863 

LAI dataset does not come out from true observations we cannot exclude that it is affected by a 864 

significant bias. However, compared to other LAI datasets our reference data shows a good agreement: 865 

in particular, considering the period 2000-2005, the mean global LAI of our dataset is 1.46, while 866 

MODIS LAI (Yuan et al. 2011) shows a value of 1.49 and CYCLOPES LAI (Baret et al. 2007; Weiss 867 

et al. 2007) has a global mean slightly lower at 1.27. However, this latter dataset has some low values 868 

in dense canopies, especially evergreen broadleaf forests, which results in a lower value for the whole 869 

Earth (Zhu et al. 2013). 870 

Considering the interannual variability, none of models are close to the good performance threshold of 871 

0.5, the MVI being systematically larger than 2 in all the domains. On the other side, the LAI trend is 872 

well simulated by all models except BNU-ESM that largely overestimates the greening in the 873 

Northern Hemisphere and tropics, as well as by GFDL-ESM2M and IPSL-CM5A-LR which show a 874 
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browning in Southern Hemisphere. Looking at global scale, most of the models do reproduce a slight 875 

greening of the same magnitude than the observed data. 876 

The comparison of LAI seasonal cycle is given in Figure 11. At the global scale and in the Northern 877 

Hemisphere all the models (except GFDL) correctly reproduce the seasonal variability, namely 878 

CMIP5 models reproduce the right timing of bud-burst and leaf-out, as well as the weak leaf coverage 879 

during fall and winter. Some problems are found in the tropics and Southern Hemisphere, where some 880 

models are anti-correlated to observations. Despite that the MIROC models show a good phase of LAI 881 

compared to observations, they also show a strong positive bias during JJA in both the Hemispheres 882 

and at the global scale. 883 

The mean global soil carbon (± ensemble standard deviation) reported across all ESMs is 1502±798 884 

PgC, whereas the global soil carbon in the reference dataset is 1343 PgC (Figure 12). CESM1-BGC 885 

has the lowest total at 512 PgC and MPI-ESM-MR the highest at 3091 PgC. Looking at the global 886 

mean, most of the ESMs are clustered around the HWSD reference data (Todd-Brown et al 2012). It is 887 

also interesting to note that both CESM1-BGC and NorESM1-ME models show the lowest totals and 888 

these models both use CLM4 as land surface model (Table 2). This severe global underestimation is 889 

due by the lower carbon soil simulated in the Northern Hemisphere. On the other side, MIROC and 890 

MPI models strongly overestimate the soil carbon in all the sub-regions. 891 

Similarly to the soil carbon results, the vegetation carbon evaluation shows that ESMs are also 892 

clustered around the reference value (Figure 12). The multi-model mean of global vegetation carbon 893 

(± ensemble standard deviation) reported across all ESMs is 522±162 PgC, value close to the 894 

reference data (556 PgC). At global scale MIROC and MPI models underestimate the reference value, 895 

whereas BNU-ESM reported the highest total at 927 PgC, compared to the reference data. It is also 896 

interesting to note that in the Northern Hemisphere GFDL-ESM2M shows the highest value; as 897 

already observed for the LAI, the overestimation of vegetation carbon by GFDL-ESM2M is related to 898 

the substitution of tundra with coniferous forest in the cold regions of North Hemisphere. 899 

These results also show that CESM1-BGC and the NorESM1-ME models have a realistic vegetation 900 

carbon, indicating that the large underestimation of their soil carbon content most probably comes 901 



 35 

from an overestimation of the soil carbon decomposition rate. This might also contribute to explain the 902 

low than average NBP simulated by these two models (Figure 6).  903 

3.3 CMIP5 ocean carbon 904 

The simulated evolution of ocean-atmosphere CO2 flux is compared with GCP estimates in Figure 13. 905 

Analogous to the land-atmosphere CO2 flux (Figure 5), the CMIP5 models show increasing global 906 

ocean CO2 uptake, evident from the 1940’s-2005. The CMIP5 ensemble air-sea flux increased from a 907 

sink of 0.56±0.13 PgC/y (with a mean yearly variability of ±0.07 PgC/y) over the period 1901-1930 to 908 

1.6±0.2 PgC/y in the period 1960-2005 (with a mean yearly variability of ±0.4 PgC/y). This multi-909 

model mean is slightly lower than GCP estimates, which show an ocean sink of 1.92±0.3 PgC/y for 910 

the period 1960-2005.  911 

During El Niño events there is a suppression of the normally strong outgassing of CO2 in the 912 

Equatorial Pacific, and hence a larger than average global ocean sink. Keeling et al. (1995) show a 913 

much smaller effect on the atmospheric CO2 variability from the ocean than the biosphere, however 914 

observational based estimates show contrasting results in terms of timing and magnitude of the 915 

variations in net air-sea CO2 fluxes (Francey et al. 1995; Rayner et al. 1999). The CMIP5 ensemble 916 

mean shows a smaller variability in the ocean CO2 uptake than in the biosphere (i.e. models agree on 917 

the sign and magnitude of ocean CO2 fluxes), as well as it has a lower year-to-year variability than 918 

GCP estimates, partly because the interannual variability is somewhat smoothed out due to the model 919 

averaging. 920 

The mean ocean-atmosphere CO2 fluxes for any individual model and in each ocean sub-domain are 921 

shown in Figure 14. The global estimate of oceanic uptake of CO2 from JMA inversion over the 922 

period 1986-2005 is 1.73±0.33 PgC/y, which is significantly lower than GCP estimate (2.19±0.17 923 

PgC/y) and Takahashi estimate (2.33 PgC/y), however similar to the estimates made in the IPCC 4
th

 924 

assessment report (Denman et al. 2007). 925 

At the global scale all CMIP5 models, except INMCM4, which overestimates the ocean sink with a 926 

1986-2005 average of 2.65±0.37 PgC/y, are in the range of observational uncertainty. In particular, 927 

IPSL-CM5A-MR (2.22±0.11 PgC/y), IPSL-CM5A-LR (2.17±0.21 PgC/y), BCC-CSM1-M (2.09±0.18 928 
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PgC/y), GFDL-ESM2M (2.04±0.3 PgC/y), HadGEM2-ES (2.01±0.12 PgC/y), HadGEM2-CC 929 

(2.00±0.19 PgC/y) and MPI-ESM-LR (1.96±0.17 PgC/y) simulate values of both the global mean and 930 

interannual variability close to the observational values, while CanESM2 (1.64±0.25 PgC/y) shows the 931 

weaker CO2 sink, and NorESM1-ME (2.32±0.15 PgC/y) well matches Takahashi estimate.  932 

The fact that the CMIP5 models lack processes associated to the river loop of the carbon cycle, might 933 

explain why the JMA inversions give a slightly lower CO2 uptake than the models. Although carbon 934 

fluxes from rivers are small compared to natural fluxes, they have the potential to contribute 935 

substantially to the net air-sea fluxes of CO2 (Aumont et al. 2001) 936 

Using oceanic inversion methods it is possible to separately estimate the natural and anthropogenic 937 

components of the air-sea CO2 fluxes (Gruber et al. 2009). Here we consider the CMIP5 historical 938 

simulations only, and therefore all regional patterns described are largely characteristic of natural air-939 

sea CO2 exchanges and do not elucidate anthropogenic CO2 uptake patterns. 940 

At the regional scale the CMIP5 models demonstrate the expected pattern of outgassing of CO2 in the 941 

tropics and an uptake of CO2 in the mid and high latitudes, with comparatively small fluxes in the high 942 

latitudes. The exceptions are INMCM4, which shows an outgassing of CO2 in the high latitude 943 

