GEOMETRIC CONTROL OF SWITCHING BETWEEN GROWTH, APOPTOSIS, AND DIFFERENTIATION DURING ANGIogenesis USING MICROPATTERNED SUBSTRATES

LAURA E. DIKE, CHRISTOPHER S. CHEN, MILAN MRKSICH, JOE TIENT, GEORGE M. WHITESIDES, AND DONALD E. INGBER

Department of Pathology, Boston University School of Medicine, Boston, Massachusetts 02118 (L. E. D.), Departments of Surgery and Pathology, Children's Hospital and Harvard Medical School, Enders 1007, 300 Longwood Avenue, Boston, Massachusetts 02115 (C. S. C., D. E. I.), and Department of Chemistry and Chemical Biology, Harvard University, Cambridge, Massachusetts 02138 (M. M., J. T., G. M. W.)

(Received 28 January 1999; accepted 12 April 1999)

SUMMARY

Past studies using micropatterned substrates coated with adhesive islands of extracellular matrix revealed that capillary endothelial cells can be geometrically switched between growth and apoptosis. Endothelial cells cultured on single islands larger than 1500 μm² spread and progressed through the cell cycle, whereas cells restricted to areas less than 500 μm² failed to extend and underwent apoptosis. The present study addressed whether island geometries that constrained cell spreading to intermediate degrees, neither supporting cell growth nor inducing apoptosis, cause cells to differentiate. Endothelial cells cultured on substrates micropatterned with 10-μm-wide lines of fibronectin formed extensive cell–cell contacts and spread to approximately 1000 μm². Within 72 h, cells shut off both growth and apoptosis programs and underwent differentiation, resulting in the formation of capillary tube-like structures containing a central lumen. Accumulation of extracellular matrix tendrils containing fibronectin and laminin beneath cells and reorganization of platelet endothelial cell adhesion molecule-positive cell–cell junctions along the lengths of the tubes preceded the formation of these structures. Cells cultured on wider (30-μm) lines also formed cell–cell contacts and aligned their actin cytoskeleton, but these cells spread to larger areas (2200 μm²), proliferated, and did not form tubes. Use of micropatterned substrates revealed that altering the geometry of cell spreading can switch endothelial cells among the three major genetic programs that govern angiogenesis—growth, apoptosis, and differentiation. The system presented here provides a well-defined adhesive environment in which to further investigate the steps involved in angiogenesis.

Key words: capillary tubes; morphogenesis; cell adhesion; extracellular matrix; microfabrication.

INTRODUCTION

Angiogenesis, the formation of new capillary blood vessels, plays a critical role in tissue growth and homeostasis, as well as in the pathogenesis of many diseases such as cancer, diabetic retinopathy, and rheumatoid arthritis (10). The recent findings that inhibition of angiogenesis can prevent the growth of tumors in mice (17,26,27) and possibly in humans (20), without producing systemic side effects, has focused enormous attention on the mechanism of capillary development. Despite its clinical importance, however, the mechanisms that regulate angiogenesis remain unclear.

While angiogenesis is initiated through the action of soluble mitogens, such as fibroblast growth factor (FGF) (5,11), the response of capillary endothelial (CE) cells to these factors—whether to grow, differentiate, or die—is dictated within the tissue microenvironment (4,15) by local binding interactions between cells and extracellular matrix (ECM) molecules (15,16). The mechanism by which ECM exerts this control remains controversial. Previous in vitro studies have established that varying the density of ECM molecules such as fibronectin (FN) immobilized on dishes can switch CE cells between growth and differentiation (capillary tube formation) in the presence of soluble mitogens. This switch appears to be regulated through the changes in cell spreading that directly result from varying the density of immobilized ECM molecules (13,16). In this approach, however, changes in ECM density also influence the efficiency of binding and activation of cell surface integrin receptors which can trigger intracellular signaling pathways (23,28,31,32) and alter gene expression (9) required for growth. Thus, it is unclear whether the switch between cellular programs is caused by the change in cell geometry or a change in ECM-integrin receptor binding.

