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Fabrication Processes 

Suspended graphene membranes were fabricated by a combination of standard 

photolithography, reactive ion etching and mechanical exfoliation of graphene. An array 

of annular cavities with designed dimensions was first defined by photolithography on an 

oxidized silicon wafer with a silicon oxide thickness of 90/285 nm. Reactive ion etching 

was then used to etch the annular rings into microcavities with a depth of 100-120 nm. 

After removal of photoresist with acetone and isopropanol, the chips were further cleaned 

in a Nanostrip bath at 60°C for 20 minutes. Thermal evaporation is used to deposit a layer 

of Cr/Au 5/10 nm for the Au coated annular rings. During the evaporation process, the 

chips are tilted at a 10~15° angle, so that the Cr/Au atoms can be deposited into the 

annular rings and cover the side walls.  The large aspect ratio between the width and 

depth of the annular ring allows for a conformal metal deposition such that the post and 

the substrate are electrically contacted and grounded. Mechanical exfoliation of natural 

graphite using Scotch tape was then used to deposit suspended graphene sheets over the 

microcavities.  

The pull-in distances in Fig. 1e were measured from two graphene flakes about 

100 µm apart from each other on the same chip (Fig. S1). In the two graphene flakes, 

there were 13 one-layer, 9 two-layer, 5 three-layer, 5 four-layer, and 3 five-layer 

suspended membranes. For both the graphene/SiOx and the graphene/Au annular rings, 

the number of graphene layers was verified using Raman spectroscopy and optical 

contrast. 
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Counting the Number of Graphene Layers 

In order to count the number of graphene layers used in this study, we used 

optical contrast verified by Raman spectroscopy. Figure S1 (a) shows a graphene flake 

used in this study. The devices in Figure S1 (a) correspond to the devices in Figure 1e. 

The corresponding spots where Raman spectrum was taken for each device are shown as 

colored circles; red is 1 layer, green is 2 layers, blue is 3 layers, cyan is 4 layers and 

magenta is 5 layers. Figures S1 (b) shows the Raman spectrum taken from the spots of 

corresponding color in S1 (a), respectively. To verify the number of layers we found the 

ratio of the integrated intensity of the first order optical phonon peak and the graphene G 

peak (Fig. S1 (c))1.  

To measure the Raman spectrum on the gold coated samples, we patterned areas 

that contained no Au/Cr over which Raman spectrum of the graphene was taken without 

interference from the gold film. We patterned 5 µm circular discs between the annular 

wells using photolithography which masked the subsequent thermal evaporation of Au/Cr 

onto the SiOx. After evaporation and lift-off, the protected areas contained no Au/Cr 

while all other areas of the wafer were covered with the Au/Cr film. We then used 

mechanical exfoliation to deposit the graphene and took the Raman spectrum of graphene 

through the 5 µm circular wells similarly to Fig S1. Figure S2 (a) shows a few layer 

graphene flake on Au/Cr coated wafer. The larger circles are locations where there is no 

Au/Cr and only SiOx with or without graphene. The blue circle corresponds to the 
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location where Raman spectrum was taken. The number of graphene layers is verified 

using the same method as previously introduced.   

Analytical Model  

We developed a simple analytical model based on membrane mechanics to 

describe the interrelationship of the system parameters in the experiment and we use it 

inversely with the measurements to infer the operant surface forces2. 

The symbols used in our approach are: 

 b = Post radius 

 a = Outer radius of the cavity 

 E = Young’s Modulus 

 t = Thickness 

 ν = Poisson’s Ratio 

 S = Total tension/membrane force in the radial direction 

 Sr = Incremental tension in the radial direction 

 St = Incremental tension in the tangential direction 

 S0 = Initial equi-biaxial tension 

ΔP = Pressure exerted by the difference of gas pressures inside and outside the 

cavity 

 Patt = Pressure due to the post-graphene interactions 

 r = Radial co-ordinate, 0 < r < a 
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 w = Deflection of the membrane, as a function of r 

 h = Deflection at r = 0  

The key assumptions of our treatment are: 

1) The membrane tension S is uniform. 