Northern Hemisphere, and CanESM2, which shows an outgassing in the high latitude Southern 944 

Hemisphere. 945 

Inversion and Takahashi estimates show the mid-latitude Southern Ocean is a large sink of 946 

atmospheric CO2 (Takahashi et al. 2002). Its magnitude has been estimated over the period 1986-2005 947 

to be about 0.73±0.19 PgC/y from JMA inversion and 1.28 PgC/y from the Takahashi product  948 

(Figure 14). All the CMIP5 models simulate a similar magnitude sink in this region except CanESM2, 949 

which overestimates the sink (1.59±0.05 PgC/y). 950 

The mid latitude Northern Hemisphere Ocean is also a net sink for CO2 (Denman et al. 2007),  with a 951 

magnitude of the order of 0.77±0.08 PgC/y from JMA, and 1.15 PgC/y from Takahashi over the 952 

period 1986-2005 (Figure 14). All the CMIP5 models, simulate a net sink, with values comparable to 953 

the JMA inversion results. 954 

The tropical oceans outgassing of CO2 to the atmosphere has a mean flux of the order of -0.73±0.14 955 
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PgC/y in the period 1986-2005 (Figure 14), estimated from JMA inversions, and a value of -1.25 956 

PgC/y estimated from Takahashi. We find INMCM4 (1.10±0.17 PgC/y) the only model unable to 957 

reproduce the tropical source of carbon.  958 

The seasonal air-sea CO2 fluxes are compared against the JMA inversion estimates and the Takahashi 959 

product in Figure 15. All the models except INMCM4 accurately reproduce the observational based 960 

estimates in the mid latitudes. The model estimates for the tropics and high latitudes show greater 961 

ambiguity. This is attributed to large uncertainties in modelled SST, MLD and ocean NPP in the high 962 

latitude Southern Ocean, while in the equatorial region uncertainties can arise due to the lack of 963 

mesoscale processes simulated by the models. At the global scale all of the models are out of phase 964 

with the observations, and the MPI models as well as INMCM4 show a larger seasonal variation than 965 

observations. In the MPI models this is a result of the poor performance in the high latitude Southern 966 

Hemisphere where they strongly overestimate the CO2 sink in austral summer and underestimate 967 

during austral winter. 968 

The air-sea CO2 flux is driven in part by the biological pump. Figure 16 shows individual model 969 

performances at reproducing SeaWiFS based estimates of oceanic NPP in the reference ocean sub-970 

domains. The mean global NPP estimate based on the SeaWiFS data used here during the period 971 

1998–2005 is 52.2 PgC/y. Using CZCS chlorophyll fields Longhurst et al. (1995) estimated global 972 

NPP to be between 45-50 PgC/y, and Behrenfeld and Falkowski (1997) estimated a global rate of 43.5 973 

PgC/y.  974 

Globally quite a few models, except GFDLs, underestimate SeaWiFS NPP. Most of the models predict 975 

a global average of ~30-40 PgC/y. This is reasonable when compared with published chlorophyll 976 

based estimates, and considering the large uncertainty in the observational based datasets. The 977 

significant under estimation of ocean NPP by most of the CMIP5 models could occur partly due to the 978 

lack of explicit representation of coastal processes. The coarse resolution of ocean models does not 979 

allow realistic simulation of the processes taking place in these shallow waters that are naturally 980 

eutrophic because of riverine discharge, coastal upwelling and a high recycling rate of organic nutrient 981 

matter. 982 
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On the other side, the strong positive bias found in the GFDL models for ocean NPP predominantly 983 

stems from an overestimation of phytoplankton activity in the Eastern Equatorial Pacific. The GFDL 984 

SST (Figure 3) and MLD do not show a larger deviation from observations than other models, 985 

therefore we can exclude these two variables as the cause of the bias in this region.  986 

Conversely, MPI models and CESM1-BGC have a global mean marine NPP most similar to that of the 987 

SeaWiFS NPP, however in the case of MPI models this is a misleading result since the agreement 988 

arises from a large overestimation of NPP in the Southern Hemisphere and an underestimation in the 989 

Northern Hemisphere. Regionally all of the model biases take a different pattern to that of the global 990 

scale. In the northern high latitudes we see that all of the models under estimate NPP whereas in the 991 

Southern Hemisphere high latitudes all the models except CanESM2, IPSL-CM5A-LR and IPSL-992 

CM5A-MR overestimate NPP. 993 

In all the CMIP5 models, and the SeaWiFS based estimates, zonally summed NPP is greatest in the 994 

tropics. This is simply due to a larger ocean surface area, since on average NPP is lower in the tropics 995 

and highest in Northern Hemisphere high latitudes. 996 

Looking at the interannual variability the models in general are clustered around the reference data, 997 

albeit in the two Northern Hemisphere sub-regions larger interannual variations are seen in the 998 

reference data than in the CMIP5 models.   999 

In Figure 17 we show the mean annual cycle of NPP as simulated by the CMIP5 models compared 1000 

with the NPP estimated from SeaWiFS data. The largest seasonal variability in the SeaWiFS based 1001 

NPP is seen the Northern Hemisphere high latitudes (49N–90N) with the peak in observations 1002 

occurring in July. None of the CMIP5 models capture the magnitude or timing of this significant peak 1003 

in productivity, with the majority of the models biased towards lower NPP and predicting the peak in 1004 

productivity up to 2 months too early. Accurate model simulations of NPP are more difficult in this 1005 

ocean sub-domain since it includes a mixture of several different regions and has a large proportion of 1006 

coastal areas. 1007 

Many of the models show the largest seasonal peak in marine NPP in the Southern Ocean (90S-44S), 1008 

which is not supported by SeaWiFS estimates. This is due to a combination of model and 1009 
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observational errors. SeaWiFS observations generally underestimate surface chlorophyll in the 1010 

Southern Ocean (Moore et al. 1999) and contain the largest uncertainty in the Southern Ocean due to 1011 

under sampling and frequent deep chlorophyll maxima that cannot be observed on satellites. The 1012 

models tend to overestimate NPP in the Southern Ocean due to too shallow simulated mixed layers in 1013 

summer months and uncertainty in light parameterisations (Séférian et al. 2012). The models with the 1014 

greatest overestimation of springtime NPP in the high latitude Southern Ocean are MPI models and 1015 

NorESM1-ME with peak values of ~3 PgC/y compared to ~ 0.75 PgC/y for SeaWiFS based NPP 1016 

estimates. All these models use the same biogeochemical model HAMOCC5 (Table 2), although with 1017 

different parameterisations. It should also be noted that these latter models show the largest bias in the 1018 

MLD seasonal cycle and this can contribute to the poor representation of temporal evolution of 1019 

primary production.  1020 

 1021 

4. MODEL RANKING 1022 

Different diagnostics were used in section 3 to investigate the performances of CMIP5 Earth System 1023 

Models during the 20
th

 century at reproducing the mean value, IAV, trends and mean annual cycle for 1024 

various different variables crucial to characterizing the global carbon cycle. These measures or 1025 

