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ABSTRACT: Molecular transport measurements through
isolated nanopores can greatly inform our understanding of
how such systems can select for molecular size and shape.
In this work, we present a detailed analysis of experimental
gas permeation data through single layer graphene
membranes under batch depletion conditions parametric
in starting pressure for He, H2, Ne, and CO2 between 100
and 670 kPa. We show mathematically that the observed
intersections of the membrane deflection curves parametric
in starting pressure are indicative of a time dependent membrane permeance (pressure normalized molecular flow).
Analyzing these time dependent permeance data for He, Ne, H2, and CO2 shows remarkably that the latter three gases
exhibit discretized permeance values that are temporally repeated. Such quantized fluctuations (called “gating” for liquid
phase nanopore and ion channel systems) are a hallmark of isolated nanopores, since small, but rapid changes in the
transport pathway necessarily influence a single detectable flux. We analyze the fluctuations using a Hidden Markov model
to fit to discrete states and estimate the activation barrier for switching at 1.0 eV. This barrier is and the relative fluxes are
consistent with a chemical bond rearrangement of an 8−10 atom vacancy pore. Furthermore, we use the relations between
the states given by the Markov network for few pores to determine that three pores, each exhibiting two state switching, are
responsible for the observed fluctuations; and we compare simulated control data sets with and without the Markov
network for comparison and to establish confidence in our evaluation of the limited experimental data set.

KEYWORDS: graphene membrane, parametric, molecular transport, deflection curve, activation barrier, stochastic

Applications of membrane separations that take advant-
age of graphene’s one atomic layer thickness and
regular lattice structure are an emerging area of

research. Pristine single layer graphene is impermeable to
even the smallest of gases,1 though recent work has shown
there is a mechanism for proton transport.2 However, by
opening well-defined pores in the graphene lattice, large
separation factors can be achieved. The atomic thickness of the
graphene layer is the optimal limit for absolute permeation rate,
which is typically limited by the thickness of the membrane
material. A variety of simulations and calculations have looked
at separations of gas3−17 and liquid18−23 systems. However,
experimental and theoretical analyses of gas phase transport
through isolated graphene nanopores have been few in the
literature. In this work, we develop a mathematical formalism
that allows one to detect and analyze stochastic gas phase fluxes
from graphene membranes, extracting activation energies of

pore rearrangements, and even identifying contributions from
multiple, isolated pores.
There have been a few experimental demonstrations of

membrane systems from single or few layer graphene that have
been realized. A study by the Bunch group showed that pores
created by UV ozone etching in mechanically exfoliated
graphene suspended over microcavities in silicon and
demonstrating molecular sieving, creating high selectivities
between gas species of differing molecular size.24 Work using
the intrinsic defects in CVD grown graphene transferred onto
polycarbonate track etched membranes in aqueous systems was
able to demonstrate modest separation of larger molecules and
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investigated layer stacking to reduce the leakage through those
intrinsic defects.25,26 Other work with the aqueous phase used a
contact seal between a micrometer scale pipet tip and graphene
at the air−water interface to measure conductivity through
CVD graphene.27 Another study used focused ion beam to
create pore size distributions centered on multiple sizes from 8
nm to 1 μm in two stacked layers of CVD grown graphene,
transferred to and supported on a SiNx membrane, and
demonstrated Knudsen selectivity based on the square root of
molecular weight typical of classical effusion.28 Recent work
demonstrated proton transport through pristine, mechanically
exfoliated graphene, as well as other 2D crystals, coated with
Nafion and suspended across a hole drilled through SiNx.

