
JOURNAL OF MICROELECTROMECHANICAL SYSTEMS, VOL. VV, NO. N, MONTH YYYY 1

Supplementary Information for Monolayer MoS2

Strained to 1.3% with a Microelectromechanical
System
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S1. TRI-LAYER GRAPHENE RAMAN ANALYSIS OF STRAIN

The data presented in [1] shows complete slipping and no strain. Garza et al. found for their trilayer graphene sample that
the G phonon peak shifted at a rate of -0.24 cm−1/%. We compare this shift rate with the expected rate given the literature
values for the Grüneisen parameter and shear deformation potential for trilayer graphene (γG = 1.89 ± .02, and βG = 0.71 ±
.06) [2], the Poisson’s ratio, ν, for Graphite (0.165) [3], and the fact that under strain the G peak shifts according to the same
formula as the E′ peak in MoS2,

ω±G = ω0G

{
1−

[
γG (1− ν)∓ βG

2
(1 + ν)

]
ε

}
, (S1)

where ω0G is the unstrained phonon energy (1584.9) [1], and ε is the uniaxial strain. According to the given parameter values
and the G phonon energy dependence on strain, it is expected that dω

+
G

dε ≈ −12 cm−1/% and dω−G
dε ≈ −38 cm−1/%. This shows

that the shift rate reported by Garza et al. is two orders of magnitude smaller than expected based on the literature. Such a
large discrepancy strongly indicates that Garza et al. did not achieve the claimed strain.

We hypothesize that the graphene is completely slipping and the observed changes to the G peak position are the result
of heating the sample. If proper error bars had been reported for the G peak position and Si Raman peak position used to
determine sample temperature, then would be able to assess the likelihood of of our hypothesis. Without this information we
can still strongly justify our hypothesis. Given the scattering of the G peak position measurements in Fig. 5a of [1] we think it
is likely that a best fit linear regression would reveal that the G peak shifted by only ≈-1.5 cm−1 in their experiment. Assuming
the G peak in trilayer graphene shifts with temperature by -0.015 cm−1/◦C, a conservative value considering the corresponding
shift rates for monolayer and bilayer graphene [4], then the flake’s temperature would have to increase by 100◦C to explain the
observations. This is about an 84◦C greater temperature change than reported by Garza et al.. Using -0.0232 cm−1/◦C as the
Stokes parameter for poly-silicon as is done in Garza et al., a 84◦C change in temperature would be explained by a 1.9 cm−1

shift in the Si Raman peak. While this may seem like a large error, we find in our experience that the Si Raman peak in our
poly-silicon structures can vary easily by as much as 0.4 cm−1 from location to location because of doping and internal strain
inhomogeneities. Considering we see this much variation in our devices produced by a professional foundry, we do not think
it is unreasonable that five times the variation could be seen in the home built devices in [1]. Further, our hypothesis matches
the observed reproducibility, and nicely explains why the intensity of G and 2D peaks decrease so much when the actuator is
operating at high power, reduced radiative decay because of thermally increased non-radiative decay channels. Lastly, note that
when the actuators are operated at 2.4 W a 5 mm by 5 mm silicon wafer 625 µm thick would heat at a rate of 94◦C/s without
a heat sink. Hence, it is entirely possible that the device in [1] was not thermally grounded well enough and the temperature
of the entire MEMS die rose by 100◦C, which would bypass the protective measures used by Garza et al. to prevent thermally
heating the flake.

During the preparation of this manuscript the authors became aware of a novel experiment using electron diffraction to
measure strain in carbon nanotubes strained with MEMS [5]. As the field of strain based nano-material devices matures we
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Plates Glued to 
Tethers

150 µm

Fig. S1. Device M26 with shuttles from other devices glued onto the
thermal relief tethers repairing them.
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Fig. S2. Example shuttle displacement versus power applied curve for
one of our thermal actuators.

believe electron diffraction for measuring strain is likely to become an important tool to irrefutably determine strain and offer
important diagnostic capabilities in designing new strain based devices.