“diagnostics” show that in general, the CMIP5 models simulate all the variables well when compared 1026 

to the observations used here, although a few of the models do show notably poorer agreement than 1027 

others and general problems exist for quite a few of the models. Specifically, all the variables in the 1028 

tropical regions prove to be problematic for the models, reinforcing well-known deficiencies of 1029 

models in reproducing the decadal variations in the ocean-atmosphere system, but also questioning the 1030 

availability and quality of the data in the tropics. 1031 

However, the diagnostics presented in sections 3 are not sufficient to clearly identify the best models; 1032 

for such a purpose we need to define specific metrics that allow a quantitative model ranking. Metrics 1033 

can be contrasted with ‘diagnostics’, which may take many forms (e.g., maps, time series, power 1034 

spectra, errorbars, zonal means, etc.) and may often reveal more about the causes of model errors and 1035 
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the processes responsible for those errors. Following Gleckler et al. (2008) the metrics used in this 1036 

paper are designed to quantify how much the model simulations differ from observations. 1037 

 1038 

4.1 Land carbon ranking  1039 

We used two different metrics to estimate the models’ skills. In case of the mean annual cycle the skill 1040 

score is computed following equation 3, and the model performances and ranking of the land variables 1041 

are shown in Figure 18. Considering the mean annual cycle in addition to this skill score, in order to 1042 

check how models reproduce only the phase of the observations, we also have computed the 1043 

correlation coefficient (not shown). In fact, the correlation coefficient allows to identify models that 1044 

are in phase with observations (r>0), and models that are out of phase (r<0). Correlation values close 1045 

to 1 point out models that perfectly reproduce the seasonal phase of observations. 1046 

Looking at the land surface temperature, at global scale and in Southern and Northern Hemisphere the 1047 

best performances reproducing the mean annual cycle have been found for MPI models, CESM1-1048 

BGC, and NorESM1-ME, whilst in the tropics BNU-ESM and BCC-CSM1 have the highest scores. 1049 

All the models have a correlation coefficient greater that 0.9 at global scale and in the 2 Hemispheres, 1050 

while in the tropics it ranges between 0.6 and 0.8.  1051 

The precipitation shows a similar pattern, with MPI models having the best performances in all the 1052 

sub-domains, except the Southern Hemisphere, where BCC-CSM1 and IPSL-CM5A-MR have the 1053 

best scores (Figure 18).  1054 

Unlike seasonal variation in temperature, which at large scales is strongly determined by the insolation 1055 

pattern, seasonal precipitation variations are strongly influenced by vertical movement of air due to 1056 

atmospheric instabilities of various kinds and by the flow of air over orographic features. For models 1057 

to simulate accurately the seasonally varying pattern of precipitation, they must correctly simulate a 1058 

number of processes (e.g. evapotranspiration, condensation, transport) that are difficult to evaluate at a 1059 

global scale (Randall et al. 2007). The precipitation exhibits a correlation never exceeding a value of 1060 

0.8 in all the sub-domains and for all the models, with the lowest value (0.4) found in the Northern 1061 

Hemisphere for the BNU-ESM model (not shown).  1062 



 41 

Looking at the GPP, at global scale CESM1-BGC shows the best performances, albeit its GPP 1063 

decrease during fall does not match the phase of observation (Figure 9). In fact, for a given seasonal 1064 

skill score it is impossible to determine how much of the error is due to a difference in structure and 1065 

phase and how much is simply due to a difference in the amplitude of the variations. Also in the 1066 

Southern Hemisphere and Tropics CESM1-BGC has the highest scores for the GPP, while in the 1067 

Northern Hemisphere the best results are found in BCC-CSM1-M.     1068 

Looking at the phase of GPP there is a relevant agreement with the reference data, the correlation 1069 

being systematically positive. This is particularly evident in the Northern Hemisphere where all the 1070 

models have a correlation above 0.8 (not shown). Contrarily, in the Tropics there is a poorer 1071 

agreement and some models (e.g. CanESM2, and IPSL-CM5B-LR) show a correlation around 0.4 (not 1072 

shown).  1073 

The same considerations drawn for the GPP are also valid for the LAI, with CanESM2 showing the 1074 

best skills at global scale, although it seems to be 2 months out of phase with respect to observations 1075 

during the peak season (Figure 11). In addition, all the models show a correlation greater than 0.6 1076 

both at global scale and in the Northern Hemisphere, while in the Tropics we found the poorest results 1077 

with some models (BNU-ESM, BCC-CSM1, and BCC-CSM1-M) having a correlation of about 0.2. 1078 

Considering the global NBP, consistent with results of Figure 7, MPI-ESM-LR and MIROC-ESM 1079 

have the best performances, whilst CanESM2, BNU-ESM, MPI-ESM-MR, and CESM1-BGC show 1080 

the poorest scores. Contrarily, in the Southern Hemisphere CESM1-BGC and CanESM2 have the 1081 

highest scores, while in the Tropics the 2 Hadley models show the best results.  1082 

Several models show a negative correlation compared to inversion estimates in the Tropical region 1083 

and in the Southern Hemisphere, while in the Northern Hemisphere quite a few models have a 1084 

correlation above 0.9 (not shown).    1085 

The second skill score is computed following equation 5, and it essentially allows to asses the skills of 1086 

models in reproducing the mean state of the system with its IAV. Figure 19 shows an absolute 1087 

measure of ESMs skill in simulating the observed PDFs of the variables under examination for the 1088 
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land carbon. There is no obvious way to define ‘good’ or ‘bad’ performance, or indeed, ‘adequate’ 1089 

from the skill score, but identifying those models with a relatively better skill is straightforward.  1090 

According to the skill threshold defined in Section 2.3, looking at global temperature, only few models 1091 

are close to the threshold value of 0.68. Consistent with Figure 1, the best performances have been 1092 

found in the MPI models, while the poorest skills are found in INMCM4. The same considerations are 1093 

valid also for the Southern and Northern Hemisphere. Looking at the Tropics, consistent with Figure 1094 

1, INMCM4 shows a very poor skill, related to the large cold bias previously described. Unlike Figure 1095 

1, the skill score shows that BCC-CSM1 is not the best model in the Tropical region. This results 1096 

however is not surprising, the agreement in the mean tropical temperature shown in Figure 1 could 1097 

arise from a compensation between overestimation in some regions of the tropics and underestimation 1098 

in other regions of the tropics, while the skill score does not lead to the same optimistic picture. In fact 1099 

the overlapping of the PDFs allows equal weighting of all the points with a relevantly poor mismatch 1100 

to the mean value. This suggests that the models we found using the previous diagnostics that have a 1101 

bias in the mean values still score badly, but models with a good agreement with the mean do not 1102 

necessarily score well.  1103 

The precipitation shows the same picture of temperature with a general good agreement in the 1104 

Southern and Northern Hemisphere and poorer skills in the Tropical region, likely related to the poor 1105 

skill reproducing the IAV (Figure 2). Relevant skills are found in the Southern Hemisphere for the 1106 

Hadley models, where the overall score is greater than 0.7.    1107 

Contrarily, very poor skills are found for GPP and LAI, both a global scale and in all the sub-domains. 1108 

In Figure 8 and Figure 10, respectively, we show how almost all CMIP5 models overestimate these 1109 

two variables, possibly because these models do not have nutrient limitations and any ozone impact on 1110 

carbon assimilation. Consequently none of models achieve a relevant score, and for quite a few 1111 

models the skill score is less than 0.3. As pointed out before, we cannot exclude risks of significant 1112 

bias in the GPP and LAI evaluation datasets as these are not true observations. 1113 