2

The Bunch group’s demonstration of molecular sieving24 and
investigation of mechanical properties29 used mechanically
exfoliated graphene suspended over a microcavity in a silicon
wafer to form a membrane between the gas trapped in the
microcavity and the atmosphere; measuring the deflection of
the graphene surface over time was used to track the transport
of gas. While this technique is not scalable, it does offer the
unique advantage of being able to measure the transport
characteristics of a single or few subnanometer pores, giving a
window toward the fundamental transport characteristics of
graphene. Recent work with this platform demonstrates
switchable gating of the transport by gold nanoclusters on
the graphene membrane surface, as well as smaller but
significant fluctuations in transport without gold nanoclusters
present.30

In this work, we present the first detailed mathematical
analysis of stochastic gas permeation through any membrane/
nanopore system. We validate the model using experimental
results from our previous work on single layer graphene
membranes under batch depletion conditions parametric in
starting pressure for He, H2, Ne, and CO2 between 100 and 670
kPa.30 The model enables one to use membrane deflection
curves parametric in starting pressure to confirm a time
dependent membrane permeance (pressure normalized molec-
ular flow). Stochastic fluctuations of the gas permeance can be
analyzed using a Hidden Markov model to fit discrete states
and estimate the activation barrier for switching. Our formalism
also teaches how to use the relations between the states given
by the Markov network for a collection of pores to determine
the operative number that describes the data.

RESULTS AND DISCUSSION

Analysis of AFM Membrane Deflection Curves. Figure
1 illustrates the typical course of an experimental run, in which
the deflection of a graphene membrane over a pressurized
microcavity is monitored with atomic force microscopy (AFM).

The measured deflection can be correlated to the state of the
microcavity defined in terms of the moles of gas, pressure, and
volume enclosed by the graphene. As shown in Figure 1c, the
graphene is typically deflected downward at the end of an
experiment with smaller gases because the air gases enter much
more slowly than the charged gas evacuates the microcavity.
Data from two different samples is presented here: sample 1
was formed with a suspended single layer of graphene and
sample 2 was formed with a suspended bilayer of graphene.
From mechanical models of thin films, the pressure within

the cavity can be related to the observed deflection (δ)
according to the following relation31
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where E = 1 TPa is the Young’s modulus, w = 0.34 nm is the
film thickness, K(ν) = 3.09 is a constant determined by
Hencky’s solution and the system geometry, S0 = 0.1 N/m is
the initial surface tension, and a is the well radius.29 The
thickness and Young’s modulus of single layer graphene are not
precisely defined; however, the reported values fit deflection
data collected at known pressures. Similarly, the volume of the
microcavity can be described by

δ υ π δ= +V t C a t V( ( )) ( ) ( )2
0 (2)

where C(ν) = 3.09 is a constant determined by Hencky’s
solution and the system geometry, and V0 is the volume of the
microcavity with zero deflection of the graphene sheet. The
gases considered in this work can be described by the ideal gas
law, as shown in eq 3, but our results easily extend to more
complex equations of state.
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P t V t

RT
( )

( ( )) ( ( ))
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Here, n is the moles of gas, P is the microcavity absolute
pressure, V is the microcavity volume, T is the temperature, and
R is the ideal gas constant. A mass balance on the permeating
gas relates the rate of change of enclosed gas (dn/dt) to the
sum of the gas flow(s) through the pore(s), n ̇pore, and the
leakage through the microcavity edges, n ̇background. Previous work
has shown that the molar flow through the pore is one to
several orders of magnitude larger than the background leakage
depending on the gas, based on comparing results before and
after etching and pore formation;30 therefore, we will treat
n ̇background as negligible in subsequent analyses, as summarized in
eq 4.
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Figure 1. Depiction of experimental system depicting microcavity in Si/SiO2 (gray/blue) covered by a single layer graphene membrane (black
bar) with randomly located pore(s) represented by a break in the black bar. Illustrations are labeled with variables as used in models; a for
microcavity radius, δ for membrane deflection, n for moles of gas in microcavity, P for internal microcavity pressure, and V for microcavity
volume enclosed by graphene. Panes depict variation over the course of a typical experimental run (a) at the start, (b) in the middle at zero
deflection, and (c) at the end.
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In order to obtain a value for the gas flow (dn/dt) out of the
chamber, the differential is applied to eq 3, with the
dependence of pressure and volume on deflection emphasized.