2) The pressure due to the surface forces acting between the post and the 

membrane, Patt, is uniform.  This is reasonable if the membrane curvature is 

small.  This is the case when the post is small compared to the overall size of 

the cavity. 

In order to understand the validity and impact of these assumptions, we also carry out 

high-fidelity finite element (FE) simulations where they are removed; these are described 

in the next section.   

Force equilibrium in the vertical direction gives (see Figure S3 (a)): 

(Δ𝑃 − 𝑃𝑎𝑡𝑡)𝑟2 = −2 𝑆 𝑟
𝑑𝑤

𝑑𝑟
      𝑟 < 𝑏 

Δ𝑃 𝑟2 − 𝑃𝑎𝑡𝑡𝑏2 = −2 𝑆 𝑟
𝑑𝑤

𝑑𝑟
      𝑟 ≥ 𝑏 

𝑆 = 𝑆𝑟 + 𝑆0 

The negative sign on the right hand side is due to dw/dr being negative. Integrating with 

respect to r with appropriate limits, yields: 

𝑤 = ℎ −
Δ𝑃 − 𝑃𝑎𝑡𝑡

4𝑆
𝑟2      𝑟 < 𝑏 

𝑤 = 𝑤(𝑟 = 𝑏) +
1

4𝑆
(𝑃𝑎𝑡𝑡𝑏2𝑙𝑜𝑔 (

𝑟2

𝑏2
) − Δ𝑃(𝑟2 − 𝑏2))       𝑟 ≥ 𝑏 
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Due to continuity of w at r = b we obtain:  

𝑤 = ℎ −
Δ𝑃 − 𝑃𝑎𝑡𝑡

4𝑆
𝑟2      𝑟 < 𝑏 

𝑤 = ℎ +
1

4𝑆
(𝑃𝑎𝑡𝑡𝑏2𝑙𝑜𝑔 (

𝑟2

𝑏2
) + 𝑃𝑎𝑡𝑡𝑏2 − Δ𝑃 𝑟2 )       𝑟 ≥ 𝑏 

 

Applying the boundary condition w(r = a) = 0, yields: 

 

ℎ =
1

4𝑆
(Δ𝑃 𝑎2 − 𝑃𝑎𝑡𝑡𝑏2 (1 + 𝑙𝑜𝑔 (

𝑎2

𝑏2
)))                (1) 

Finally, 

𝑤 =
1

4𝑆
(Δ𝑃(𝑎2 − 𝑟2) − 𝑃𝑖𝑛𝑡(𝑏2 − 𝑟2) − 𝑃𝑎𝑡𝑡𝑏2𝑙𝑜𝑔 (

𝑎2

𝑏2
))          𝑟 < 𝑏                (2) 

𝑤 =
1

4𝑆
(Δ𝑃(𝑎2 − 𝑟2) + 𝑃𝑎𝑡𝑡𝑏2𝑙𝑜𝑔 (

𝑟2

𝑎2
))         𝑟 ≥ 𝑏                (3) 

We assume that the membrane is in an equi-biaxial state, then Sr = St and 𝜖𝑟 = 𝜖𝑡 =

𝑆

𝐸𝑡/(1−𝜈)
 and: 

𝜖𝑟 + 𝜖𝑡 =
𝑑𝑢

𝑑𝑟
+

𝑢

𝑟
+

1

2
(

𝑑𝑤

𝑑𝑟
)

2

=
2 𝑆𝑟

𝐸𝑡/(1 − 𝑣)
 

Integrating with respect to an area element 2𝜋𝑟𝑑𝑟 over (0, a), yields: 

∫ 𝑑(𝑢𝑟)
𝑎

0
+ ∫

𝑟

2
 (

𝑑𝑤

𝑑𝑟
)

2

𝑑𝑟
𝑎

0
=

2 𝑆𝑟

𝐸𝑡/(1 − 𝜈)
∫ 𝑟𝑑𝑟

𝑎

0
 

The first integral on the LHS is zero due to the boundary conditions and thus: 
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𝑆𝑟 𝑆2 =
𝐸𝑡