S2. REPAIR OF DEVICE M26

Fig. S1 shows device M26 repaired after the thermal relief tethers broke during its first actuation. The repair was accomplished
by breaking free shuttles from discarded devices using probe tips in a micromanipulator. Then a micro-pipette system was used
to dispense several micron-meter wide drops of UV curable glue, Norland Optical Adhesive NOA81, onto each shuttle. The
holes in the shuttles acted like a sponge to wick up the glue. The shuttles were then carefully picked up and placed onto device
M26 with a pair of probe tips actuated by micromanipulators. The device was then exposed to 20 seconds of UV radiation
using Xenon Corp. RC-250B pulsed UV Curing System, solidifying the glue.

S3. DISPLACEMENT VS. POWER CURVE

Fig. S2 shows an example optical measurement of displacement versus power applied to one of our thermal actuators. The
slope is 4.3 nm/mW, which we used to estimate the rate at which we applied strain to our samples. For example if we had a
sample with a 3 µm gap, our nominal gap size, and we wanted to increase the strain in steps of 0.2%, then we would increase
the power in steps of ≈1.4 mW.

S4. EFFECTIVE POISSON’S RATIO

The equations for mechanical equilibrium of a coupled bulk and 2D system are derived below starting with the free energy
equations for the bulk and 2D system, and coupling them using Lagrange multipliers. The total free energy is

H =

∫
ΣB

dV FB
(
εB
)

+ τ

∫
ΣS

dS
[
FS
(
εS
)

+ λij

(
εBij
∣∣
z=0
− εSij

)]
(S2)

where FB , εB and FS , εS are the free energy densities and strain tensors of the bulk material and surface (2D system), τ is
the effective thickness of the 2D material, ΣB is the volume of the bulk material, ΣS is the surface of the 2D system, and λij
are Lagrange multipliers to constrain the strain of the 2D material and the bulk at the boundary, z = 0, to be equal. Since ε is
symmetric, so too must λ otherwise there would be too many constraints. Summation over repeated induces is assumed. Note
that εB is a three dimensional tensor, while εS is only a two dimensional tensor and only has support over the domain z = 0.
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Now we can take functional derivatives with respect to the displacement fields uB and uS , bulk and surface, to determine
the equilibrium equations and boundary conditions. We’ll also define the stress tensor σXij := ∂FX

∂εXij
where X can be B or S.

δH

δuBi
=

∫
ΣB

dV σBjk
1

2

(
δik∂jδ

(3) (x) + δij∂kδ
(3) (x)

)
+ τ

∫
ΣS

dSλjk
1

2

[
δik∂jδ

(2) (x) + δij∂kδ
(2) (x)

]
δ (z) (S3)

=

∫
ΣB

dV
[
∂j

(
σBijδ

(3) (x)
)
− δ(3) (x) ∂jσ

B
ij

]
+ δ (z) τ

∫
ΣS

dS
[
∂j

(
λijδ

(2) (x)
)
− δ(2) (x) ∂jλij

]
(S4)

= −
∫

ΣB

dV δ(3) (x) ∂jσ
B
ij +

∮
∂ΣB

dAjσ
B
ijδ

(3) (x)

− δ (z) τ

∫
ΣS

dS δ(2) (x) ∂jλij + δ (z) τ

∮
∂ΣS

d`jλijδ
(2) (x) (S5)

= −
∫

ΣB

dV ∂jσ
B
ijδ

(3) (x) +

∫
∂ΣB ,z 6=0

dAjσ
B
ijδ

(3) (x)

+ δ (z)

∫
ΣS=∂ΣB ,z=0

dS
[
σBijÂj − τ∂jλij

]
δ(2) (x)

+ δ (z) τ

∮
∂ΣS

d`jλijδ
(2) (x) = 0, (S6)

where δ(n) is the n-dimensional Kronecker delta function, and ∂ΣX is used to denote the boundary of ΣX . In the first line
the partial derivative with respect to εBjk is taken, and then the functional derivative of εBjk. In the second line the sums are
collapsed making use of the symmetry of ε and λ, and the first step of integration by parts, f∂jg = ∂j (fg)− g∂jf , is used.
In the third line the generalized Stoke’s theorem is used to convert integrals over ΣB and ΣS to their boundaries, ∂ΣB and
∂ΣS . The integration measures dAj and d`j are oriented outward of the integration domain. In the fourth line the portion of
the integral over ∂ΣB that corresponds with ΣS , i.e. where z = 0, is combined with the explicit integral over ΣS . Setting each
integrand equal to zero we arrive at the equilibrium conditions and boundary conditions for the bulk material.