δ δ δ
δ

=n t
t RT
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t

P Vd ( )
d

1 d ( )
d

d( ( ) ( ))
d (5)

Equation 5 provides a method to use the slope of the
measured deflection versus time to extract the instantaneous
flow of gas out of the etched pore as a function of pressure. For
this work, we used a rearrangement of this equation that
enabled extracting values from the data using a linear least-
squares fit.30 With these relations, we follow the permeation
behavior of the gas over the time just from the AFM
measurements of deflection versus time.
Figure 2a−d demonstrates the use of the relations for a single

experimental run with He gas. The experimental deflection data
in Figure 2a is used to calculate the pressure and flux, molar
flow normalized by membrane area, in (b) and (c) at each time
point. Equation 5 can be utilized to investigate the transport
mechanism by examining the dependence of the flux versus
pressure, as done in Figure 2d, corresponding to the data in
Figure 2a. This plot of flux versus pressure difference can help
confirm the primary mechanism of gas permeation. The
linearity of plot Figure 2d, for example, is consistent with

nanopore transport (effusion) or Knudsen diffusion through
the pore. Nanopore transport with molecular sieving is
confirmed as the mechanism by showing that the ratio of
permeance values exceeds Knudsen selectivities, which are
determined by the inverse square root of molecular weight ratio
for the series of gases.30 The linearity rules out Poiseuille flow
through a larger orifice which would demonstrate a quadratic
dependence on pressure.
Furthermore, for the same membrane, the correlation

between flux and pressure difference should be identical for
all experiments. This is exactly what is seen in Figure 2f, a
collection of five experiments for He. For the five experiments
of H2 in Figure 2h, however, the curves for each experiment do
not overlap perfectly with another; and there are seemingly
random divergences from perfect linearity, even if the general
trend is still linear. These divergences appear stochastic, and are
uncorrelated to pressure or mechanical position of the
graphene. In considering the reason for these divergences, we
first consider the corresponding measured deflection data used
to calculate flux, shown in Figure 2e and g.
In Figure 2e, the deflection curves are all self-similar, which

we define as having identical functional dependences translated
along time axis according to the initial pressure only. In gas
transport theory, the rate of isothermal transport is a function

Figure 2. (a) Measured deflection versus time, (b) calculated microcavity pressure versus time, (c) calculated gas flux versus time, and (d) flux
versus driving pressure difference for He transport with an initially observed pressure of 210 kPa (absolute). (e) Measured deflection versus
time and (f) flux versus pressure difference for five sets of He experiments with initial pressures in the range 210−555 kPa; demonstrates
expected linear behavior for flux versus pressure. (g) Measured deflection versus time and (h) flux versus pressure difference for five sets of H2
experiments with initial pressures in the range 100−670 kPa; demonstrates some deviations from the general expected linear behavior for flux
versus pressure. (a−h) Data collected from sample 1, a single layer graphene device. Flux versus pressure difference for (i) He, (j) H2, (k) Ne,
and (l) CO2 were collected with sample 2, a bilayer graphene device.
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of the chemical potential difference across the pore, which
simplifies to the partial pressure difference for low to moderate
total pressure. Note that even for a strongly adsorbing gas, the
transport rate is still a function of pressure only under these
conditions (related through the adsorption isotherm). Figure
2g gives examples of deflection data for H2 that is not self-
similar, which we will explore in the following section.
A Mathematical Interpretation of Intersecting De-

flection Curves. In understanding Figure 2e, it is useful to
consider the following mathematical derivation, which shows
that deviations from self-similarity in these curves mean that the
transport rate is varying temporally, independently of pressure.
We define a generic pressure dependence of a single
component molar flow, f(P), across the pore such that the
differential equation describing the deflating microcavity system
becomes

=n
t

f P
d
d

( )
(6)

Note that this function encompasses all versions of
adsorption and diffusion models possible for the membrane
system, and incorporates all possible rate limiting steps from
our previous analytical work.8 Rewriting eq 6 in terms of the
deflection via the idea gas law yields eq 7.
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Note that this generic form remains separable such that upon
integration:
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Defining the solution of the left integral as a generic function
G(δ) we find that

δ δ− =G G t( ) ( )0 (9)

Applying the inverse of the generic function,

Figure 3. Deflection (blue closed circles) and permeance (red open circles) versus time over experiment for examples runs with (a) He, (b)
Ne, (c) CO2, and (d) H2 with sample 1. The green line is a smoother fit of permeance, using additional points when fitting the slope.
Demonstrates that kinks and changes in slope in the measured deflection that are indicative the corresponding changes in permeance.