To determine whether a mechanical (shape-related) signaling mechanism is critical for regulating gene programs in CE cells, we used a recently developed micropatterning technique to control cell spreading independently from ECM coating density (24,25). We engineered micron-scale adhesive islands surrounded by nonadhesive regions; each island was coated with a high density of ECM molecule to promote optimal integrin clustering. The size and shape of the islands controlled the degree to which the cells spread (2,35). Using this method, we previously demonstrated that CE cells can be geometrically switched between apoptosis (programmed cell death) and growth. Cells adherent to FN-coated adhesive islands that restricted cell size (mean projected area <500 μm²) underwent apo-
tosis, whereas cells on islands that permitted spreading (mean projected area >1500 µm²) were able to enter S phase, with the highest growth rates observed in the most highly spread cells (>3000 µm²). Mechanical interactions between CE cells and ECM that alter cell shape also may play a role in control of capillary tube formation (16). Thus, in the present study, we used this method to explore whether CE cells geometrically constrained to a moderate degree are induced to turn on a differentiation program.

MATERIALS AND METHODS

Preparation of micropatterned substrates. Microcontact printing was used to fabricate substrates patterned with regions supportive of or resistant to ECM protein adsorption, as previously described (14,25,35). Briefly, patterned silicon masters were produced by photolithography (3). Poly(di-methylsiloxane) stamps with surface topographies complementary to those of the silicon masters were created by polymerizing a silicone prepolymer (Silgard 184, Dow Corning Corp., Midland, MI) on top of the masters. Glass coverslips (No. 2, Corning Glass Works, Corning, NY) were coated with thin films of titanium (1.5 nm) followed by a thin film of gold (11.5 nm) by electron beam evaporation. To pattern a gold-coated coverslip, a cotton swab was wetted with a solution of hexadecanethiol [HS(CH₃)₃CH₂OH (Aldrich, Milwaukee, WI) (2 ml) in ethanol] and swabbed across the face of the elastomeric stamp. The stamp was dried under a stream of nitrogen gas and placed on the gold-coated glass coverslip. The stamp was removed, and the coverslip was covered with a solution of the tri(ethylene glycol)-terminated alkanethiol HS(CH₃)₃(CH₂)₃OH (2 mM in ethanol) for 1 h and then rinsed in ethanol. Immediately prior to use, the patterned coverslips were coated with FN (Orion Teknika-Cappel, Malvern, PA) [25 µg/ml in phosphate-buffered saline (PBS)] for 2–3 h, rinsed well with PBS, and transferred to petri dishes containing 1% bovine serum albumin (BSA) in Dulbecco's modified Eagle's medium (DMEM).

Endothelial cell culture. Bovine CE cells were cultured as described previously (16). Cell monolayers were dissociated by brief exposure to trypsin-EDTA, washed, and reseeded with 1% bovine serum albumin (BSA)/DMEM. One-half volume of 1% BSA/DMEM was removed from petri dishes containing coverslips and replaced with an equal volume of medium containing 1 x 10⁵ CE cells/100 mm dish. High density lipoprotein (HDL) and transferrin were added to a final concentration of 10 µg/ml and 5 µg/ml, respectively. The cells were allowed to adhere for 2 h, after which 75% of the medium was removed and replaced with either defined medium (DM) [10 µg HDL per ml, 5 µg transferrin per ml, 5 µg filzbost growth factor (FGF) per ml, 1% BSA] or with DMEM containing 10% calf serum and FGF [0.5 ng/ml]. Cultures were maintained over a period of 3–7 days and medium was replaced every 2–3 days. Cells were photographed with a Nikon Diaphot phase contrast microscope onto Kodak TMAX-400 film.

