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1. Growth and characterization 

 

Devices were grown by chemical vapor deposition (CVD) according to a method described in 

an earlier paper
1
. The devices were transferred over the etched microcavities using a PMMA 

dry transfer method. Immediately prior to transfer the SiOX wafers were O2 plasma cleaned 

for 15 mins to remove any surface contamination. Before annealing off the PMMA layer at 

340 
o
C, the devices were left in a vacuum desiccator for > 3 days to allow any gas trapped in 

the microcavities to leak out. Monolayers were identified by their optical contrast, and their 

Raman and photoluminescence (PL) spectra (Fig. S1). The separation between the E
1

2g and 

A1g Raman modes was 20.3 cm
-1

, and the A exciton peak in the PL spectrum was located at 

1.88 eV, which demonstrates that the membrane was single layered
2,3

. The E
1

2g peak position 

is later used to determine the residual membrane strain. 

 

Fig. S1 a) The Raman and b) PL spectrum of a suspended single layer MoS2 device with zero pressure 

difference across the membrane.  

 

2. The effect of membrane pre-tension  

 

Even when there is no pressure difference across the membrane there is usually a residual 

pre-strain observed in suspended devices, due either to the transfer procedure or the 

membrane sticking to the sidewalls of the cavity
4
. We can estimate the pre-tension in our 

membranes by using photoluminescence spectroscopy. In an earlier paper
1
 we showed that 

the band-gap in monolayer MoS2 reduces when biaxial strain is applied, at a rate of -99 

meV/%. We took a PL spectrum of a device with no pressure difference across the membrane 

(Fig. S1), meaning any observed strain would correspond to the pre-strain. We can then 

convert this to a pre-tension using the formula
5
, 
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Our devices have a pre-strain of ε0 < 0.002 which corresponds to a pre-tension of σ0 < 0.2 

N/m, which is comparable to previously reported values for atomically thin membranes in 

this geometry
4,6

. Campbell 1956 [5] showed that when the non-dimensional parameter, 
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satisfies the condition P > 100,  Hencky’s formula in Eq. 1 is correct to within 5%. Most of 

our data points were taken in a high enough pressure range to satisfy this condition. For 

instance for the data presented in Fig. 2a, P = 100 when ∆p = 350 kPa. Since nearly all of our 

data was taken with ∆p > 350 kPa we use Eq. 1 to calculate E2D, and neglect the effect of the 

pre-tension. 

 

3. Work of separation  

The full set of data used to produce means and standard deviations of each sample in Fig. 3 of 

the main text is shown in Fig. S2. Each data point represents the measured value of Γsep for an 

individual device of a given sample.  

 

Fig. S2. All Γsep data used to calculate means and standard deviations of each sample in Fig. 3. 

 

 



4. Free energy model including adhesion hysteresis 

 

We can interpret the results described in Fig. 4 of the main text using the free energy model 

described in Eq. 1. Taking the derivative of F with respect to a, and substituting the pressure 

terms for the Hencky’s result in Eq. 3 yields, 
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Setting this formula equal to zero to find the radius at which the free energy is minimized 

leads to, 
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The constants C and K depend only on the Poisson’s ratio ν, and their values for various 2D 

materials are tabulated in Table S1.  

 

 Poisson’s Ratio ν K(ν) C(ν) 

MoS2 0.29 3.54 0.522 

Graphene 0.16 3.09 0.524 

hBN 0.22 3.28 0.523 

Black Phosphorus 0.4 4.07 0.519 

Table S1. Values for constants C(ν) and K(ν) for several 2D crystals, calculated using Hencky’s 

solution. 

 

We plot the relationship described by Eq. S4 in Fig. S4a with a value of Γsep ~ 220 mJ/m
2
 and 

find our data fits this relationship very well. This formula is independent of whether N is 

increasing or decreasing, so when our devices are left to deflate we should expect δ and a to 

return along the same path as during inflation, and described by Eq. S4.  

 

We can explain the difference between inflation and deflation we see in our data as a result of 

adhesion hysteresis, whereby the energy required to separate the membrane from the surface 

Γsep is greater than the energy returned to the system as the membrane re-adheres Γadh, with 

Γadh < Γsep.  