Figure 4. Permeance versus time for all experiments (blue open circles) concatenated for each of (a) He, (b) H2, (c) Ne, and (d) CO2 with
sample 1. Red lines represent a hidden Markov model fit to discrete states. Bars in the right of each pane represent time spent in each fitted
state. Orange vertical lines mark the transitions where data was merged between different experimental runs.
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δ δ= +−G t G( ( ))1
0 (10)

The functional form of eq 10 describes curves of deflection
versus time that are identical except for a shift in along the time
axis given by the constant G(δ0), which is a function of the
initial pressure, and matches the definition for self-similarity.
This is indeed the case for He, shown in Figure 2d, with a
corresponding linearity between flux and pressure that reveals a
constant, time invariant slope, as predicted by eq 10. It then
follows that the departure from self-similarity in Figure 2g
means that f(P,t), or that the transport of gas has some time
dependence (the only remaining dependent variable) outside of
the expected pressure dependence. Hence, we take the
intersecting deflection curves to imply:

= Π Δn
t

t P
d
d

( )
(11)

We consider the flow of gas in terms of what we define as the
membrane permeance, with the molar rate normalized by the
pressure difference. A typical membrane will have a constant
permeance, corresponding to a linear molar flow with pressure.
To account for the time dependent behavior of the transport,
we modify our expectation of the molar flow rate, dn/dt, so that
it includes a time dependent permeance, Π(t), for cases where
self-similarity does not appear to be observed.
For the case of He, with its self-similar deflection curves, the

permeance, Π(t), remains essentially constant with time.
However, the permeances for other data sets, H2, Ne, and
CO2, show obvious variation in time. Figure 3 shows a few
examples of the variation in permeance with time, plotted
alongside the experimentally measured deflection curves. Figure
3a, an example data set for an experimental run with He, shows
that the permeance remains mostly constant. In the other
panels, there are sharp changes that occur at various times.
These are discrete changes in the values permeance and
correspond to kinks and changes in slope of the deflection
curves. They typically appear smoothed even though the
changes are discrete because the fitting method used to extract
the permeance values must fit the slope across multiple points;
Figure 3 shows two levels of smoothing, red dots with low
smoothing from using only three points to extract permeance,
and a green line with more smoothing using five points in the
extraction.
Hidden Markov Analysis of Time Dependent Per-

meance. Each individual experimental run is isolated by the
preparatory step of repressurizing the microcavity. However, all
experiments are performed on the same membrane, and
therefore, we assume that the observed transport properties are
consistent across all experimental runs for a given gas. To
visualize trends, we have concatenated the data from each run
with that gas species into a single time axis referred to as
“observation time” in Figure 4. We included only data points
corresponding to measured deflections above 50 nm, as points
at low deflections were more sensitive to experimental error;
and permeance was extracted by using five data points,
equivalent to the green line of Figure 3. To help analyze and
fit the data to discrete states, we employed hidden Markov
modeling via the program HaMMy.32 This fits the permeance
data to up to ten discrete states with instantaneous transitions
between them. Some of these transitions fall at the time points
corresponding to breaks between experimental runs, but these
transitions were excluded from later quantitative analysis of
transition frequency.

In Figure 4, the data sets corresponding to H2, Ne, and CO2

all show large changes in permeance up to around a factor of
10, and multiple states are observed, with HaMMy fitting
between 7 and 10 states. Many examples of state switching in
pores occur as two states, and more observed states are the
result of multiple two-state pores. To investigate whether
multiple pores could be responsible for the many states
observed in Figure 4, we looked at the relations given by the
Markov network for a fixed number of pores and applied
analysis based on them to the data. With multiple two-state
pores, two pores yields four possible observed states, three
pores yields eight possible observed states, four yields 16
possible observed states, and so on. A three pore system has a
comparable number of states to those from HaMMy fitting,
therefore our analysis focuses on matching a three pore system.