Immunofluorescence microscopy. Cultured cells were rinsed with PBS and were fixed either with 1% paraformaldehyde directly or after extraction with cytoskeletal stabilizing buffer (CSK buffer) [50 mM NaCl, 150 mM sucrose, 3 mM MgCl₂, 10 mM pipperazine-N,N-bis(2-ethanesulfonic acid) (PIPES), pH 6.8, and 0.5% Triton X-100] that contained the proteinase inhibitors aprotinin (20 µg/ml), leupeptin (1 µg/ml), pepstatin (1 µg/ml) and 0.1 mM, 4-(2 Aminomethyl)benzenesulfonyl-fluoride (AEBSF) (Boehringer Mannheim Biochemicals, Indianapolis, IN) (20). Slides were rinsed with PBS, permeabilized with immunofluorescence (IF) buffer (0.2% Triton X-100, 0.1% BSA in PBS), and incubated with fluorescein-labeled phalloidin (Sigma Chemical Co., St. Louis, MO) (diluted 1:1000 in IF buffer) or with primary antibodies to platelet endothelial cell adhesion molecule (PECAM) (Transduction Laboratories, Lexington, KY), fibronectin (Sigma), or laminin (Sigma). Primary antibodies were visualized with affinity-purified rhodamine goat anti-rabbit or anti-mouse antibodies. Immunofluorescence images were photographed with a Zeiss Axiomat microscope or a Leica confocal microscope. In some confocal microscopy studies, CE cells were stained with a cytoplasmic dye, 5-chloromethylfluorescein diacetate (CMFDA; Molecular Probes) for 30 min (1 µM) prior to fixation with 4% paraformaldehyde.

Apoptosis assay. Samples were stained for apoptosis-induced DNA damage by the TUNEL method (TdT-mediated dUTP nicked labeling) and for nuclear condensation and fragmentation with DAPI (4',6-diamidino-2-phenylindole) staining. Samples were fixed with 4% paraformaldehyde for 30 min, washed with 0.1% BSA in PBS, and permeabilized with 0.1% Triton X-100 in 0.1% sodium citrate buffer. Samples were incubated with terminal deoxynucleobase acid transferase in reaction buffer containing fluorescein-labeled-dUTP (Boehringer Mannheim) for 1 h, washed, and incubated with DAPI (3 mg/ml). Apoptosis was quantified as the percentage of individual cells that stained positively for TUNEL or the percentage that showed evidence of nuclear condensation and fragmentation when visualized with DAPI. A minimum of 200 cells were counted in each sample. These two methods of quantifying apoptosis were statistically indistinguishable. The apoptotic index reported here used the TUNEL assay because it is more sensitive than visualization with DAPI.

Determination of cell area. Image processing software (BS images Inc, Rockville, MD) was used to calculate projected cell and nuclear areas from images retrieved from the microscope by a CCD camera. The projected cell area was determined from interactive tracing of cell edges drawn from phase-contrast images, as previously described (2).

DNA synthesis. CE cells were plated onto patterned substrates as described and labeled with 5 µCi ¹⁴Cthymidine (1–10 Ci/mmol; Amersham Corp., IL) at 24-h intervals. Cells were rinsed with PBS, fixed with 20% methanol, and air dried. Coverslips were dipped in photographic emulsion (Kodak Corp., NY) and stored in light-tight, desiccated containers for 72 h. Coverslips were developed with D-19 developer (Kodak), fixed with Kodak fixer and rinsed with distilled water for 15 min. Cells were counterstained with Giemsa stain, and 200–300 nuclei were counted for each point.

RESULTS

Patterned adhesive islands of defined size, shape, and position on the micrometer scale were created by microcontact printing of self-assembled monolayers of alkanethiols, as previously described (29). The adhesive regions were coated with a high density of the ECM component, FN, that promotes integrin receptor binding and clustering. The alkanethiols in the nonadhesive boundary regions that separate the adhesive islands were terminated in a tri(ethylene glycol) which prevents ECM adsorption and hence prohibits cell adhesion (35). A saturating amount of the growth factor, FGF, was included in the medium such that the only variable in the system was the geometry of the adhesive area onto which the cells attached. To explore whether capillary tube formation could be induced by geometric cues, we created different width (10- or 30-µm) linear adhesive islands that promoted cell–cell contact formation required for differentiation, yet differed in their ability to support cell spreading (Fig. 1). Cells on neighboring unpatterned regions of similar chemistry that supported unrestricted cell spreading were used as an internal control. When plated on these substrates, CE cells were found to spread most on the unpatterned substrates (mean projected cell area,
3112 ± 300 µm²), less on the 30-µm line (2200 ± 182 µm²), and least on the 10-µm line (1042 ± 84 µm²). The 10-µm line essentially allowed for only one or two cells to span its width whereas multiple cells could stretch across the wider 30-µm line.