Unlike other variables related to the land carbon cycle, good scores are found for the NBP. As already 1114 

shown in Figure 6 most of the models match both the mean value and the IAV, therefore, except 1115 
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GFDL-ESM2M that significantly overestimates the IAV, at global scale we found a score above 0.5 1116 

for all the models, with the best result found in IPSL-CM5A-LR that simulates more than 2σ of the 1117 

reference PDF. Conversely, none of the models are able to simulate the observed PDF for the NBP in 1118 

the Northern Hemisphere, and this is consistent with the negative bias already shown in Figure 6. 1119 

However it should also be noted that the NBP PDFs are build from regional averages, while other 1120 

variables are based on the comparisons of skills at each grid point, then averaged over large sub-1121 

regions; this explains why the NBP skill scores are consistently better than the scores of the other 1122 

variables.    1123 

In case of soil and vegetation carbon the skill scores reported in Figure 19 are not based on the PDF 1124 

overlapping, but they have been computed as a relative bias. Results in general agree with finding of 1125 

Figure 12, namely the best results for the soil carbon are found in BCC models, while MIROC and 1126 

MPI models show the poorest performances due to the large positive bias. Considering the vegetation 1127 

carbon, INMCM4 has the best skill score, while BNU-ESM and GFDL-ESM2M show the poorest 1128 

performances. The only exception is the Tropical region, where the best model reproducing the 1129 

vegetation carbon is MPI-ESM-MR, with BNU-ESM still showing the poorest results.    1130 

 1131 

4.2 Ocean carbon ranking 1132 

The skills of CMIP5 models at reproducing the mean annual cycle of relevant variables for the ocean 1133 

carbon cycle are shown in Figure 20.  1134 

Considering the SST, there is a large variability in the skill score of models between the different sub-1135 

domains; in general, the best results are found for CanESM2, CESM1-BGC and MPI models, while 1136 

BNU-ESM and GFDL models show the poorest skills. Consistent with results of Figure 4, the Hadley 1137 

models show the best performances at reproducing the mean annual cycle of the MLD, with the MPI 1138 

models having the poorest skill scores (Figure 20).   1139 

We also have found excellent performances of CMIP5 models in reproducing the only phase of the 1140 

mean annual cycle of physical variables (i.e. SST and MLD), with correlations above 0.85 for all the 1141 

models and sub-domains (not shown). 1142 
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As discussed previously, the poor performances of the MPI models in reproducing the seasonal 1143 

evolution of the MLD also affect the overall skill score of the ocean-atmosphere CO2 fluxes; in 1144 

particular, we found the MPI models having the worst performances at global scale, as a consequence 1145 

of the poor results found in the extreme Southern Ocean, whilst in the tropical bound and in the 2 1146 

Northern Hemisphere sub-domains the MPI models show a relevant skill in reproducing the CO2 1147 

fluxes (Figure 20).  1148 

Nevertheless, severe problems exist in reproducing the only phase of global seasonal cycle of CO2 1149 

fluxes, where several models are anti-correlated with observations. The poor performances in the 1150 

global values are caused by the inability of models in simulating the correct seasonal cycle in the 1151 

tropical sub-domain as well as in the high-latitude Southern and Northern Oceans. Conversely, in the 1152 

mid-latitude Southern and Northern Oceans, except INMCM4, all the models are positively correlated 1153 

with JMA inversions and the correlation coefficient is generally higher than 0.7 (not shown). 1154 

Considering the ocean primary production the best performances have been found for CESM1-BGC 1155 

and IPSL models, while the worst results are found for the MPI models and NorESM1-ME. It should 1156 

be noted that all these models use the same ocean biogeochemical model (Table 2). Conversely, with 1157 

the only exception of CanESM2, all the models show a relevant correlation with SeaWIFS data in all 1158 

the sub-domains (not shown). 1159 

Considering the PDF-based skill score, consistent with land surface temperature and precipitation 1160 

results, the SST skill score for several models is above the threshold of 1σ, with some models having a 1161 

score above 0.8 (Figure 21). This is particularly evident in the temperate Southern and Northern 1162 

Oceans as well as in the tropics. Although the models exhibit relevant skills at reproducing the SST in 1163 

some basins, in the Northern and Southern Ocean none of the model is able to reproduce at least 1σ of 1164 

the reference dataset.      1165 

Since the observed MLD is a climatology, the ranking is tricky and the values shown in Figure 21 do 1166 

not represent the skill score defined in section 2. Therefore, for this variable only the ranking is based 1167 

on the bias rather than on the overlapping of the PDFs. Globally, we found HadGEM2-ES and 1168 

HadGEM2-CC the best models at reproducing the MLD, and NorESM1-ME is found to have the 1169 
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largest bias in all the sub-domains, except in the Southern Ocean where MPI models show the worst 1170 

agreement to the observations.  1171 

The ocean-atmosphere CO2 flux shows an acceptable skill score for most of the models; however it 1172 

should be noted that likewise the NBP also the ocean-atmosphere CO2 flux PDFs are based on 1173 

regional comparisons. Globally several models have a score higher than 0.7, and only IPSL-CM5A-1174 

MR, INMCM4, and NorESM1-ME show poor performances. As already seen in Figure 14, the poor 1175 

skill found in INMCM4 at global scale is due to the poor performances of this model to correctly 1176 

reproduce the fluxes in the tropical regions (18S-18N) and in the Northern Hemisphere. Therefore, 1177 

consistent with results of Figure 14 INMCM4 shows the poorest performances in these sub-domains. 1178 

Conversely, INMCM4 has the best performances in the temperate Southern Hemisphere where it is 1179 

able to reproduce almost 2σ of the observed PDF. 1180 

As we previously discussed, the simulated global ocean primary production is affected by a negative 1181 

(or positive for GFDL models and MPI-ESM-LR) bias, consequently the skill score does not exceed a 1182 

value of 0.4. The same considerations are also valid for the other sub-domains, and the only relevant 1183 

performances are found in the Southern Hemisphere where several models show a skill score above 1184 

0.6. In previous sections we speculated that the ocean primary production underestimation by models 1185 

is likely due to a coarse resolution of the ocean grids that does not allow to properly simulate the 1186 

dynamics in the shallow waters; the good performances found in the Southern Ocean would support 1187 

this assumption.  1188 

 1189 

5. CONCLUSION 1190 

In this study the evaluation of the CMIP5 ESMs focused on the ability of the models to reproduce the 1191 

seasonal cycle, the mean state with its interannual variability, and trends of land and ocean variables 1192 

related to the carbon cycle. This task allows the identification of the strengths and weaknesses of 1193 

individual coupled carbon-climate models as well as identification of systematic biases of the models. 1194 

We have highlighted that the evaluation is partly subjective due to the choice of the variables. In this 1195 

paper we focused only on the validation of carbon fluxes and main variables affecting the fluxes, 1196 



 46 

however many more data (e.g. DIC, pCO2, chlorophyll concentration) could be used to evaluate the 1197 

ESMs 1198 

Multi-model databases offer both scientific opportunities and challenges. One challenge is to 1199 

determine whether the information from each individual model in the database is equally reliable, and 1200 

should be given equal ‘‘weight’’ in a multi-model detection and attribution study (Santer et al. 2009).  1201 