Three Pore Model. For evaluating goodness of fit for the
data to the three pore model, the constraints imposed on the
observed state permeance level and state transitions are what
differentiate the alternate hypothesis of fewer than three pores
having many states. The first step in evaluating those properties
is to describe the system by eight states, which are determined
by four underlying parameters. The eight states correspond to
the possible combinations of the two-state pores, which we
describe as having “high” and “low” permeance states. How well
the data can be fit by these four parameters can be one test of
the three pore hypothesis. The relations that describe the eight
observed permeance states are described by the matrix problem
in eq 12; x is the combined permeance of the low states for all
three pores; ya, yb, and yc are the difference between the high
and low states for the first, second, and third pores,
respectively; and Πj is the permeance value for the jth
observable state.
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With the convention that ya < yb < yc, the permeance values Πj

in eq 12 are always ordered in increasing permeance with the
exception of Π4 and Π5, the order of which should be swapped
if (ya + yb) < yc. Table 1 summarizes the set of relations
described by eq 12 under the column for observed permeance.
After defining the permeance levels of the states, we move on

to look at the dwell times and transitions. Ideally, the statistics
of the transitions from state to state can show unique
characteristics of a three pore system, however the transitions
are more difficult to use as a distinguisher because of the effects
of smoothing that occurs from the calculation of permeance
from deflection and the fact that the full data set is a
concatenation of many shorter, isolated segments of AFM
measurements. However, the dwell time, in particular the total
time spent in each state, is relatively unaffected by those issues
and is useful as a distinguishing measure.
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In our analysis, we define the lower case pi to be the fraction
of time a single pore, in this case pore a, b, or c, spends in its
high permeance state, given by eq 13, where ti is the time spent
in the high permeance state of the ith pore and ttotal is the total
time. It can also be considered the probability of finding the
pore in its high permeance state.

=p
t

ti
i

total (13)

pi as defined by eq 13 is an underlying property of an individual
pore, related to the thermodynamic equilibrium and free energy
difference between the two states; it is not directly related to a
single observable state, as the observed states come from a
combination of pores; it can be calculated as a sum of observed
state times, or from other relations as shown below. We use the
capitalized Pj of eq 14 to indicate the fraction of time spent in
each observable state, where tj is time spent in the jth observed
state from experimental results.

=P
t

tj
j

total (14)

The fraction of time in each of the eight observable states,
the eight Pj, should be related to the probabilities the individual
pores are in their high permeance states. The relations are
described by eqs 15−22 and are also summarized in Table 1
under the column for fraction of time spent in state.

= = − − −P P p p p(1 )(1 )(1 )a b c1 000 (15)

= = − −P P p p p(1 )(1 )a b c2 100 (16)

= = − −P P p p p(1 ) (1 )a b c3 010 (17)

= = − −P P p p p(1 )(1 )a b c4 001 (18)

= = −P P p p p(1 )a b c5 110 (19)

= = −P P p p p(1 )a b c6 101 (20)

= = −P P p p p(1 )a b c7 011 (21)

= =P P p p pa b c8 011 (22)

From eqs 15−22, the probability that each of the pores is in
the high state (pa, pb, and pc) can be found by solving the
system of nonlinear equations for these three variables, as done
below. These parameters are related to four of the Pj values
analytically via:
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A shorthand check of whether the calculated Pj values
describe a three pore system is found by four analytical eqs
26−29 that relate their values in the case of the three pore
system:
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Comparison to Simulated Data Sets. Going further in
order to establish confidence in assignment to a three pore
system, we used a Monte Carlo approach to generate simulated
data in the form of the experimentally obtained permeance
versus time. First we simulated data corresponding to three
independent pores, as described by the equations of the
previous section, summarized in Table 1; we refer to these as
“positive simulations.” At each fixed time step, each of the three
pores had a given probability of changing its state from high to
low, or low to high. The probabilities of both those transitions
are distinct, meaning six probabilities are used to control the
transitions to and average time spent in each state. In addition
to six probabilities, a variable for each of the three pores, ya, yb,
and yc, describes the difference between that pore’s high and
low permeance states, and the overall lowest observed
permeance state, x, is described by a single variable. With
values for these parameters, we simulated permeance versus
time points for the same number of time points as the
experimental data set. Each point of data was smoothed by
averaging the four closest points in time to emulate the
smoothing that results from the calculation of permeance from
experimentally measured deflection of graphene over the