Importantly, while cells initially proliferated when plated on all three adhesive substrates, the most highly spread cells (on unpatterned substrates) entered S phase at nearly twice the rate exhibited by the least spread cells (on 10-µm lines) during the first 24 h of culture (76 ± 2% versus 36 ± 3%). By 72 h in culture, the spreading-dependent effect on cell proliferation was magnified even further (Fig. 2). Cell proliferation rates remained high in spread cells but completely shut off in cells on 10-µm lines. Previous studies of CE cells cultured on square adhesive islands of different sizes ranging from 10 to 50 µm wide similarly showed that optimal growth (DNA synthesis) occurred in the most highly spread cells (mean projected cell area ≥2200 µm²), whereas apoptosis was switched on in retracted cells with a mean projected cell area less than 300 µm² (2,3). However, the cells that spread on the 10 and 30-µm lines did not undergo apoptosis when analyzed with the TUNEL assay (Fig. 3). When the growth and apoptosis results from the present study were pooled with these previously published data (Fig. 2,3, Table 1), it became apparent that the projected area of cells on 10-µm lines (approximately 1000 µm²) was too low to promote growth and too high to induce apoptosis. In contrast, the mean projected area of cells on the 30-µm line was approximately 2200 µm², a value that correctly predicted growth, although not at optimal levels.

The turning off of the growth and apoptosis programs observed in cells aligned on the 10-µm lines was accompanied by a concomitant switching on of the capillary differentiation program, as indicated by formation of linear cellular cords that appeared to possess a centralized hollow space (Fig. 4, Table 1). Formation of central lumina within these elongated cellular cords was confirmed by confocal microscopy with cells labeled with a fluorescent cytoplasmic dye (CMFDA). When cells plated for 72 h on 10-µm lines were visualized longitudinally by confocal microscopy, a single, continuous, central lumen could be seen to extend over several cell lengths along the main axis of the line (Fig. 4 A,B). When viewed in vertical cross-section (Fig. 4 B), a single CE cell body could be seen stretching around a negatively labeled lumen at its center. This tube-forming cell had partially retracted from the surface of the adhesive island such that only a small area of substrate adhesion was retained along its basal surface. The cells also appeared to increase in height such that other cytoskeletal systems (e.g., intermediate filaments) were no longer in a single focal plane characteristic of a spread cell in culture (not shown). In contrast, cells on the 30-µm lines always appeared as adherent, flattened monolayers when viewed by phase-contrast or confocal microscopy (Fig. 4 A, C). This alteration in adhesion did not appear to be due to a failure to realign since cells on both 10- and 30-µm lines oriented themselves lengthwise along the main long axis of the linear pattern within 48–72 h of plating, when visualized either by phase-contrast microscopy (Fig. 4 A) or by fluorescence microscopy after staining for F-actin with rhodaminated phalloidin (Fig. 5).