For changes of the device radius ∆a, we now have: 
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As the device inflates and ∆a >0, the free energy of the system is minimized according to 

Eqs. 4 and 5, with δ0/ap  ~ Γsep
1/4

. When deflating the radius of the device will only decrease 

when dF/da >0 for ∆a <0 (with Γ=Γadh), in order for the free energy to be minimized. From 

examining Eq. S3 and considering that Γadh < Γsep, this will only occur when δ has decreased 

from δ0 to below the critical value of δ = δc after which the device radius can reduce in the 

form of a snap-in transition. Since the radius cannot decrease until δc is reached, the bubble 

edge remains pinned at ap. The critical deflection δc marks the point where dF/da = 0 for ∆a 

<0 (i.e. Γ=Γadh), and from using Eq. S3 we can see that this occurs when the relationship, 
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is satisfied. This corroborates with what we see in Fig S3a, in which the value of δc is roughly 

proportional to ap for the devices measured. We can estimate the value of Γadh by fitting this 

relationship to the values of δc and ap of devices just before the snap in transition occurs, and 

we plot this line of best fit in Fig. S3a which corresponds to Γadh ~ 14 mJ/m
2
. We checked the 

repeatability of our measurements of Γadh by repeating the experiment 6 times on a single 

device, which resulted in a mean and standard deviation of 13 mJ/m
2
 and 5 mJ/m

2
 

respectively (Fig. S3b).  

 

These arguments are best seen graphically in terms of the free energy landscape plotted as a 

function of radius in Fig S4b, c and d. In the absence of adhesion hysteresis, as the pressure 

inside the device decreases and the devices deflate, the free energy minima moves to a 

smaller radius (Fig. S4b). The path taken by our devices is shown in Fig. S4c, and clearly 

shows the devices not following the local minima in the free energy. By introducing adhesion 

hysteresis into the model (Fig. S4d), ∆F is calculated using Γsep for ∆a >0 and Γadh for ∆a <0, 

which results in the device radius remaining trapped in a local minima as the device deflates. 

The radius only changes when dF/da >0 for ∆a <0 which only happens when Eq. S6 (Eq. 5 

in the main text) is satisfied.   

 



 

Fig. S3 a) Data for devices measured on sample N2, showing the values of δc and ap just before snap-

in used to calculate Γadh. Each color/symbol represents a different device. b) Multiple measurements 

of a single device at a number of different pressures showing repeatability. Dashed line represents the 

mean adhesion value.  

 

Fig. S4 a) As devices delaminate the ratio δ/a remains constant according to Eq. S4. b) The free 

energy landscape if there is no adhesion hysteresis. The device radius is that which minimizes the free 

energy, and the grey dots mark the path we would expect the device to take. c) The actual path our 



devices take, which appears to not minimize the free energy. d) The modified free energy landscape if 

Γadh < Γsep. As the device reduces its radius its free energy is determined by the dashed lines. The 

device is now trapped in a free energy minima and snap-in only occurs when the gradient of the 

dashed line is greater than zero.  

 

To see if the work of adhesion varied between samples fabricated with the same method of 

CVD growth and transfer, we performed measurements of 5 different CVD samples (N2-6) 

with at least 4 devices measured per sample. Monolayer devices were delaminated and left to 

deflate, and AFM measurements of δc and ap taken just before snap-in were used to calculate 

the work of adhesion using Eq. S6. The data is presented in Fig. S5a, with each data point 

representing a measurement of Γadh in a single device of a given sample. The mean and 

standard deviations of each sample are shown in Fig. S5b. Between different samples there is 

considerable variation in the mean work of adhesion, which suggests that factors such as the 

cleanliness of substrate or membrane which can vary from sample to sample may play 

significant roles in adhesion hysteresis.  A few of the devices measured did not snap in 

completely from radius ap to a0, but rather initially snapped in to an intermediate radius 

followed by a second snap in to a0 (Fig. S9b). All the transitions between these states were 

unstable and occurred in less than one second. 

 

 

Fig. S5 a) Work of adhesion for every device measured in each sample. b) Mean and standard 

deviations of the work of adhesion in each sample. The dashed line represents the mean of the 5 

samples.  

 

 

 

 



5. Contact angle of bubbles during deflation  

 

Instead of analyzing the snap-out and snap-in data in terms of δ and a, an analogous method 

is to measure the contact angle θc between the membrane and the substrate (see Fig. S6 inset) 

using an AFM. In Fig. S6 we plotted the contact angle against the radius of a device as it is 

inflated (black) and then left to deflate (red). As the device is inflated the contact angle 

increases until a critical value, at which point the device delaminates with the contact angle 

remaining constant. When the device is left to deflate the contact angle decreases at constant 

radius until another critical contact angle is reached, at which point the device undergoes the 

snap-in transition.  