Table 1. Summary of Nomenclature Defined in Eqs 12−22
with Illustrations Showing the Corresponding Pore
Configurations
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microcavity. A small amount of random Gaussian noise was also
added to the simulated permeance data set. The total number
of simulated data points was set to 700 to match the size of the
experimental Ne data set, as the size of the data set is an
important factor in the level of confidence that can be achieved.
The top pane of Figure 5 shows an example simulated data set
generated with the three pore model.
For the case of three independent pores, the observed

permeance levels and state probabilities are constrained by the
relations in eqs 12 and 15−22 and determined by the hidden
parameters for the three pores; in a system with eight
uncorrelated states, the observed states would not be bound
by those relations. In an equivalent manner as the previous
described positive simulations case, alternate simulations were
carried out such that there were eight states with independent
parameters, unconstrained by the relations of a three pore
system; we refer to such simulations as “negative simulations.”
The resulting simulated data sets were qualitatively similar the
experimentally obtained permeance versus time. Figure 5b gives
an example data set from a negative simulation. To test the
hypothesis and evaluate the confidence in assigning the
experimental system as three pore, we performed 450 negative
simulations with eight states not constrained to a three pore
system and 150 simulations of a model three pore system.
These sets of simulations were generated with parameters that
would result in data qualitatively similar to the experimental
data in terms of the frequency of transitions; full details of
parameters of simulations can be found in the Supporting
Information.
For analyzing either the experimental data sets or simulated

data, the data set was fit with a least-squares approach to the
eight states using the definition of sum squared error, SSEΠ,
defined by eq 30, where N is the total number of permeance
data points, Π(tk) is the permeance value at a given time point
tk, and the set of Πj(x, ya, yb, yc) are the model permeance states
defined by eq 12.

∑= Π − ΠΠ
= =

t x y y ySSE min{( ( ) ( , , , )) }
k

N

j
k j a b c

1
1

8 2

(30)

After fitting permeance data points to the model states as
described above, we then assigned each point to a given state
and calculated fraction of time spent in each observed state, Pj
as described in eq 14. To provide a measure of the goodness of
fit to three pores, we then applied a second least-squares fit on
the eight values of time spent in each state, Pj. The sum of
squared error for this fit, SSEP, is described in eq 31,

∑= −
=

P P p p pSSE ( ( , , ))P
j

j j
1

8

,obs a b c
2

(31)

where Pj,obs is the value calculated directly from the data set and
Pj(pa,pb,pc) is the value calculated appropriate expression in eqs
15−22, with pa, pb, and pc varied as parameters for the least-
squares optimization.
The sum of squared error for this fit, SSEP from eq 31,

provides a measure for the goodness of fit to three pores; there
are eight values of fraction time spent for the eight observed
states fitted with least-squares using three parameters. We
preferred this distinguisher when comparing the analysis
between simulation and experimental results, as it is less
sensitive to the magnitude of noise in the permeance values.
The histogram in Figure 6 compares the distribution of SSEP
values between the positively and negatively generated data
sets, as well as marks the experimental value for the Ne data
sets with a vertical line. There is significant overlap between the
two sets, meaning distinguishing between the two is often
difficult for data sets of this size; however, the evaluation of the
SSEP for the experimental data shows that it can be
distinguished in this case. The experimental data set for Ne
lies at the 15th percentile for positive simulations of the same
number of data points as collected for Ne, placing them within
the typical range of simulations. For the negative simulations,
not generated with a three pore model, the experimental results