We used a skill score based on the overlapping of PDFs, and the centered RMS error for the model 1202 

ranking. In general we found that the ranking is sensitive to the large latitudinal bounds and the 1203 

variable under examination, i.e. models that poorly perform in some sub-domains could have relevant 1204 

skills in other sub-domains. 1205 

Although both the skill scores identify some models as having the best global performances, several 1206 

criticisms must be noted.  1207 

Firstly, the evaluation presented here is partly subjective due to the choice of the variables, and these 1208 

are sensitive to the choice of reference data. In other words, the best models for our reference variables 1209 

might have poor performances reproducing other variables of interest. This suggests, therefore, that 1210 

users of the CMIP5 models need to assess each model independently for their regions of interest, 1211 

against those variables that are important for their specific subject of research.  1212 

Secondly, we did not account for the uncertainty in the reference data; in general for the physical 1213 

variables it is expected that errors remain much smaller than the errors in the models, but in case of 1214 

biological variables this is not true. However, we believe that considering the uncertainties in the 1215 

observed datasets does not significantly change our model ranking, except for land GPP interannual 1216 

variability and ocean NPP that might suffer large uncertainty in the mean value. For instance, Gregg 1217 

and Casey (2004) report an uncertainty in the ocean primary production of about 30%, and 1218 

considering this uncertainty the model ranking could significantly differ from our results.  1219 

In addition the observations used in this study do not always come from direct measurements, and in 1220 

the case of biological variables some models or algorithms have been used to retrieve the values used 1221 

in this study. This suggests that additional uncertainty should be added to the reference data, or in 1222 

some case (e.g GPP trend) the data should simply not be used in the model evaluation. 1223 
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Thirdly, the aggregation of regions can give distorted results. The choice of regions in itself affects the 1224 

outcome of the regional metrics calculated, but also affects the global result through neutralising or 1225 

enhancing regional outcomes when Northern and Southern hemispheres are combined.  1226 

In addition, the skill scores could be sensitive to the spatial scale. Considering 22 coupled ocean-1227 

atmosphere general circulation models (OAGCMs), Gleckler et al (2008) have evaluated the impact of 1228 

alternative reference data set, other available realizations, and different resolution grids to the final 1229 

ranking, finding that ‘‘in some cases these variations on our analysis choices lead to small differences 1230 

in a model’s relative ranking, whereas in others the differences can be quite large. Rarely, however, 1231 

would the model rank position change by more than 5 or 6”. 1232 

In order to cross check the sensitivity of the skill score to resolution, we regridded the surface 1233 

temperature to 4 different resolutions (i.e. 0.5, 1, 1.5, and 2 degrees), finding that the resolution does 1234 

not significantly affect the ranking. Best models and poor models are always the same for all the  1235 

resolutions, and in general the model rank position does not change by more than 4 (not shown).  1236 

Fourthly, considering the model ranking, one could argue that choosing the highest score would 1237 

favour models with more than one realization. However we also produced alternative rankings using 1238 

either only the first realization from all the models, or computing the mean skill score averaged over 1239 

the available realizations. We found no relevant differences in the model ranking between the three 1240 

different methods (not shown). 1241 

Lastly, a PDF-derived skill-score is a useful means of evaluating models since skill in this measure 1242 

implies an ability to simulate a range of behaviour (e.g., mean, IAV, trend), however, we do not argue 1243 

that the skill metrics used in this paper are definitive nor do these identify models that are more 1244 

predictive. We believe that it is a substantial advance on the assessment of climate and carbon cycle 1245 

models skill, but as with all statistics, must be interpreted with a degree of caution so as to avoid 1246 

misleading assertions. 1247 

 1248 

 1249 
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Table 1. CMIP5 models used with the associated atmospheric and ocean grids, with the number of 1704 

vertical levels.  1705 

 1706 
    

MODELS SOURCE ATMOSPHERIC 

RESOLUTION  

(lon x lat, levels) 

OCEAN 

RESOLUTION  

(lon x lat, levels) 
    

    

BCC-CSM1.1 Beijing Climate Center, China Meteorological Administration, China 2.8125°x~2.8125°, L26 1°x(1-1/3)°, L40 

BCC-CSM1.1-M Beijing Climate Center, China Meteorological Administration, China 1.1°x~1.1°, L26 1°x(1-1/3)°, L40 

BNU-ESM Beijing Normal University 2.8125°x~2.8125°, L26 ~1°x~0.6, L50 

CanESM2 Canadian Centre for Climate Modelling and Analysis, Canada 2.8125°x~2.8125°, L35 1.40625°x~0.9375°, L40 

CESM1-BGC National Center for Atmospheric Research, United States 0.9°x1.25°, L26 384x320 points (gx1v3),L60 

GFDL-ESM2G
x
 Geophysical Fluid Dynamics Laboratory, United States 2.5°x2°, L24 1°x~0.6, L63 

GFDL-ESM2M
x
 Geophysical Fluid Dynamics Laboratory, United States 2.5°x2°, L24 1°x~0.6, L50 

HadGEM2-CC
y
 Met Office Hadley Centre, UK 1.875°x1.25°, L60 1°x(1-0.3)°, L40 

HadGEM2-ES
y
 Met Office Hadley Centre, UK 1.875°x1.25°, L38 1°x(1-0.3)°, L40 

INMCM4 Institute for Numerical Mathematics, Russia 2°x1.5°, L21 1°×0.5°, L40 

IPSL-CM5A-LR* Institut Pierre Simon Laplace, France 3.75°x~1.875°, L39 ~2°x~2°, L31 

IPSL-CM5A-MR* Institut Pierre Simon Laplace, France 2.5°x1.25°, L39 ~2°x~2°, L31 

IPSL-CM5B-LR* Institut Pierre Simon Laplace, France 3.75°x1.875°, L39 ~2°x~2°, L31 

MIROC-ESM-CHEM
z
 Japan Agency for Marine-Earth Science and Technology, Japan; 

Atmosphere and Ocean Research Institute, Japan; 

National Institute for Environmental Studies, Japan 

2.8125°x2.8125°, L80 1.40625°x~0.9375°, L44 

MIROC-ESM
z
 Japan Agency for Marine-Earth Science and Technology, Japan; 

Atmosphere and Ocean Research Institute, Japan; 

National Institute for Environmental Studies, Japan 

2.8125°x2.8125°, L80 1.40625°x~0.9375°, L44 

MPI-ESM-LR Max Planck Institute for Meteorology, Germany 1.875°x1.875°, L47 1.5°x~1.5°, L40 

MPI-ESM-MR Max Planck Institute for Meteorology, Germany 1.875°x1.875°, L47 ~0.4°x~0.4°, L40 

NorESM1-ME Norwegian Climate Centre, Norway 2.5°x1.9°, L26 ~1°x~0.5°, L53 
    

 1707 
x 

The two GFDL models differ almost exclusively in the physical ocean component; ESM2M uses Modular Ocean Model 1708 
version 4.1 with vertical pressure layers, while ESM2G uses Generalized Ocean Layer Dynamics with a bulk mixed layer 1709 
and interior isopycnal layers (Dunne et al. 2012). 1710 
 1711 
y
 HadGEM2 models differ for the number of vertical levels in the atmospheric component and for different representation 1712 

of processes (HadGEM2-ES also reproduce the atmospheric chemistry, Martin et al. 2011). 1713 
 1714 
*
 IPSL-CM5A-LR and IPSL-CM5A-MR models differ for the resolution of the atmospheric component, while IPSL-CM5A-1715 

LR and IPSL-CM5B-LR differ only for some parameterizations in the atmospheric model (Dufresne et al. 2012).  1716 
 1717 
z
 The difference between MIROC-ESM and MIROC-ESM-CHEM is that this latter simulates the atmospheric chemistry 1718 