The development of strong CE cell–cell adhesions is critical for tube formation and PECAM is characteristic of these junctions...
Fig. 4. Capillary tube formation by CE cells on linear patterns. A, Phase-contrast micrographs of CE cells cultured for 72 h on 10- or 30-μm lines. Magnification, ×200. Although cells aligned along the long axis of the lines on both substrates, only cells on the 10-μm lines formed tubes containing a central, phase-lucent lumen (white arrow). Black arrows indicate multicellular cords that did not form tubes. B, Confocal microscopic images of CMFDA-stained cells cultured on 10-μm lines showed a central cavity extending along several cell lengths (white arrow) when viewed in a horizontal (XY) cross section (left; magnification, ×500). The luminal cavity appears as a negatively stained central space when viewed at higher magnification in either XY (middle; magnification, ×1000) or vertical (XZ) cross sections (right; magnification, ×3000). C, Confocal microscopic images of cells cultured for 72 h on 30-μm lines showing that these cells remained spread within an adherent monolayer and did not form tubes. Magnification, ×1000.
At 72 h of cell attachment on 10-μm lines, linear cell–cell adhesions or junctional seals formed that extended along several cell lengths or at times, over the entire length of the tube, as indicated by discontinuous linear PECAM staining (Fig. 6). PECAM staining was also observed along the cell–cell borders in cells plated on 30-μm lines at 72 h of cell plating (Fig. 6). These patterns, however, were discontinuous suggesting that a complete linear junctional seal did not form in these cells.

Past studies have suggested that the mechanism of capillary differentiation involves complex interactions between CE cells and the ECM molecules they deposit (16). Immunofluorescence microscopy was used to explore the role of cell-derived ECM in the differentiation process by following changes in the distribution of FN and laminin (LM) in CE cells cultured on micropatterned lines over a 5-d period. We have previously shown that the distribution of FN staining is initially uniform across the adhesive island when the cell is first plated due to the preadsorption of FN on the substrate (2). Within 6–24 h after cell adhesion, FN remodeling began to be observed, as indicated by appearance of a fine, fibrillar pattern of FN beneath cells plated on both 10- and 30-μm lines (Fig. 7 A). Cells plated on the 30-μm line maintained this staining pattern over 5 d of culture. The staining pattern of FN in cells cultured on 10-μm lines, however, showed a dramatic reorganization within 48–72 h of plating. The FN fibers coalesced to form a single, large tendril as shown by immunofluorescence or confocal microscopy (Fig. 7 A,B). Cross-sectional views, as seen by confocal microscopy, revealed that the linear cord of FN extended underneath or between cells (Fig. 7 C). Similar results were obtained when antibodies against cell-derived LM were used (Fig. 8). After 4 d, cells cultured on the 10-μm lines pulled themselves off the rigid substrate as retracted tubular networks, while maintaining contacts with other cells and with the ECM tendrils.

DISCUSSION

ECM is known to play a key role in angiogenesis regulation, but the mechanism by which ECM exerts this effect remains unclear. Integrin receptor binding has been shown to stimulate chemical signaling events involved in this process (33,36). Other studies have suggested that mechanical determinants, such as cytoskeletal tension-dependent changes in cell shape, also play a role in switching between growth and differentiation during angiogenesis (13,15,16). Recent work with micropatterned surfaces demonstrated that cell shape—the degree to which a CE cell extends and flattens—is a key determinant of whether a cell enters the growth cycle or undergoes...
apoptosis (2,12). In the present study, we extended this analysis to show that the differentiation program which directs capillary tube formation also can be switched on geometrically. Patterns composed of lines 10 μm wide moderately restricted the extent of cell spreading such that neither growth nor apoptosis was induced. At the same time, the geometry of these lines promoted multicellular cell–cell interactions including the formation of PECAM-containing structures that extended to form linear junctional seals along the length of the developing tube. Simultaneously, linear ECM tendrils accumulated underneath and between the cells; this decreased the area of cell–substrate adhesion and promoted formation of continuous, hollow, tubular structures many cell diameters long. In contrast, cells plated on 30-μm lines formed cell–cell contacts but remained flattened on the culture substrate and did not differentiate into tubes. The micro-patterned surfaces described here had identical chemistry; the substrates were coated with the same saturating density of FN, and the cells were cultured in the same FGF-containing medium. Thus, the culture of these cells differed only in a single parameter: a geometric difference of 20 μm in line width.

