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ABSTRACT

In this work, we report experimental data on the evolution of the resistance with applied voltage in nonsuspended single-walled carbon
nanotubes (SWNTs) of lengths ranging from 100 nm up to 6 µm. At low bias, the differential resistance as a function of length is well
described by a linear fitting. At high biases, this magnitude first saturates and then decreases for nanotubes longer than 1 µm. We also
present Monte Carlo numerical simulations for the one-dimensional Boltzmann’s equation, describing how the electrons propagate along the
tube and how they interact with acoustic and optical phonons. Our theoretical results show a remarkable agreement with the experimental
differential resistance, allowing us to give a detailed description of the electron distribution function and the chemical potential along the
nanotube. Finally, we present experimental results on the transition from Anderson localization at low bias to high diffusive regime at high
bias in defected SWNTs. This result is combined with those of defect-free SWNTs to present a general landscape of the electronic transport
in carbon nanotubes.

Carbon nanotubes are the cornerstone in molecular electron-
ics. Since their discovery in 1991,1 they have been used as
a model system to study electronic transport at the
nanoscale.2-7 At low bias, defect-free metallic single-walled
carbon nanotubes (SWNTs) are quasiballistic conductors
presenting a very weak interaction between electrons and
acoustic phonons. For high biases (above 0.2-0.3 V), strong
scattering of electrons with optical phonons destroys their
phase coherence, resulting in a highly diffusive electronic
transport characterized by a linear dependence of the
resistance versus length.8-11 To investigate the evolution of
the electronic transport with the length and bias for long
(L > 1 µm) nonsuspended SWNTs have been prepared on a
silicon substrate sample with an oxide layer of 500 nm. The
nanotubes are contacted to a gold electrode, and then a
current versus voltage (IV) curve is acquired along their

length by using a conductance atomic force microscope
(AFM) from Nanotec Electronica.12 As the tip pushes the
nanotube, the optimum contact force is reached13 and then
an IV (see inset in Figure 1) is acquired for biases( 2.2 V.
By calculating the derivative of theIV curves, the differential
resistance,R ) dV/dI, is numerically obtained as a function
of the voltage and the distance between both electrodes (i.e.,
the length of the nanotube).14 For the present work, only
metallic SWNTs are considered.

Figure 1 shows the low voltage (approximately 0.1 V)
differential resistance as a function of the electrodes distance
(L) for two different types of SWNTs. The square dots
correspond to an individual HipCo-type SWNT from Carbon
Nanotechnologies Inc., prepared by suspending them in a
surfactant solution and treated with ultrasound to remove
bundles. These SWNTs were then adsorbed on a silicon
oxide substrate by drop-casting. The energy introduced by
the ultrasound bath disperses the bundles but, in addition, it
creates structural defects along the SWNTs. The rest of the
data corresponds to seven different metallic SWNTs directly
grown on the surface by standard chemical vapor deposition
(CVD).15 The resistance versus length relationship for HipCo
nanotubes follows an exponential law (see Figure 1), which
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is a fingerprint of the appearance of the Anderson localization
phenomenon.16 As the electrons travel along the nanotube,
they scatter elastically with the structural defects of the lattice
but their phase is preserved. It has been shown17,18 that if
the localization length,L0, is smaller than the electron mean
free path due to scattering with acoustic phonons, defects
dominate the low-bias transport in SWNTs, resulting on an
exponential increase of the resistance versus length. By fitting
R(L) ∝ eL/L0, we estimate thatL0 in our HipCo nanotube is
around 420 nm. On the other hand, for CVD-grown SWNTs,
the plots display a linear dependence ofR versusL, as
expected for an ohmic conductor. It is remarkable that the
slopes of the curves (i.e., the linear resistivity at low bias,
Flow) are quite similar for the seven nanotubes considered,
presenting an average valueFlow ) 10 ( 2 kΩ/µm and a
contact resistance of about 18( 6 kΩ. The relationship
between the linear resistivity and the electron mean free path
due to scattering with acoustic phonons,λac, is given byF
) (h/4e2)(1/λac). By fitting to the experimental data,λac in
our CVD grown SWNTs is 650( 130 nm.19

Now we consider the high-bias regime (V > 0.3 V), when
electrons can excite optical phonons. Panel (b) in Figure 2
is a set of differential conductance curves measured at
different distances along a 6µm long nanotube (one of the
seven CVD-grown SWNTs studied in Figure 1, triangle dots
pointing up). The conductance curves have a maximum near
0 V and then decay as the inverse of the length for short
distances. From this plot, we can extract the dependence of
R with L at different voltages between 0 and 2 V (see main
panel in Figure 2). Interestingly, the slope of these curves
grows (and hence the resistivity) as the voltage is increased.
For example, the resistivity at 2 V,Fhigh, is 320 kΩ/µm. If
we repeat this analysis for the seven metallic nanotubes
grown by CVD we find an average resistivity〈Fhigh〉 )

330 ( 110 KΩ/nm at 2 V. Remarkably, thisFhigh is quite
similar for both CVD-grown and HipCo-type nanotubes.17

This result indicates that, for short nanotubes and high biases,
inelastic scattering with optical phonons dominates over the
elastic scattering with lattice defects.