(Watanabe et al. 2011). 1719 
 1720 

 1721 

 1722 

 1723 

 1724 

 1725 

 1726 

 1727 

 1728 

 1729 

 1730 

 1731 

 1732 

 1733 

 1734 

 1735 
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Table 2. Summary of land and ocean biogeochemistry models used by ESMs and comparison of the 1736 

selected processes (dynamic vegetation, nitrogen cycling and land use change) for the only terrestrial 1737 

modules. 1738 

 1739 
      

MODELS LAND 

MODELS 

DYNAMIC 

VEGETATION 

N 

CYCLE 

LUC OCEAN 

MODELS 
      

      

BCC-CSM1 BCC_AVIM1.0 Y Y N Simple model into MOM4 

BCC-CSM1-M BCC_AVIM1.0 Y Y N Simple model into MOM4 

BNU-ESM CoLM + BNU-DGVM Y N Y iBGC 

CanESM2 CLASS2.7 + CTEM1 N N Y CMOC 

CESM1-BGC CLM4 N Y Y BEC 

GFDL-ESM2G LM3 Y N Y TOPAZ2 

GFDL-ESM2M LM3 Y N Y TOPAZ2 

HadGEM2-CC JULES + TRIFFID Y N Y Diat-HadOCC 

HadGEM2-ES JULES + TRIFFID Y N Y Diat-HadOCC 

INMCM4 Simple model into INMCM4 atmospheric component N N Y
*
 Simple model into INMCM4 ocean component 

IPSL-CM5A-LR ORCHIDEE N N Y PISCES 

IPSL-CM5A-MR ORCHIDEE N N Y PISCES 

IPSL-CM5B-LR ORCHIDEE N N Y PISCES 

MIROC-ESM-CHEM MATSIRO + SEIB-DGVM Y N Y NPZD 

MIROC-ESM MATSIRO + SEIB-DGVM Y N Y NPZD 

MPI-ESM-LR JSBACH + BETHY Y N Y HAMOCC5 

MPI-ESM-MR JSBACH + BETHY Y N Y HAMOCC5 

NorESM1-ME CLM4 N Y Y HAMOCC5 
      

 1740 
*  

In INMCM4 land use change was prescribed at low preindustrial level. 1741 
1742 
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Table 3. Temporal range of available data for historical simulation, and variable used in this study, 1743 

with associated the number of independent realization for each variable. Note that not all the 1744 

variables for all the ensembles are available on PDMDI server.   1745 

 1746 
 1747 

MODELS PHYSICAL VARIABLES BIOLOGICAL VARIABLES 

 LAND  OCEAN  LAND OCEAN 
            

 Surface 

Temperature 

Precipitation SST MLD GPP LAI NBP SoilC VegC fgCO2 PP 

            

BCC-CSM1-1 3 3 3 n/a 3 3 n/a 3 3 3 n/a 

BCC-CSM1-1-M 3 3 3 n/a 3 3 n/a 3 3 3 n/a 

BNU-ESM 1 1 1* n/a 1 1 1 1 1 1 n/a 

CanESM2 5 5 5 1 5 5 5 5 5 5 5 

CESM1-BGC 1 1 1 1 1 1 1 1 1 1 1 

GFDL-ESM2G 1 1 1 1 1 1 1 1 1 1 1 

GFDL-ESM2M 1 1 1 1 1 1 1 1 1 1 1 

HadGEM2-CC 1 1 1 1 1 1 1 1 1 1 1 

HadGEM2-ES 4 4 4 1 4 4 4 4 4 4 4 

INMCM4 1 1 1 n/a 1 1 1y 1 1 1 n/a 

IPSL-CM5A-LR 5 5 5 5 5 5 5 5 5 5 5 

IPSL-CM5A-MR 1 1 1 1 1 1 1 1 1 1 1 

IPSL-CM5B-LR 1 1 1 1 1 1 1 1 1 1 1 

MIROC-ESM-CHEM 1 1 1 1x 1 1 1 1 1 1 1  

MIROC-ESM 3 3 1 1x 3 3 3 3 3 3 1 

MPI-ESM-LR 3 3 3 3 3 3 3 3 3 3 3 

MPI-ESM-MR 3 3 3 3 3 3 3 3 3 3 3 

NorESM1-ME 1 1 1 1 1 1 1 1 1 1 1 
            

 1748 
x 

MLD from MIROC models was not directly provided as output, but it has been estimated from potential temperature, 1749 
potential density and salinity.  1750 
 1751 
* 

Monthly SST were not available on the server; we used daily SST in the reference period 1950-2005 to compute the 1752 
monthly SST. 1753 
 1754 
y 

In INMCM4 the land use was prescribed at preindustial level and kept constant during the whole simulation; this means that the 1755 
provided NBP does not include the LUC term and therefore it should be considered as NEP rather NBP. For this reason we decided to 1756 
exclude the INMCM4 NBP from our analysis. 1757 
 1758 

1759 
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Table 4. Observationally-based data sets used to validate models. The spatial resolution is given as 1760 

latitude x longitude. 1761 

 1762 
     

VARIABLES REFERENCE TEMPORAL 

WINDOW 

SPATIAL 

RESOLUTION 

TEMPORAL  

RESOLUTION 
     

     

Temperature CRU (Mitchell and Jones 2005) 1901-2006 Global (land), 0.5°x0.5° Monthly 

Precipitation CRU (Mitchell and Jones 2005) 1901-2006 Global (land), 0.5°x0.5° Monthly 

SST HadISST (Rayner et al. 2003) 1870-2011 Global, 1°x1° Monthly 

MLD de Boyer Montégut et al. (2004) 1941-2008 Global, 2°×2° Climatology 

GPP MTE (Jung et al. 2009) 1982-2008 Global, 0.5°x0.5° Monthly 

LAI LAI3g (Zhu et al. 2013) 1981-2011 Global, ~0.08°x ~0.08° 15 Days 

NBP Inversion  (Gurney et al. 2004) 

GCP (Le Quéré et al. 2009) 

1995-2008 

1959-2008 

Global, 0.5°x0.5° 

Global, spatial average 

Monthly 

Yearly 

Soil Carbon HSWD, (FAO 2012) n/a Global, 1 km x1 km Annual Value 

Vegetation Carbon NDP-017b (Gibbs 2006) n/a Global, 0.5x0.5 Annual Value 

fgCO2 Inversion  (Gurney et al. 2004) 

GCP (Le Quéré et al. 2009) 

Takahashi (Takahashi et al. 2009)  

1995-2008 

1959-2008 

2000 

Global, 0.5°x0.5° 

Global, spatial average 

Global, 4°x5° 

Monthly 

Yearly 

Climatology 

NPP SeaWIFS. (Behrenfeld and Falkowski, 1997) 1998-2007 Global, 6x6 km Monthly 

 1763 

 1764 

 1765 

 1766 

 1767 

 1768 

 1769 

 1770 

 1771 

 1772 

 1773 

 1774 

 1775 

 1776 

 1777 

 1778 

 1779 

 1780 

 1781 

 1782 

 1783 

 1784 

 1785 

 1786 

 1787 

 1788 

 1789 

 1790 

 1791 

 1792 

 1793 

 1794 

 1795 

 1796 

 1797 
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Table 5. Skill score values with the corresponding weights used to compute regional estimates.  1798 