∂jσ
B
ij = 0 (S7)

σBijÂj

∣∣∣
∂ΣB ,z 6=0

= 0 (S8)

σBijÂj

∣∣∣
z=0
− τ∂jλij = 0 (S9)

λij ˆ̀
j

∣∣∣
∂ΣS

= 0 (S10)

Note that Âj and ˆ̀
j are outward normal unit vectors of their domains. The first equation is the standard equilibrium equation

for a bulk elastic material, and the second equation is the standard boundary condition for no external forces acting on the
material. The third equation gives a rule for balancing the forces between the bulk material and the 2D system, and the fourth
provides a no force boundary condition on the 2D system.

Now we determine the equilibrium equations and boundary conditions of the 2D system by taking the functional derivative
with respect the the 2D system’s displacement field.

δH

δuSi
= τ

∫
ΣS

dS
(
σSij − λij

)
∂jδ

(2) (x) (S11)

= τ

∫
ΣS

dS
{
∂j

[(
σSij − λij

)
δ(2) (x)

]
− δ(2) (x) ∂j

(
σSij − λij

)}
(S12)

= τ

{∮
∂ΣS

d`j
(
σSij − λij

)
δ(2) (x)−

∫
ΣS

dS
[
∂j
(
σSij − λij

)
δ(2) (x)

]}
= 0 (S13)

This derivation followed the same exact steps as for δH
δuB

i
, but there are fewer terms and there is no complication of the boundary

of one domain being part of another integrals domain. Setting each integrand equal to zero we have(
σSij − λij

)
ˆ̀
j

∣∣∣
∂ΣS

= 0 (S14)

∂j
(
σSij − λij

)
= 0. (S15)
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We can now easily eliminate the Lagrange multipliers yielding the following set of equations

0 = ∂jσ
B
ij , (S16)

0 = σBijÂj

∣∣∣
∂ΣB ,z 6=0

, (S17)

0 = σBijÂj

∣∣∣
z=0
− τ∂jσSij , (S18)

0 = σSij
ˆ̀
j

∣∣∣
∂ΣS

(S19)

0 = εBij
∣∣
z=0
− εSij . (S20)

As mentioned earlier the first two equations are the standard equilibrium equation and zero force boundary conditions of a
bulk material. The third term relates the boundary force of the bulk to the interior force on the 2D material. Note that when
i = z, the second term is zero. Further, for a system where the 2D material is at the z = 0 plane, Âj = ẑ, so this equation
reads 0 = σBiz

∣∣
z=0
− τ∂jσSij . The fourth equation is the standard no force boundary condition, but this time for a 2D system.

The final equation is a reminder that though we have eliminated the Langrange multipliers, we still need to adhere to the
constraints they impose. This is very important because otherwise you might think that you could decouple the bulk from the
2D system by creating a uniform strain distribution with zero off diagonal strain components, which would trivially satisfy
Equation S18.

We’d really like to solve these equations in the situation of uniaxial strain in isotropic bulk and 2D materials. In the bulk
situation this is solved by hypothesizing a uniform strain distribution, which trivially satisfies the equilibrium equation, and
then solving for the strain components that satisfy the no force boundary conditions. If we tried to use the same method to
solve these coupled equations it isn’t hard to see that we will fail to satisfy the requirement that strains between the bulk and
2D system are equal. In short we’d find

εBxy = εBxz = εByz = 0, (S21)

εBxx = ε, εByy = εBzz = −νBε, (S22)

εSxy = 0, (S23)

εSxx = ε, εSyy = −νSε, (S24)

where ε is the stain along the x axis (major strain axis), and νB and νS are the Poisson’s ratios of the bulk and 2D system.
Unless νB = νS these strains do not satisfy the requirement of Equation S20. There simply isn’t a uniform solution to the
coupled bulk, 2D material equations.