Figure 5. (a) Example simulated data set generated using three pore model, positive simulation. (b) Example simulated data set generated
with eight states unconstrained by three pore model relations, negative simulation.
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were at the first percentile, being a better fit than nearly all of
the simulated data sets. This allows us to place a high degree of
confidence in our statement that the experimental sample is
consistent with a three pore system. Additional simulations
summarized in the Figure S1 of the Supporting Information
show that the overlap and spread of the positive simulations
results from the finite size of the data set, and the smoothing/
noise inherent to the analysis of the experimental data or
intentionally added in simulations.
The coefficient of determination, R2, from both the least-

squares fitting of the states permeance levels, SSEΠ, and the
fitting of fraction of time spent in each state, SSEP, and the
resulting fitted values for the individual pores are summarized
in Table 2. As shown in Figure 4a, He did not exhibit significant
state switching behavior and its fit is included only for
comparison. The assignment of fitted values to pores a, b, or c
was done according to increasing y values, the difference
between the permeance of high and low states, assuming the
trend is consistent between the gases. The exact values of x and
the three yi should not be the same for different gases, or even
necessarily scale proportionally, as the interaction between the
pore and the gas molecule is not simple. However, the three
values of pi, the likelihoods of the individual pores being in a
high or low state, are likely to be properties of the pores

themselves; and the fact that the three pi values are similar
between the three different gases is consistent with this
interpretation. A more specific interpretation for the meaning
of the pi values is given in the below section.

Mechanism for Switching. The transport through the
pore is limited by the energy barrier the molecule experiences
when passing through the pore, as the separation factors
between gases exceed the molecular weight based Knudsen
selectivities from an effusion mechanism.30 This barrier energy
is different for each molecule-pore combination, and the
differences in the barrier energy between molecules are the
source of the observed high selectivities. We explain the
observed permeance switching as the result of a small
rearrangement in the pore, in essence a small chemical change,
that alters the energy barrier that the gas molecules experience
passing through the pore. Because of the strong dependence on
the energy barrier, relatively small changes in the pore can
effect a large change in permeance. The large stochastic changes
in permeance observed are a direct effect of these molecular
scale rearrangements at the pore.
With this view of the switching, we can define clearer

meaning to the pi values used in the model of the previous
section. The pi values define the fraction of time the pore
spends in each state, and they effectively represent the
thermodynamic chemical equilibrium between the two pore
configurations, ultimately a function of the relative free energies
of the two configurations. The differences between pa, pb, and
pc, the values for the three pores, in Table 2, stem from
differences in the configurations and energies of the three
individual pores. The fact that variance for a specific pi value
across the studied gases with observed fluctuations is much
smaller compared to the variance across pores is consistent with
this interpretation of stochastic changes in pore configuration.
Additionally, in Figure 4a, the large jumps in permeance are

not observed for He. We explain this as a result of the fact that
He is the smallest gas tested, significantly smaller than the pore
compared to the other gases, and it thus experiences a very
small or no barrier to transport through the pore. Because the
molecule is significantly smaller than the pore, the slight
rearrangement in the pore edges does not significantly affect
the barrier energy and therefore does not result in a large
permeance change. For the other gases, whose sizes are more
commensurate with the pore, the small changes in pore size and
chemistry are more impactful. Figure 7 uses Lennard−Jones
potentials33,34 to calculate the energy barriers for two
configurations of a toy pore and demonstrates that He is
insensitive to the small change between the two configurations,
whereas the predicted permeance change is comparable to the
experimentally observed permeance fluctuations for the other
gases tested.

Figure 6. Histogram of the sum squared errors (SSEP) when fitting
fraction of time spent to three pore model. Positive simulations
(green) are generated by a mock three pore system; negative
simulations (red) are generated with randomized parameters for
eight states unconstrained by three pore relations. The vertical
black line represents locations of experimental results for Ne with
sample 1.

Table 2. Summary of Three Pore Model Fitting for Experimental Results for the Experimentally Measured Gases with Sample
1a

R2 10−23 mol/(s Pa)

gas N SSEΠ SSEP pa pb pc x ya yb yc

Ne 699 0.97 0.99 0.38 0.37 0.11 0.11 0.08 0.18 0.40
H2 484 0.97 0.99 0.46 0.28 0.11 0.32 0.32 0.71 1.47
CO2 288 0.95 0.96 0.50 0.21 0.04 0.28 0.49 0.89 2.23
He 109 0.97 0.50 0.36 0.32 0.72 1.36 0.15 0.25 0.32