The previous discussion shows that our experimental data
for short nanotubes (shorter than 1µm) closely reproduce
the previously reported behavior for the electronic transport
in SWNTs.9,10 However, when the distance between elec-
trodes is longer than this length,R(L) first exhibits a kind of
saturation followed by a clear drop when the length of the
nanotube is further increased (see main panel of Figure 2).
We have obtained similar plots for the seven different
metallic SWNTs considered in Figure 1, finding that the
resistance saturation always takes place at SWNT lengths
of about 1µm. Therefore, we can safely conclude that this
behavior is not a singularity of a given SWNT but the general
trend appearing for very long nanotubes.

It has been suggested9,11 that the electron-phonon dif-
ferential resistance of nonsuspended SWNTs can be de-
scribed using a simple semiempirical approach wherebyR(L)
) (R0/2)(1 + L/λeff), λeff being an effective mean free path
(MFP) due to optical and acoustic phonons.λeff is given by
1/λeff ) 1/λopt + 1/λac, where the MFPs of these phonons
are introduced, andλopt ) λopt

0 + (hνopt/eV)‚L, with λopt
0

describing the optical MFP at zeroL, hνopt being a mean
optical phonon energy, andV is the applied bias. The
rationale behind this equation is that, at short SWNT lengths,
the SWNT resistance is controlled by the number of optical
phonons excited by one electron (that is assumed to beeV/
hνopt), while at long lengths, electron scattering with acoustic
phonons controlsR. In panel c of Figure 2, we show the
best fitting to our measured resistances using the above-

Figure 1. Experimental dependence of the low voltage resistance vs length for CVD-grown SWNTs (triangles and stars) and HipCo
SWNTs (squares). The experimental set up is illustrated in the central inset of the figure. A metallic AFM tip is moved along the nanotube
probing its electrical conductance as a function of the tip-electrode distance. The upper inset is an AFM image of a long nanotube partially
covered with gold. The nanotubes directly grown on surface present low disorder and hence the conductance is quasiballistic; the low
increment of the resistance with length is a consequence of the interaction with acoustic phonons and disorder. The HipCo SWNT presents
a high density of defects resulting in an electronic transport regime governed by the Anderson localization phenomenon.
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mentioned formula, withλac ) 650 nm and takingλopt
0 as an

adjustable parameter. Although the calculated resistances in
this way show some of the trends found in our data, the
fitting is rather poor, worsening at high voltages. Conse-
quently, we have tried a more fundamental theoretical
approach as explained in the following. This is a Monte Carlo
solution of the one-dimensional Boltzmann’s equation as-
sociated with the two conducting channels of the SWNT. In
our semiclassical model, we consider that, for a given voltage
(that must be smaller than 2 V, in order to avoid higher
electron bands contributing to transport), the energy window
EF1 - EF2 is discretized intoN levels, as shown in the panel
b of Figure 3. Within our approach, electrons are injected
into lead 1 and move along the tube at constant velocity
toward lead 2. Electron-phonon processes scatter the
electrons to lower energies as depicted schematically also
in Figure 3b. Scattering with optical phonons is characterized
by a mean free path,λopt, and a probabilityR of being
scattered in the forward direction (the probability of back-
ward scattering is then (1- R)). In this way, forward and
backward optical phonon scattering rates are given byR/λopt

and (1- R)/λopt, respectively. In our simulations, we useR
) 0.25, a value taken from independent local density
approximation (LDA) calculations reported in ref 20. We
also incorporate into the theoretical modeling scattering of
electrons with acoustic phonons. In this case, we only
consider backward scattering, the main source of the SWNT-
resistance for quasi-elastic scattering, with a rate 1/λac, λac

being the electron mean free path due to scattering with
acoustic phonons. We assumeλac ) 650 nm, a value yielding
the best fitting to the particular sample considered. The final
probability rates per unit lengthPij

+,-(x) for an electron at
level i moving in the forward direction to be scattered

forward (+) or backward (-) to a final statej need to be
corrected by the occupancy numbers at the final levelj,
nj

+,-(x), leading to the following equation:

with similar equations for electrons moving in the backward
direction (-). The occupation numbers,nj

+(x) and nj
-(x),

are calculated self-consistently by using a Monte Carlo
approach whereby electrons are injected at each level and
their trajectories are obtained introducing the different
scattering processes defined by eqs 1-2. In our Monte Carlo
simulation, m (of the order of thousands) electrons are
injected at each level and contribute to the local densities,
ni