 

 

Fig. S6. The contact angle of a device during inflation (black) and deflation (red).  

 

6. Strain trapping around the edge of the membrane  

 

To investigate a possible mechanism for the observed adhesion hysteresis we used Raman 

spectroscopy to measure the strain distribution around our devices. The peak positions of the 

Raman modes in monolayer MoS2 are known to be sensitive to strain
1,7

, so by measuring how 

these peaks shift at different locations around the device we can build up an image of how 

strain is distributed. For these measurements we used the E
1
2g peak to estimate the strain (Fig. 

S1), since it has a peak position which is strain sensitive and independent of doping effects. 

  



Fig. S7a shows an AFM image of a device delaminated to ap ~ 7.5 µm, which was then left to 

deflate and undergo the snap-in transition. A Raman map was then taken after snap-in (Fig 

S7b), with the strain calculated from the position of the E
1
2g peak using the reported shift rate 

of ~ 5 cm
-1

 / %
1,7

.  A region of ε ~ 0.5% can be clearly seen around the circumference of 

where the delaminated bubble was before snap-in. This strain likely originates from the 

pressure induced radial strain at the edge of the bubble, which for these devices is ~1.5% 

(Fig. S8d). Using this upper bound of ε ~ 1.5% and the formula for the isotropic strain 

membrane energy density
8
, U = ½ E2D ε

2
, we can estimate the energy stored in the strained 

regions to be U ~ 20 mJ / m
2
, which can account for some but not all the energy dissipation 

which produces a difference between Γadh and Γsep. The presence of strain in the membrane 

also implies some contribution of energy dissipation through friction as the membrane 

changes its length on the surface of the substrate
9
.  

 

 

 

Fig. S7 a) AFM image (amplitude channel) of a delaminated device before the snap-in transition. The 

position of the microcavity is marked by a dashed circle. Below is a cross section of the device. b) 

Strain map of the same device after the snap-in transition when the device has fully deflated. Strain is 

calculated using the peak shift in the E
1
2g Raman mode at each point. Each pixel is 1 x 1 µm and 

corresponds to a single Raman scan.  

 

In order to observe the process by which this strain becomes ‘trapped’ in the membrane 

around the device, we took Raman line scans over a cross section of a device as it deflated 

and plotted the E
1

2g peak position as a function of distance (Fig. S8a and S8b). Before each 

Raman scan we found the corresponding geometry of the device by taking an AFM image 

(Fig. S8c). Across the delaminated bubble region (marked by dashed lines) the peak shift 

abruptly increases at the edge of the bubble, followed by a gradual increase towards the 

center of the device. In Fig. S8d we used Hencky’s solution to find the predicted strain profile 

across the device for its initial geometry (Fig. S8c red line) before deflation. In the model, the 



strain jumps from zero to purely radial tensile strain at the edge of the device, with the 

tangential component gradually increasing from zero to be equal to the radial component at 

the center. The E
1

2g peak position depends on contributions of both the radial and tangential 

strain, so this model explains the profile seen in Fig. S8a. 

 

Fig. S8b shows that a region of strain extends ~1.5 µm outside the edge of the bubble in the 

initial Raman scan (red line). As the device deflates and the radius remains pinned the peak 

shift across the delaminated region of the membrane reduces as it becomes less strained, 

however the region of strain outside bubble remains roughly constant throughout deflation. 

These results show that the ring of strain in Fig. S7b is formed when the device initially 

delaminates, and that this strain does not relax as the device deflates and eventually snaps in.  

 

Fig. S8 a) Raman line scans over a device over time as it deflates. Dashed vertical lines mark the edge 

of the delaminated bubble. b) A zoomed in version of a) focusing on the edge region of the device. c) 

AFM cross sections of the device at each time, using the same color scheme as in a). d) Radial (εr) and 

tangential (εθ) components of the strain as a function of radius for this device’s initial geometry before 

deflating, calculated using Hencky’s model with values for δ and a taken from the red curve in c).  