 1799 
  

SKILL SCORE WEIGHT 
  

  

∫Zx,y<0.05 0.05 

0.05≤∫Zx,y <0.25 0.1 

0.25≤∫Zx,y <0.5 0.15 

0.5≤∫Zx,y <0.75 0.25 

∫Zx,y ≥0.75 0.45 
  

  1800 

 1801 

 1802 

 1803 

 1804 

 1805 

 1806 

 1807 

 1808 

 1809 

 1810 

 1811 

 1812 

 1813 

 1814 

 1815 

 1816 

 1817 

 1818 

 1819 

 1820 

 1821 



 63 

FIGURE CAPTIONS  1822 

 1823 

Figure 1. Globally averaged surface air temperature (only land points, without Antarctica) from 1824 

observations (CRU), and as simulated by CMIP5 models in response to major forcings, natural and 1825 

anthropogenic (upper panel). The anomaly has been computed with respect to the reference period 1826 

1901-1930. 1827 

Vertical grey lines indicate the timing of major volcanic eruptions, while orange line shows the most 1828 

intense El-Niño event occurred in the 20
th

 century. The grey shaded area represents range of 1829 

variability of the 18 CMIP5 models, i.e. the envelope of positive and negative temperature extremes 1830 

based on multi-model mean, while the red shading shows the confidence interval diagnosed from the 1831 

ensemble standard deviation assuming a t-distribution centred on the ensemble mean (white curve). 1832 

Lower panels show inter-comparison of surface temperature over land estimated by 18 different 1833 

CMIP5 models (circles) with reference temperature estimated by CRU dataset (triangles) for the 1834 

whole Globe, Southern Hemisphere (20°S-90°S, without Antarctica), Northern Hemisphere (20°N-1835 

90°N), and Tropic (20°S-20°N). Scatter plot shows multi-year average temperature in x-axis computed 1836 

during the period 1986-2005, its linear trend in y-axis over the full period 1901-2005, and the Model 1837 

Variability Index (MVI).  1838 

 1839 

Figure 2. As Figure 1 but for land precipitation. 1840 

 1841 

Figure 3. As Figure 1 but for SST. The regional SST are computed over the ocean sub-regions rather 1842 

than over the land sub-domains. The reference SST dataset is HadISST. Note that BNU-ESM trend has 1843 

been computed over the period 1950-2005 due to the unavailability of data on PCMDI server; in 1844 

addition, in the upper panel BNU-ESM has been excluded by the analysis. 1845 

 1846 

Figure 4. Simulated and observed climatological seasonal cycle of MLD (meters) for each ocean sub-1847 

domain. 1848 
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Figure 5. Temporal variability of CMIP5 global land-atmosphere CO2 flux compared to Global 1849 

Carbon Project (GCP) estimates (black line). Green shading shows the confidence interval diagnosed 1850 

from the CMIP5 ensemble standard deviation assuming a t-distribution centred on the ensemble mean 1851 

(white curve), while the grey shading represents the range of variability of CMIP5 models. Positive 1852 

values correspond to land uptake. 1853 

 1854 

Figure 6. Error-bar plot showing the 1986-2005 CMIP5 integrated NBP over the land sub-domains. 1855 

Positive values correspond to land uptake, and vertical bars are computed considering the 1856 

interannual variation. At global scale CMIP5 models are compared also with GCP estimates, while in 1857 

all the other sub-regions the reference observations are inversion estimates (triangles). 1858 

 1859 

Figure 7. Comparison of mean annual cycle of NBP (PgC/y) as simulated by CMIP5 models and JMA 1860 

inversion in the 20-year period 1986-2005. 1861 

 1862 

Figure 8. Integrated GPP over the land sub-domains. The linear trend has been computed over the 1863 

period 1986-2005, and the reference dataset is MTE-GPP. 1864 

 1865 

Figure 9. Comparison of mean annual cycle of GPP (PgC/y) as simulated by CMIP5 models with 1866 

MTE-GPP data over the 20-year period 1986-2005. 1867 

 1868 

Figure 10. Mean annual LAI as simulated by CMIP5 models and the reference LAI3g data (black 1869 

triangle) over the land sub-domains. 1870 

 1871 

Figure 11. Mean annual cycle of LAI over the period 1986-2005. 1872 

 1873 

Figure 12. Simulated CMIP5 soil and vegetation carbon content over the period 1986-2005 compared 1874 

against the Harmonized World Soil Database (HWSD) and the NDP-017 vegetation data. 1875 
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Figure 13. Temporal variability of CMIP5 global ocean-atmosphere CO2 flux compared to Global 1876 

Carbon Project (GCP) estimates (black line). Blue shading shows the confidence interval diagnosed 1877 

from the CMIP5 ensemble standard deviation assuming a t-distribution centred on the ensemble mean 1878 

(white curve), while the grey shading represents the range of variability of CMIP5 models. Positive 1879 

values correspond to ocean uptake. 1880 

 1881 

Figure 14. Error-bar plot showing the 1986-2005 CMIP5 means and standard deviations of ocean-1882 

atmosphere carbon fluxes (fgCO2) in the chosen ocean sub-domains. Positive values correspond to 1883 

ocean uptake, while vertical bars are computed considering the interannual variation. At global scale 1884 

CMIP5 models are compared also with GCP estimates, while in all the other sub-regions the 1885 

reference observations are JMA inversion estimates and Takahashi data (triangles). 1886 

 1887 

Figure 15. Comparison of mean annual cycle of fgCO2 (PgC/y) as simulated by CMIP5 models with 1888 

JMA inversion and Takahashi data in the 20-year period 1986-2005. 1889 

 1890 

Figure 16. Ocean primary production integrated over the ocean sub-domains as simulated by CMIP5 1891 

models and observed (SeaWIFS) in the period 1998-2005. 1892 

 1893 

Figure 17. Comparison of ocean primary production (PgC/y) mean annual cycle as simulated by 1894 

CMIP5 models and SeaWIFS observations in the period 1998-2005. 1895 

 1896 

Figure 18. Seasonal skill score matrix as computed according to Equation 3 for the whole Globe, 1897 

Southern Hemisphere (20°S-90°S), Northern Hemisphere (20°N-90°N), and Tropic (20°S-20°N).  A 1898 

score of 0 indicates poor performance of models reproducing the phase and amplitude of the reference 1899 

mean annual cycle, while a perfect score is equal to 1.  1900 

 1901 

Figure 19. PDF-based skill scores for temperature, precipitation, LAI, and NBP for the 1902 
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whole Globe, Southern Hemisphere (20°S-90°S), Northern Hemisphere (20°N-90°N), and Tropic 1903 

(20°S-20°N). A perfect score is 1.  1904 

Note that since the reference data for the soil and vegetation carbon pools are a single annual data, 1905 

we were unable to build the PDF, therefore the skill scores for these variables are based on the 1906 

normalized mean bias between the model and the reference data (see equation 6).  1907 

 1908 

Figure 20. As Figure 18 but for the ocean variables. 1909 

 1910 

 1911 

Figure 21. As Figure 19 but for the ocean variables. Note that since the MLD dataset is a climatology 1912 

we were unable to compute the PDF, consequently the skill scores have been computed according to 1913 

equation 6. 1914 
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 1915 

 1916 
 1917 

Figure 1. Globally averaged surface air temperature (only land points, without Antarctica) from 1918 

observations (CRU), and as simulated by CMIP5 models in response to major forcings, natural and 1919 

anthropogenic (upper panel). The anomaly has been computed with respect to the reference period 1920 