+(x) and ni
-(x), with 1/m. An important point should be

commented on: the problem presents electron-hole sym-
metry, with an electron at levelj of energyEF1 - E behaving
as a hole at levelk with energyEF2 + E. This symmetry
leads to a neutrality condition in whichnj

+(x) ) 1 - nk
-(L -

x) and nj
-(x) ) 1 - nk

+(L - x), showing that the total
electron charge (sum of the forward and backward densities)
of these two states (i and j) is 2. Once the system is self-
consistently calculated and the local charge,n(x) ) ∑i

[ni
+(x) + ni

-(x)], is obtained, we define the localchemical
potential as:

Figure 2. (a) Experimental dependence of the differential resistance, dV/dI, (in KΩ) vs length at different voltages for a single 6µm long
CVD-SWNT (pink triangles in Figure 1). Full lines show the results of our theoretical modeling based on a discretised version of Boltzmann
equations, usingλopt as a fitting parameter for each voltage, except forV ) 0.1 V case (orange line) in which only scattering with acoustic
phonons is taken into account. The set of data has been extracted from the family of differential conductances as a function of the voltage
curves measured along the nanotube length panel (b). In panel (c), we render the results (full lines) of a fitting procedure based on a
semiempirical theoretical approach.

dPij
+ ) R

λopt
[1 - nj

+(x)] dx (1)

dPij
- ) 1 - R

λopt
or

1
λac

[1 - nj
-(x)] dx (2)

V(x) )
EF1 + EF2

2
+

EF1 - EF2

2 [n(x)
N

- 1] (3)
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We assume that thischemicalpotential keeps the nanotube
locally neutral. In our calculations, we first obtain the current
for N levels and, in order to calculate the differential
conductance,σ (R ) 1/σ), we subtract the current for (N -
1) levels and then divide by the energy difference between
consecutive levels. We take this energy as 22.5 meV, close
to kBT for room temperature; in this way, we try to simulate
the characteristic acoustic phonon energy involved in the
electron-phonon scattering. Regarding optical phonons, we
considerhνopt ) 180 meV,21 eight times the acoustic phonon
energy. In our numerical simulations, we analyze four
different voltages, 0.4, 0.7, 1.0, and 1.5 V, and the corre-
spondingN for these cases is then 19, 32, 45, and 64,
respectively.

In panel a of Figure 3, we render 2R/R0 (R0 being the
inverse of the quantum of conductance) as a function of (L/
λopt) for the four voltages studied. As clearly seen in this
figure, in all these biases and smallL, 2R/R0 ≈ L/λopt,
showing that, in this limit, the optical phonons dominate the

resistance behavior. As in the experimental data where the
slope ofR/L depends on the applied bias, we conclude that
λopt is a function of voltage (as it is also the case in the
semiempirical approach). The main panel of Figure 2 (full
lines) shows our fitting to the experimental data by taking
in our simulations: λopt(0.4 V) ) 55 nm, λopt(0.7 V) )
30 nm,λopt(1.0 V) ) 20 nm, andλopt(1.5 V) ) 19 nm. These
values ofλopt can be understood in terms of the hot phonons
created within the SWNT by the scattered electrons. Fol-
lowing the analysis described in ref 20, we can assume
λopt ) λopt

(0)/(1 + 2nB), whereλopt
(0) is the value without the

effect of the optical phonon occupation number,nB. In this
reference, a value of 88 nm forλopt

(0) has been calculated. In
the limit of short SWNT lengths,nB is expected to grow
with the applied bias (because most of the excited phonons
are optical). This suggests thatλopt should decrease withV,
which is qualitatively what we obtain in our fitting (see
Figure 3c). For a more fundamental explanation of the

Figure 3. (a) Differential resistanceR (in units of the quantum of resistance) vs length of the nanotubeL (in units of λopt) obtained with
our Monte Carlo theoretical approach for 4 different voltages: 0.4 V (red line), 0.7 V (green line), and 1.0 V (blue line), and 1.5 V (black
line). (b) Schematic diagram to illustrate our theoretical modeling: the energy windowEF1 - EF2 is discretised intoN-levels and electrons
suffer scattering with acoustic and optical phonons characterized byλac andλopt, respectively. (c) Dependence ofλopt vs the applied bias (in
V) as obtained from our calculations. Panels (d-f) render the dependence ofni

+(x) (red lines) andni
-(x) (blue lines) vsx (in units of the

length of the nanotube) forV ) 0.4 V (i ranging from 1 to 19). The curves corresponding to thei-1 level are shifted by-1 with respect
to i-level curves for a better visualization. Three different lengths are analyzed:L ) 92 nm (c),L ) 480 nm (d), andL ) 6 µm (e). Thick
black lines render the local chemical potential (V(x)) for each of the three cases.
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dependence ofλopt with the applied bias, out-of-equilibrium
optical phonons should be also included self-consistently
within the transport equations by means of another semiclas-
sical Boltzmann’s equation for phonons20 (work along this
line is currently in progress in our lab).