Substrate-immobilized FN promotes integrin clustering and the activation of associated integrin signaling pathways (e.g., Na+/H+ exchange, inositol lipid turnover) in CE cells (13,23,32). Small adhesive islands coated with a high density of FN that induce integrin clustering also activate early growth-signaling pathways (e.g., MAP kinase pathways), yet they do not support S phase entry (12). Larger islands that promote cell spreading, (i.e., greater than 1500 μm²), induce both early signaling and later critical cell cycle events, such as upregulation of cyclin D1 and downregulation of the cdk inhibitor, p27kip1 (12). Thus, while integrin ligation may stimulate early signaling events, the degree of cell spreading governs whether the cells will progress through the G1/S restriction point and enter S phase. The present results show that if integrin signaling is activated and cell spreading is only promoted to a moderate degree, then CE cells are induced to enter a differentiation pathway. Specifically, cells on 10-μm-wide lines that restricted spreading to approximately 1000 μm² and promoted cell–cell contact formation turned on a tubular differentiation program. Cells on lines that differed in width by only 20 μm (30-μm lines), on the other hand, were more spread (2200
cellular and cytoskeletal realignment either precede the remodeling of the matrix or these events must happen simultaneously for tube formation to proceed.

These results are consistent with past studies on in vitro angiogenesis which demonstrated that tubule formation involves multiple steps, including: 1) CE cell alignment and cellular cord formation, 2) accumulation of malleable ECM tubuli on the surfaces of adherent cells, 3) engulfment of the threads by the adherent cells, 4) exertion of cell-generated tension on these threads causing them to partially detach from the rigid substrate below, and 5) dissolution of the central ECM thread with concomitant accumulation of a new ECM along the abluminal surface and associated reversal of CE cell polarity to create a fully functional capillary tube (1,16,21). Furthermore, similar steps of capillary tube formation, including reversal of cell polarity, can be seen in vivo in the early blood islands of the developing embryo (6,30). Interestingly, CE cells underwent only the first four steps of this differentiation program in the present study; the central ECM tubuli never dissolved and the full differentiation program was not completed. This observation suggests that geometric cues are sufficient to switch CE cells out of growth or apoptosis and into a differentiation program. However, full completion of the tubular differentiation process may require additional signals, including other mechanical events. For example, in previous studies, dissolution of the central ECM tubuli was preferentially promoted in regions in which the multicellular cords lost complete contact with the dish surface and were able to fully retract (16). This late step in tube formation, the dissolution of the central ECM, may have been inhibited in the present study because the multicellular cords maintained continuous contact with the rigid substrate along their length and thus did not retract (Fig. 4). In the few cases in which cord detachment was observed, the cords released completely from the substrate as a retracted tubular network and were not amenable to further analysis (data not shown).

Analysis of growth and apoptosis in cells cultured on linear patterns revealed that capillary differentiation occurs at a moderate degree of cell spreading that neither supports DNA synthesis nor programmed cell death (Table 1). This observation suggests that a common pathway may exist that regulates these three major gene cascades, rather than a model in which each program is independently regulated. Such a mechanism would ensure concomitant switching between different cell fates while preventing two programs from being initiated simultaneously. Our results demonstrate that this central mechanism of cellular control is regulated by changes in cell architecture. The mechanism by which cell shape regulates these genetic programs has yet to be elucidated. Previous studies, however, suggest that the integrity of the cytoskeleton and its ability to generate tension against a resisting substrate through integrin-ECM interactions may play an integral role in this control mechanism (2,12,14).

In summary, our results demonstrate the existence of a mechanical mechanism for switching CE cells between growth, differentiation, and apoptosis. In the presence of the same set of chemical signals (e.g., growth factors, integrin binding), different gene programs are activated depending on the degree of cell extension or retraction in the local microenvironment. While growth factors and integrin binding are necessary for the activation of all programs, cell geometry and the corresponding changes in the mechanical force balance within cells govern which genetic pathway is selected. These results are consistent with past studies that showed that the thickness and
malleability of the ECM change when CE cells switch between
growth, differentiation, and death during angiogenesis in vivo
(4,14,18,19). Development of a well-defined adhesive environment
in which capillary tubes consistently form in vitro should facilitate
future analysis of the complex, multistep process that mediates an-
angiogenesis.