32 𝑎2(1 − 𝑣)
((Δ𝑃 − 𝑃𝑎𝑡𝑡)2𝑏4 + Δ𝑃2

(𝑎4 − 𝑏4
) + 𝑃𝑎𝑡𝑡

2 𝑏4𝑙𝑜𝑔 (
𝑎4

𝑏4
)

− 4 Δ𝑃 𝑃𝑎𝑡𝑡𝑏2
(𝑎2 − 𝑏2

))                 (4) 

 

In order to obtain the condition for pull-in we eliminate Sr and S from eqs. (1) and (4) 

results in an equation for h in terms of a, b, Et, v, 𝛽, S0, Patt and ΔP; in our experimental 

configuration all of these are known except ΔP and S0. When we specify a particular 

value of S0 this yields an expression for the load-deflection behaviour, i.e., ΔP vs. h.  

𝐸𝑡

32 𝑎2(1 − 𝑣)
((Δ𝑃 − 𝑃𝑎𝑡𝑡)2𝑏4 + Δ𝑃2

(𝑎4 − 𝑏4
) + 𝑃𝑎𝑡𝑡

2 𝑏4𝑙𝑜𝑔 (
𝑎4

𝑏4
)

− 4 Δ𝑃 𝑃𝑎𝑡𝑡𝑏
2

(𝑎2 − 𝑏2
))

+ (𝑆0 (
1

4ℎ
(Δ𝑃 𝑎2 − 𝑃𝑎𝑡𝑡𝑏2

(1 + 𝑙𝑜𝑔 (
𝑎2

𝑏2
))))

2

)

= (
1

4ℎ
(Δ𝑃 𝑎2 − 𝑃𝑎𝑡𝑡𝑏2

(1 + 𝑙𝑜𝑔 (
𝑎2

𝑏2
))))

3

                (5) 

Consistent with the van der Waals (vdW) form, we assume Patt is given by a power law 

of the form, 

𝑃𝑎𝑡𝑡 =
𝛽

ℎ4
 

The pull-in condition occurs at the limit point: 

𝑑Δ𝑃

𝑑ℎ
= 0                (6) 

which yields a unique ΔP and S0 when 𝛽 and h are specified.  
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Finite Element Simulations 

To validate the analytical model, we also carried out high-fidelity finite element 

simulations of the experimental configuration using the code Abaqus where we remove 

the assumptions used to develop the analytical model. The model used in the simulations 

is shown in Figure S3 (b). Axisymmetric shell elements (that permit both bending and 

membrane behaviour) were used and the Young’s modulus and Poisson’s ratio were set 

to 1 TPa3 and 0.164 respectively. The outer edge of the membrane is pinned and the 

substrate/post is modelled as a fixed analytical rigid body. Since it is known that 

pressurized graphene behaves like a membrane and bending plays a negligible role in its 

mechanics8,9, the value of the bending modulus and slope near the boundary is found to 

be irrelevant in these simulations. A prescribed initial tension is applied and the attractive 

interactions between the substrate and the membrane are modelled as surface-to-surface 

contact/adhesive interactions with the substrate being the master surface. The contact 

interaction properties are supplied through the user subroutine “UINTER” of Abaqus10.  

The slave nodes experience a tensile (attractive) contact stress (𝜎𝑧) only in the vertical 

direction given by, 

𝜎𝑧(𝑟) = −
𝛽

𝑤(𝑟)4
 

Here, 𝛽 is a parameter and 𝑤 is the deflection of the node measured from the substrate. 