However, we can find a uniform strain field that does not violate the coupled equations so egregiously. Let’s begin with
what we want to respect most, Equation S18, and hypothesize that εBxx = εSxx = ε and εByy = εSyy = −νeffε. Now we try to
satisfy as many boundary conditions as possible. Very easily we’ll find εBxz = εByz = εBxy = εSxy = 0. Setting σBzz = 0 we’ll find
that εBzz = −νB 1−νeff

1−νB ε. The remaining boundary conditions are σByy = 0 and σSyy = 0. We could choose νeff to satisfy one of
these, but that would mean setting νeff equal to νB or νS . Instead we choose to satisfy neither, and let energy minimization
select the best νeff. Integrating the free energy density over the thickness of the bulk we find∫

dzFB
(
εB
)

+ τSFS
(
εS
)

=
τB
2

(
σBxxε

B
xx + σByyε

B
yy + σBzzε

B
zz

)
+
τS
2

(
σSxxε

S
xx + σSyyε

S
yy

)
(S25)

=
ε2

2

∑
X∈{B,S}

τXEX
(1 + νX) (1− νX)

(
1− 2νXνeff + ν2

eff

)
(S26)

where τB and τS and EB and ES are the thicknesses and Young moduli of the bulk and 2D material. Let KX := τXEX

(1+νX)(1−νX) ,
then we can simply set the derivative with respect to νeff to zero in order to minimize the energy density. The solution is

νeff =
KBνB +KSνS
KB +KS

. (S27)

This solution has a nice intuitive balance. If the product of the thickness and the Young’s modulus of the 2D material is
small compared with the substrate, then the effective Poisson’s ratio is that of the substrate. This is the typical assumption for
2D materials on bulk substrates. However, when the product of the thickness and the Young’s modulus of the 2D material is
large compared with the substrate, then the effective Poisson’s ratio is that of the 2D material. In particular, if there isn’t a
substrate, KB = 0, we recover what we’d expect, νeff = νS .
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TABLE S1
MAXIMUM CHANGE IN STRAIN ACHIEVED AND PRE-STRAIN

Max. Change in Strain [%] Pre-Strain [%]
Device ν = 0.42 ν = 0.35 ν = 0.27 ν = 0.42 ν = 0.35 ν = 0.27

M24 0.76 ± 0.08 0.72 ± 0.08 0.68 ± 0.08 -0.01 ± 0.09 -0.01 ± 0.05 -0.01 ± 0.05
M25 0.63 ± 0.05 0.59 ± 0.05 0.56 ± 0.05 -0.05 ± 0.03 -0.05 ± 0.03 -0.05 ± 0.03
M26 0.86 ± 0.11 0.82 ± 0.11 0.77 ± 0.10 0.03 ± 0.06 0.03 ± 0.06 0.02 ± 0.05

M26 v2 1.30 ± 0.09 1.23 ± 0.08 1.15 ± 0.08 -0.03 ± 0.03 -0.03 ± 0.03 -0.02 ± 0.03

TABLE S2
SLOPES FOR RAMAN PEAK STRAIN RESPONSE

E′− [cm−1/%] A′ [cm−1/%]
Device ν = 0.42 ν = 0.35 ν = 0.27 ν = 0.42 ν = 0.35 ν = 0.27

M24 -1.95 ± 0.12 -2.08 ± 0.14 -2.22 ± 0.13 -0.78 ± 0.68 -0.83 ± 0.71 -0.90 ± 0.68
M25 -2.28 ± 0.43 -2.41 ± 0.47 -2.56 ± 0.50 -0.73 ± 0.52 -0.78 ± 0.66 -0.83 ± 0.77
M26 -1.45 ± 0.49 -1.52 ± 0.50 -1.60 ± 0.48 -0.75 ± 0.57 -0.79 ± 0.65 -0.84 ± 0.75