 

7. The effect of the slipping of the membrane on E2D calculations 



 

The strain at the edge of the bubble introduces extra slack into the membrane of bubble, 

which may affect our measurements of E2D. We can estimate the effect this has on our 

measurements by integrating the strain over the strained region at the edge of the bubble in 

Fig. S8b to find the total extra slack, ∆4, added to the bubble membrane. We can write the 

slack added to the membrane as, 

 

∆4 � 5 6(8):8;�
�        (S7) 

 

The initial measurement in Fig. S8b (red line color and labeled ‘87 mins’) shows that the 

peak shift linearly decreases from ~ 5.5 cm
-1 

around the edge of the device to ~0 cm
-1 

at 1.5 

µm outside the device radius, so we take x1 = 1.5 µm. To find 6(8) we take ε ~ 1.5 % at the 

edge of the device (Fig. S8d) and use the linear strain profile seen in Fig. S8b, which leads to 

ε(x) ~( 0.015/1.5) x µm
-1

. This gives ∆L ~ 11 nm over a device radius of 6.5 µm. This reduces 

the pre-strain by ~ 0.0017 which is about the same as the initial pre-strain. We therefore take 

this change to be negligible in to the pressure range we are studying due to the arguments 

made in section 2.  

 

8. Stable delamination devices 

 

Devices of well depth d ~ 650 nm were fabricated that exhibited stable delamination (Fig. 

S9). These devices showed the same hysteric behavior as our other devices. To calculate the 

work of separation of these devices we used Eq. 4 in the main text with AFM measurements 

of δ and a, and used the mean E2D of all our CVD devices of 128 N/m. We measured 3 

devices over 4 different pressures, and found a value of Γsep = 207 ± 19 mJ/m
2
. We also 

measured the work of adhesion of the device shown in Fig. S9b, which we found to be Γadh = 

40 mJ/m
2
.  



 

Fig. S9 a) Stable delamination with increasing pressure. b) A device which delaminates stably with 

increasing pressure, but shows adhesion hysteresis upon deflation. This device snapped in to an 

intermediate step before fully re-laminating to the substrate.    

 

9. Additional snap-in data 

  

Fig. S10 shows the complete data set for our snap-in measurements presented in Fig. 4b of 

the main text. This data was taken using an AFM in tapping mode. To confirm that the forces 

from to the AFM tip were not affecting our results, we measured the snap-in of a device as it 

deflated by using solely optical measurements. We took sequential PL spectra at the center of 

the device as it deflated, where the membrane is under biaxial strain. In an earlier paper
1
 we 

found that the PL peak red-shifts under biaxial strain by -99 meV/%, so PL measurements 

allow us to measure the biaxial strain ε in the device. We can also measure the radius a of the 

device as it deflates using an optical microscope. Using these values for a and ε we can 

estimate the deflection of the device using the formula, 

6 � 	�(=) $%�&
"
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where σ(ν) is a numerical constant which depends only on Poisson’s ratio ν , and in this case 

� � 0.709. We measured a deflating device using the non-contact optical method, after 

which we re-inflated the device to the same pressure and used the AFM to measure the 

geometry of the device as it deflated. We compare the results of these two methods in Fig. 

S10b, and find very similar results in the two cases. The device appears to snap-in at a 

slightly lower δ in the AFM measurements, however this is likely due to the long scan times 

(~3 min) required to take a PL spectrum meaning that we couldn’t measure the device right at 

the moment before snap-in.  

 



 

Fig. S10 a) Complete data containing all data points of results presented in Fig. 4b in the main text. 

Each color represents a different device. b) Comparison of snap-in transitions measured optically or 

by AFM. For optical measurements a is determined using an optical microscope with a 100x 

objective, and δ is determined from the PL peak position and Eq. S8. 

 

10. Young’s modulus 

Fig. S11 shows the complete data set used to calculate the Young’s modulus for each device 

in Fig. 2b in the main text.  

 

Fig. S11 a) CVD monolayer devices from sample N1 and N2. b) Exfoliated monolayer and trilayers 

devices. Dashed lines are plotted for each of the sample means reported in Fig. 2c of the main text.  

Different color/symbols represent different devices.  

 

 



11. Videos of snap transitions 

 

Video 1 shows the snap-in transition of a deflating device taken with a high speed camera. 

The snap-in transition occurs faster than the frame rate of the camera (0.5 ms). Video 2 shows 

a device in a pressure chamber with a quartz window, allowing us to observe a delaminated 

device as the chamber pressure is increased and decreased (video speed is 4x). For the first 

half of the video the external pressure is increased, with the delaminated device snapping-in 

at ~6 s. During the second half of the video the pressure is decreased, with the device 

snapping-out at ~30 s.  
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