Both 𝜎𝑧 and w are functions of the radial position, in contrast to the analytical model 

where they are assumed to be independent of position. 
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The simulation is split into two steps – both static steps with nonlinear geometric 

effects included.  In the step 1, the contact/adhesive interactions are suppressed and the 

membrane is allowed to deform under the influence of a uniform pressure load acting on 

the entire area of the suspended membrane. The magnitude of this load is set such that the 

deflection is just high enough to neglect the interaction pressure if the interactions were 

not suppressed. This simulates the state of affairs at the beginning of the experiment 

before the gas begins to leak from the cavity.  In the second step, which is a Static-Riks 

step10, a second uniform pressure load is added with the same magnitude as the previous 

pressure load but in the opposite direction and the surface interactions between the 

substrate and the membrane are switched on. Hence at a given increment during the step, 

apart from the force due to the contact interactions, the membrane has the uniform 

pressure load from the previous step and a uniform pressure in the opposite direction 

whose value is given by the load proportionality factor. The superposition of these two 

uniform pressure loads mimics the leaking of the gas in the experiment. As the simulation 

progresses, the load across the membrane decreases and it comes closer to the substrate. 

This increases the interaction between the post and membrane. The results of this step are 

plotted in Figure 2a of the main text. It can be seen that the load across the membrane 

initially decreases until a limit point is reached and then it starts increasing. The limit 

point gives the pull-in distance and the pressure at which it occurs. The configurations 

below the limit point can’t be achieved in a load controlled experiment, but suggest that 

system has two possible equilibrium configurations at a given pressure load greater than 
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the pull-in pressure. Careful comparison of the analytical and finite element simulation 

results (Fig. S4) shows that the analytical result is an accurate description of the physical 

phenomena as long as the substrate/post size is small compared to the size of the 

suspended membrane. 

Calculation of 𝜷  

Using the analytical model described above, we calculate the values of 𝛽 

assuming a range of initial tension, S0. Previous results on mechanically exfoliated 

monolayer and few layer graphene found S0 in the range of 0.03 - 0.15 N/m where the 

average values was S0 =0.07 N/m5–7. Figure S5a shows calculated 𝛽 for different S0 (0.03, 

0.05, 0.09 N/m). This range also marks the shaded boundaries for the theoretically 

calculated pull-in distance in Fig. 3.   

 

Calculation of α, γ  

The same analytical model used to calculate 𝛽 can be applied to α and γ, where 𝛾 

is a constant similar to 𝛼 and 𝛽 assuming 𝑃𝑎𝑡𝑡 = 𝛾/ℎ3. The inverse cubic dependence for 

the interfacial interactions can arise due to vdW interactions between thick graphene 

membranes and the substrate. Calculated α and γ with S0 = 0.03, 0.05, 0.09 N/m is shown 

in Fig. S5b and Fig. S5c. The calculated α for all the devices measured is plotted in Fig. 

S6a assuming S0 = 0.07 N/m. The same analysis is done with 𝛾 shown in Fig. S6b. We 

also plot pull-in distance (h) versus post diameter (2b) for this power law and compare it 

with 𝑃𝑎𝑡𝑡 = 𝛽/ℎ4 and the experimental data in Fig. S7. Even though the plot fits 
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experimental data closely for 2-4 layers graphene membrane, it does not fit the data from 

monolayer graphene membranes as well.  

Deformation of graphene membrane by vdw force 

The extreme flexibility of the suspended graphene coupled with the large 

magnitude of the interfacial force at these short separations shows up as a statically 

deformed membrane right before pull-in for some devices. This is especially evident for a 

graphene membrane with a small inner post – more localized force- and a large outer 

diameter – more flexible graphene (Fig. S8). The AFM image shows a graphene 

membrane locally deformed at its center shortly before pull-in (Fig. S8a). The AFM line 

cut through the center (Fig. S8b) shows this deformation to be about 2 nm. This 

deformation is further verified by the analytical model which shows a number of stable 

configurations for graphene membranes deformed by Patt at these dimensions and 

separations (Fig. S8c).  
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Supplementary Figure Captions 

Figure S1: Determining the number of layers 

(a) Optical image showing one of the graphene flakes corresponding to some of the 

samples measured in Fig. 1e. The colored circles denote the location at which 

Raman spectroscopy was taken (black-1 layer, red-2 layers, green-3 layers, blue-4 

layers, and cyan-5 layers). 

(b) Raman spectrum for the graphene flake in (a). The color of each curve 

corresponds to Raman spectrum taken at the corresponding colored circle in the 

optical image. 