ACKNOWLEDGMENTS

This work was supported by grants from NIH (HL57669 and GM30367),
NSF (EC9728050), DARPA/SPAWAR/ONR. This work used MIRSEC-shared
facilities supported by the NSF (DMR-9400396). C. S. C. is grateful to the
Angiogenesis Foundation for their generous support. J. T. thanks the NSF for a
predoctoral fellowship.

REFERENCES

1. Ausprunk, D. H.; Folkman, J. Migration and proliferation of endotelial
5. Clark, F. R.; Clark, E. L. Microscopic observations on the growth of blood
6. Cockerill, G. W.; Gamble, J. R.; Vadis, M. A. Angiogenesis: models and
8. Coffin, J. D.; Poole, T. J. Embryonic vascular development: immunohis-
tochemical identification of the origin and subsequent morphogenesis of
11. Deluca, H. M.; Christofidou-Solomidou, M.; Strieter, R. M.; Burdick,
17. Huang, S.; Chen, C. S.; Ingber, D. E. Control of cyclin D1, p27kip1 and
18. Ingber, D. E. Fibronecin controls capillary endothelial cell growth by
exploring how mechanical changes in the cytoskeleton regulate cell
growth, migration, and tissue pattern during morphogenesis. Int. Rev.
20. Ingber, D. E.; Folkman, J. How does extracellular matrix control capillary
330; 1989.
logues of fumagillin that inhibit angiogenesis and suppress tumour
23. Ingber, D. E.; Jamieson, J. D. Cells as tensile structures: architectural
regulation of histodifferentiation by physical forces transduced over
laseremembrane. In: Andersson, L. C.; Gahnberg, C. G.; Ekblom,
P., ed. Gene expression during normal and malignant differentiation.
24. Ingber, D. E.; Madri, J. A.; Folkman, J. A possible mechanism for inhi-
bition of angiogenesis by angiostatic steroid induction of capillary
25. Kudelska, A. P.; Verschoore, G. F.; Leyer, E. Complete remission of
metastatic cervical cancer with angiogenesis inhibitor TNP-470. N.
26. Kuzuya, M.; Kinsella, J. L. Reorganization of endothelial cord-like struc-
tures on basement membrane complex (Matrigel): involvement of trans-
27. Matsunura, T.; Wolff, K.; Patzelt, F. Endothelial cell tube formation
depends on cadherin 5 and CD34 interactions with filamentous actin.
28. McNamara, H. P.; Ingber, D. E.; Schwartz, M. A. Adhesion to fibronectin
stimulates internal lipid synthesis and enhances PDCF-induced ino-
attachment on contoured surfaces with self-assembled monolayers of
printing to pattern the attachment of mammalian cells to self-assem-
bled monolayers of alkanethiolates on transparent films of gold and
and sustains dormancy of human primary tumors in mice. Nat. Med.
2:689–692; 1996.
novel angiogenesis inhibitor that mediates the suppression of meta-
33. Plotter, G. E.; McNamara, H. P.; Dike, L. E.; Bojanowski, G., et al.
Convergence of integrin and growth factor receptor signaling paths-
eways within the focal adhesion complex. Mol. Biol. Cell 6:1349–1365;
1995.
34. Prime, K. L.; Whitesides, G. M. Self-assembled organic monolayers: model
systems for studying adsorption of proteins at surfaces. Science
91; 1995.
Multiple integrins share the ability to induce elevation of intracellular
37. Schwartz, M. A.; Lechene, C.; Ingber, D. E. Insoluble fibronectin acti-
vates the Na/H antiporter by clustering and immobilizing integrin
alpha 5 beta 1 independent of cell shape. Proc. Natl. Acad. Sci. USA
38. Schwartz, M. A.; Schaller, M. D.; Ginsberg, M. H. Integrins: emerging
599; 1995.
39. Sheibani, N.; Newman, P. J.; Frazier, W. A. Thrombospondin-1, a natural
inhibitor of angiogenesis, regulates platelet-endothelial cell adhesion
molecule-1 expression and endothelial cell morphogenesis. Mol. Biol.
Engineering cell shape and function. Science (Wash DC) 264:696–698;
1994.