M26 v2 -2.11 ± 0.19 -2.24 ± 0.21 -2.40 ± 0.20 -0.75 ± 0.46 -0.79 ± 0.42 -0.85 ± 0.44

Lit. -2.32 ± 0.41 -2.45 ± 0.40 -2.60 ± 0.38 -0.49 ± 0.17 -0.55 ± 0.19 -0.62 ± 0.21

TABLE S3
SLOPES FOR PL PEAK STRAIN RESPONSE

Trion [meV/%] A Ex. [meV/%] B Ex. [meV/%]
Device ν = 0.42 ν = 0.35 ν = 0.27 ν = 0.42 ν = 0.35 ν = 0.27 ν = 0.42 ν = 0.35 ν = 0.27

M24 -55 ± 5 -59 ± 5 -63 ± 5 -45 ± 9 -48 ± 8 -52 ± 9 -71 ± 13 -76 ± 14 -81 ± 14
M25 -84 ± 12 -89 ± 13 -95 ± 14 -81 ± 20 -86 ± 25 -91 ± 21 -29 ± 14 -31 ± 15 -33 ± 17
M26 -110 ± 22 -116 ± 22 -124 ± 22 -72 ± 25 -76 ± 32 -80 ± 30 -74 ± 21 -78 ± 31 -82 ± 36

M26 v2 -43 ± 2 -46 ± 2 -49 ± 2 -38 ± 3 -40 pm 3 -43 ± 3 -50 ± 5 -53 ± 5 -57 ± 6

Lit. - -30 ± 2 -33 ± 2 -37 ± 3 -

TABLE S4
RELATIVE SHIFT RATES OF PEAKS

Literature
Slope Ratio M24 M25 M26 M26 v2 ν = 0.42 ν = 0.35 ν = 0.27

dωA′
dEA

[cm−1/eV] 18 ± 6 10 ± 3 8 ± 3 20 ± 5 17 ± 22 17 ± 22 17 ± 22
dEA

dω−
E′

[meV/cm−1] 23 ± 3 36 ± 5 40 ± 8 18 ± 1 15 ± 6 15 ± 6 16 ± 6

dωA′

dω−
E′

[-] .41 ± .15 .32 ± .12 .43 ± .17 .35 ± .10 .24 ± .34 .26 ± .35 .27 ± .37

S5. RESULTS ASSUMING DIFFERENT POISSON’S RATIO

To assess the possibility that the effective Poisson’s ratio for our samples is different from that of PPC, 0.42, we re-calculated
our results assuming a Poisson’s ratio of 0.35 and 0.27. The results for all three values of the Poisson’s ratio are tabulated in
Table S1, Table S2, Table S3, and Table S4. These tables consistently show that our experiment is relatively insensitive to the
Poisson’s ratio, but there is a slightly better agreement between our experiment and literature as the Poisson’s ratio decreases.

S6. STRESS AND STRAIN INHOMOGENEITY

To asses the inhomogeneity of stress and strain in our samples we simulated our experiment using COMSOL. Fig. S3 shows
the resulting distributions of the stress and strain in our samples accounting for the expected trapezoidal shape. To accentuate
the inhomogeneity we ran our simulations with 33% strain, and they still show a large region in the middle with highly uniform
stress and strain. The simulation assumes a sample thickness of 0.65 nm, 32 µm wide on its widest side, 3 µm long, a Young’s
modulus of 270 GPa, and Poisson’s ratio of 0.42. These simulations show the robustness of the strain homogeneity in the
middle of the sample to perturbations at the edges, which is where inhomogeneities in the PPC and flake are most likely to
occur.
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Fig. S3. Stress and Strain Homogeneity: a) von Mises Stress, b) XX component of the strain tensor, c) XY component of the strain tensor, d) YY component
of the strain tensor
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