1901-1930. 1921 

Vertical grey lines indicate the timing of major volcanic eruptions, while orange line shows the 1922 

most intense El-Niño event occurred in the 20
th

 century. The grey shaded area represents range of 1923 

variability of the 18 CMIP5 models, i.e. the envelope of positive and negative temperature extremes 1924 

based on multi-model mean, while the red shading shows the confidence interval diagnosed from 1925 

the ensemble standard deviation assuming a t-distribution centred on the ensemble mean (white 1926 

curve). 1927 

Lower panels show inter-comparison of surface temperature over land estimated by 18 different 1928 

CMIP5 models (circles) with reference temperature estimated by CRU dataset (triangles) for the 1929 

whole Globe, Southern Hemisphere (20°S-90°S, without Antarctica), Northern Hemisphere (20°N-1930 

90°N), and Tropic (20°S-20°N). Scatter plot shows multi-year average temperature in x-axis 1931 

computed during the period 1986-2005, its linear trend in y-axis over the full period 1901-2005, 1932 

and the Model Variability Index (MVI). 1933 
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 1934 
 1935 

 1936 
 1937 

Figure 2. As Figure 1 but for land precipitation. 1938 

 1939 

 1940 

 1941 

 1942 

 1943 
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 1944 

 1945 
 1946 

Figure 3. As Figure 1 but for SST. The regional SST are computed over the ocean sub-regions 1947 

rather than over the land sub-domains. The reference SST dataset is HadISST. Note that BNU-ESM 1948 

trend has been computed over the period 1950-2005 due to the unavailability of data on PCMDI 1949 

server; in addition, in the upper panel BNU-ESM has been excluded by the analysis. 1950 

 1951 

 1952 
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 1953 
 1954 

Figure 4. Simulated and observed climatological seasonal cycle of MLD (meters) for each ocean 1955 

sub-domain. 1956 

 1957 

 1958 

 1959 

 1960 

 1961 

 1962 

 1963 

 1964 

 1965 

 1966 

 1967 

 1968 

 1969 

 1970 



 71 

 1971 
 1972 

Figure 5. Temporal variability of CMIP5 global land-atmosphere CO2 flux compared to Global 1973 

Carbon Project (GCP) estimates (black line). Green shading shows the confidence interval 1974 

diagnosed from the CMIP5 ensemble standard deviation assuming a t-distribution centred on the 1975 

ensemble mean (white curve), while the grey shading represents the range of variability of CMIP5 1976 

models. Positive values correspond to land uptake. 1977 

 1978 

 1979 
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 1980 
 1981 

Figure 6. Error-bar plot showing the 1986-2005 CMIP5 integrated NBP over the land sub-1982 

domains. Positive values correspond to land uptake, and vertical bars are computed considering 1983 

the interannual variation. At global scale CMIP5 models are compared also with GCP estimates, 1984 

while in all the other sub-regions the reference observations are inversion estimates (triangles). 1985 

 1986 
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 1987 
 1988 

 1989 
Figure 7. Comparison of mean annual cycle of NBP (PgC/y) as simulated by CMIP5 models and 1990 

JMA inversion in the 20-year period 1986-2005. 1991 



 74 

 1992 
 1993 

Figure 8. Integrated GPP over the land sub-domains. The linear trend has been computed over the 1994 

period 1986-2005, and the reference dataset is MTE-GPP. 1995 

 1996 



 75 

 1997 
 1998 

Figure 9. Comparison of mean annual cycle of GPP (PgC/y) as simulated by CMIP5 models with 1999 

MTE-GPP data over the 20-year period 1986-2005. 2000 

 2001 

 2002 

 2003 
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 2004 
 2005 

Figure 10. Mean annual LAI as simulated by CMIP5 models and reference LAI3g data (black 2006 

triangle) over the land sub-domains. 2007 

 2008 
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 2009 
 2010 

Figure 11. Mean annual cycle of LAI over the period 1986-2005. 2011 
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 2035 
 2036 

Figure 12. Simulated CMIP5 soil and vegetation carbon content over the period 1986-2005 2037 

compared against the Harmonized World Soil Database (HWSD) and the NDP-017 vegetation 2038 

data. 2039 
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 2041 
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 2043 

 2044 

 2045 

 2046 

 2047 

 2048 

 2049 

 2050 
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 2051 
 2052 

Figure 13. Temporal variability of CMIP5 global ocean-atmosphere CO2 flux compared to Global 2053 

Carbon Project (GCP) estimates (black line). Blue shading shows the confidence interval 2054 

diagnosed from the CMIP5 ensemble standard deviation assuming a t-distribution centred on the 2055 

ensemble mean (white curve), while the grey shading represents the range of variability of CMIP5 2056 

models. Positive values correspond to ocean uptake. 2057 

 2058 
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 2059 
 2060 

Figure 14. Error-bar plot showing the 1986-2005 CMIP5 means and standard deviations of ocean-2061 

atmosphere carbon fluxes (fgCO2) in the chosen ocean sub-domains. Positive values correspond to 2062 

ocean uptake, while vertical bars are computed considering the interannual variation. At global 2063 

scale CMIP5 models are compared also with GCP estimates, while in all the other sub-regions the 2064 

reference observations are JMA inversion estimates and Takahashi data (triangles). 2065 



 81 

 2066 
 2067 

Figure 15. Comparison of mean annual cycle of fgCO2 (PgC/y) as simulated by CMIP5 models 2068 

with JMA inversion and Takahashi data in the 20-year period 1986-2005. 2069 

 2070 
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 2071 
 2072 

 2073 

Figure 16. Ocean primary production integrated over the ocean sub-domains as simulated by 2074 

CMIP5 models and observed (SeaWIFS) in the period 1998-2005. 2075 

 2076 

 2077 
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 2078 
 2079 

Figure 17. Comparison of ocean primary production (PgC/y) mean annual cycle as simulated 2080 

by CMIP5 models and SeaWIFS observations in the period 1998-2005. 2081 

 2082 

 2083 

 2084 



 84 

 2085 
 2086 

Figure 18. Seasonal skill score matrix as computed according to Equation 3 for the 2087 

whole Globe, Southern Hemisphere (20°S-90°S), Northern Hemisphere (20°N-90°N), and Tropic 2088 

(20°S-20°N).  A score of 0 indicates poor performance of models reproducing the phase and 2089 

amplitude of the reference mean annual cycle, while a perfect score is equal to 1.  2090 

 2091 
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 2092 
 2093 

Figure 19. PDF-based skill scores for temperature, precipitation, LAI, and NBP for the 2094 

whole Globe, Southern Hemisphere (20°S-90°S), Northern Hemisphere (20°N-90°N), and Tropic 2095 

(20°S-20°N). A perfect score is 1.  2096 

Note that since the reference data for the soil and vegetation carbon pools are a single annual data, 2097 

we were unable to build the PDF, therefore the skill scores for these variables are based on the 2098 

normalized mean bias between the model and the reference data (see equation 6).  2099 

 2100 

 2101 

 2102 



 86 

 2103 
 2104 

Figure 20. As Figure 18 but for the ocean variables. 2105 
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 2106 
 2107 

Figure 21. As Figure 19 but for the ocean variables. Note that since the MLD dataset is a 2108 

climatology we were unable to compute the PDF, consequently the skill scores have been computed 2109 

according to equation 6. 2110 

 2111 