(c) Ratio of the integrated intensity of the first order silicon peak I(Si) and the 

graphene G peak, I(G) (i.e. I(G)/I(Si) for the Raman spectrum in (b). 

Figure S2: Additional Raman spectrum 

(a) Optical image showing a few layer graphene flake on Au coating. The blue circles 

denote the location at which Raman spectroscopy was taken. 

(b) Raman spectrum for 2-5 layers graphene flakes on Au coating through 5 µm 

wells.  

(c) Ratio of the integrated intensity of the first order silicon peak I(Si) and the 

graphene G peak, I(G) (i.e. I(G)/I(Si) for the Raman spectrum in (b). 

Figure S3: Schematic of the model  

(a) Schematics showing the equilibrium condition for the two regions of the 

membrane. 
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(b) Schematic of the model used for finite element analysis simulations. 

Figure S4: Comparison of analytical solution and finite element simulations 

(a) Plots comparing p vs h behavior as obtained from the FE simulations (solid curve) 

and the analytical calculations (dashed curve) with a = 1.5 μm, b = 0.25 μm, Et = 

340 N/m, ν = 0.16, S0 = 0.07 N/m and β = 0.02 nN-nm2. 

(b) The deflection profiles at different pressures (solid – FE, dashed – Analytical) 

(Red – 10.38 kPa, Blue – 6.12 kPa, Green – 1.72 kPa and Magenta – 2.61 kPa). 

For convenience, the corresponding points on p vs h plot are also shown. (c) and 

(d) The same as (a) and (b) except b = 0.75 μm. The different pressures used in 

this case are: Red – 10.39 kPa, Blue – 6.14 kPa, Green – 2.63 kPa and Magenta – 

3.70 kPa. 

Figure S5: α, β, γ vs. number of layers 

(a) The calculated values of β vs. number of layers assuming a model where the force 

responsible for pull-in has the form Patt = β/h4 with different initial tension S0 = 

0.03 N/m, S0 = 0.05 N/m, S0 = 0.09 N/m. 

(b) The calculated values of α vs. number of layers assuming a model where the force 

responsible for pull-in has the form Patt = α/h2 with different initial tension S0 = 

0.03 N/m, S0 = 0.05 N/m, S0 = 0.09 N/m. 

(c) The calculated values of γ vs. number of layers assuming a model where the force 

responsible for pull-in has the form Patt = γ/h3 with different initial tension S0 = 

0.03 N/m, S0 = 0.05 N/m, S0 = 0.09 N/m. 
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Figure S6: α, γ for all devices measured. 

(a) Calculated α for all the devices measured assuming S0 = 0.07 N/m; (same color 

scheme as Fig. S5a). 

(b) Calculated γ for all the devices measured assuming S0 = 0.07 N/m; (same color 

scheme as Fig. S5a). 

Figure S7: Scaling of the Pull in Distance with Patt  

Pull in distance, h0, vs. inner diameter, 2b, for a) 1 layer b) 2 layer c) 3 layer d) 4 

layer graphene flakes (verified by Raman spectroscopy) with identical outer 

diameter but different inner diameters. The black and blue shaded lines are the 

calculated results for 2 different power law dependences Patt = β/h4 (black) and 

Patt = α/h3 (blue) with S0 = 0.03 – 0.09 N/m. The values of β and γ are listed in 

Fig. S5. a) (inset) Optical image of 2 of the measured monolayer devices. The 

scale bar = 5 µm. 

Figure S8: Deforming a Graphene Membrane with the vdw Force  

(a) An atomic force microscope image showing a close up view of the top part of the 

pressurized graphene membrane right before pull-in showing the deformation at 

the center of the membrane resulting from the vdw force. 

(b) A line cut through the center of the image in (a).  

(c) Calculated deflection vs. position through the center of a graphene membrane 

using the analytical model, for varying S0.  
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Figure 
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Fig.S2 
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Fig.S3 
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Fig.S4 
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Fig.S5 
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Fig.S6 
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Fig.S7 
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Fig. S8 
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