aN is the number of data points; R2 is the coefficient of determination calculated with the appropriate sum of squared error; SSEΠ is defined by eq
30; SSEP is defined by eq 31; the three pi are defined by eq 13; x and the three yi are used and defined by eq 12.
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The frequency at which the switching between permeance
states occurs can be used to gain a rough estimate of the
activation energy for the pore rearrangement. Counting the
number of transitions from the Hidden Markov fits for H2, Ne,
and CO2, while excluding any transitions that occur where
separate experimental runs are merged together, transitions in
permeance states occurred every 15 min on average.
Considering that three pores are responsible for the transitions,
we use an average frequency for the forward transition of 45
min. By assuming an Arrhenius dependence with an attempt
frequency of 1013 1/s, corresponding to the order of magnitude
for molecular vibrations,35 we calculate an activation energy for
switching to be 1.0 eV. This value is commensurate with
activation energies for bond rearrangements, such as cis−trans
isomerization,36 which is consistent with the proposed
mechanism of small scale rearrangements giving rise to the
observed switching in permeance.

CONCLUSIONS
In conclusion, the technique of measuring gas permeance
through AFM measured changes in the bulge deflection over
time can be used to extract the permeance and the gas transport
characteristics. Further, we demonstrated the permeance can be
tracked over time and revealed stochastic and discrete changes
among difference states with large changes in permeance.
Through analysis based on a three pore Markov network, we
showed that the multiple observed states arose from a
combination of three independent pores alternating between
two states; comparing to simulated data sets to show the quality
of the experimental data’s fit was within expectations, 15th
percentile, for a three pore Markov network and outside the
range of that for a nonthree pore controls, first percentile. We
attributed the source of the fluctuating states for the individual
pores to small scale rearrangement in the pore structure, and
could estimate the activation energy for switching as 1.0 eV,
comparable to the energy required for a bond rearrangement.
This work highlights the value in the study and consideration of
pore stability in theoretical work on graphene membranes, and
emphasizes that pore stability and averaging across config-
urations may play an important role in determining the
performance of large scale membranes. This work details the
analysis of the first time stochastic state switching has been
observed in a gas phase system, and the extraordinary sensitivity
of the gas permeance and the localization of the transport at a
single point gives this platform potential to be applied to issues

of sensing and nanoscale material management, such as
“nanoprinting” or nanocatalysis.

EXPERIMENTAL METHODS
The experimental data for this analysis was collected on the same
device as presented in the recent paper by the Bunch group,30 and is
an extension of previous methods.24,29 In summary, microcavities
approximately 800 nm deep and 5 μm in diameter are formed in grid
an oxidized silicon wafer by reactive ion etching, and mechanically
exfoliated graphene is deposited on top. Regions of monolayer or
bilayer graphene are identified optically and by Raman spectroscopy.
The graphene effectively isolates the microcavities from atmosphere,
but with diffusion though the silicon dioxide surface, the cavity will
equilibrate with their surroundings over the course of days. By placing
the sample in a vacuum or pressurized chamber, specific gases can be
removed or added to the microcavity at the given pressure. For a
pressurized sample, after removing from the pressurized chamber,
atomic force microscopy (AFM) measurements show an upward
deflection in the graphene surface above a chosen microcavity from the
difference between the pressure inside the microcavity and
atmospheric. Likewise, the graphene surface deflects downward after
being removed from a vacuum chamber. To form a pore, the sample is
exposed ultraviolet induced oxidative etching in 30 or 45 s intervals.
Before exposure, the sample is pressurized with H2 gas, giving an
upward deflection. Between etching exposures, the sample is checked
with AFM to check if the deflection had changed significantly,
indicating a pore formation event somewhere in the graphene covering
the microcavity. Once a pore forms, the deflection starts to change
rapidly and etching is typically ceased. After the etching and pore
formation, the microcavity pressurizes and deflates much more rapidly,
over the course of minutes to hours depending on the gas species used.
The sample can then be repeatedly pressurized and its deflation over
time measured with AFM in order to study the transport
characteristics through the pore(s) formed. The initial pressurization
corresponding to the deflection at the start of AFM measurements
ranged from 100 to 670 kPa, with the upper bound limited to avoid
delamination of the graphene from the surface, as seen in previous
work.29 The delay between removing the sample from the pressure
chamber and AFM measurement was typically around 5 min.
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