In Figure 3, panels d, e, and f show the occupancy
numbers,ni

+(x) (red lines) andni
-(x) (blue lines), at each

level and forV ) 0.4 V, evaluated at three different lengths,
L ) 92 nm, 460 nm, and 6µm, respectively. These values
correspond to three different electronic transport regimes.
For L ) 92 nm, the transport is still within the quasiballistic
regime, with the chemical potential changing only slightly
along the SWNT; notice that, in this case,ni

-(x) is different
from zero only for levels (i > 9) where the optical phonons
fill the backward direction states. ForL ) 460 nm,n-(x)
starts to be non-negligible even fori < 9; this means that
backward states are also filled in this case by acoustic phonon
scattering processes. Now the chemical potential changes
more quickly with a relatively small contact resistance.
Finally, for L ) 6 µm, the system has evolved in such a
way that optical phonons play a minor role in the transport
process: as shown in Figure 3f, most of the scattering events
are controlled by the acoustic phonons, the reason being that,
due to the small voltage gradient along the SWNT, the
acoustic phonons have the opportunity to be more operative
than the optical phonons.

This discussion shows that the resistance of the nanotube
is controlled initially, for 0< L < 1 µm, by the optical
phonons; however, forL > 1 µm, the acoustic phonons start
to play a more relevant role, being the predominant agent in
a very long nanotube. In particular, forV ) 0.4 V, we find

that aroundL ) 6 µm, scattering of electrons with acoustic
phonons mainly governs the resistance. This is confirmed
by the experimental data, whereR is almost the same atL
) 6 µm for low voltage and forV ) 0.4 V (see Figure 2a).
It is interesting to speculate about the expected behavior for
higher biases. The previous discussion shows that the
resistance, for high biases andL > 6 µm, should decrease
slowly until reaching the “acoustic branch”, rendered in
Figure 2 by an orange line.

Finally, it is worth drawing a complete landscape of the
electronic transport regimes in SWNTs by combining our
findings for defect-free SWNTs with results for defected
SWNTs.17 Figure 4 depicts a qualitative behavior of the
SWNT-differential resistance as a function of its length for
low (thick lines) and high (thin lines) voltages. As discussed
above, for nondefected nanotubes (lower inset Figure 4 and
blue curves), we can distinguish two regimes, depending on
eV being larger or smaller thanhνopt. For eV < hνopt, the
differential resistance shows a linear dependence (thick blue
line) controlled by the scattering with acoustic phonons,
R ) (R0/2)(1 + L/λac). For eV > hνopt, optical phonons
governsR(L) for short nanotubes,R ) (R0/2)(1 + L/λopt),
while, at lengths about 1µm, the differential resistance
saturates and finally merges with the acoustic branch for very
long nanotubes (thin blue line). Defected SWNTs (upper left
inset and red curves) present an additional scattering mech-
anism characterized by the localization length,L0, which is
proportional to the average distance between defects. IfL0

< L < Læ (Læ being the phase coherence length, determined
by the electron-phonon mean free path, eitherλopt or λac),
the SWNT-differential-resistance presents, at room temper-

Figure 4. This figure summarizes the different electron transport regimes for SWNTs with and without defects as a function of the bias
voltage and length. The thick lines apply to the low bias voltage. The thin lines apply for the high bias voltage. The blue curves are for
defect-free SWNTs (lower inset) and the red ones for defected SWNTs (upper left inset). The upper right inset shows experimentalR(L)
at low and high bias voltages for a defected SWNT whose localization length isL0 ) 95 nm.
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ature,18 an exponential dependence versus length,R ∝ eL/L0,
whatever the applied bias, typical of the strong Anderson
localization regime. A more interesting case appears when
λopt < L0 < λac; in this case, at low bias, electrons cannot
excite optical phonons,Læ ≈ λac, then elastic scattering with
defects prevails and the system becomes localized, the
resistance exhibiting again the above commented exponential
dependence with the nanotube length (thick red line),
provided that the length of the nanotube is shorter thanλac.
At high biases, the electron energy is enough to scatter with
optical phonons,Læ ≈ λopt, and becauseL0 > λopt, the system
becomes diffusive, presenting a linear dependence forR(L)
for short nanotubes, controlled again byλopt (thin red line).
Experimental data of the transition between Anderson
localization, at low bias, and diffusive transport, at high bias,
on a short defected SWNT is depicted in the upper right
inset of Figure 4. We do not have direct experimental
evidence on the variation of the resistance for long lengths
and high bias in defected nanotubes. However, based on our
results, we expect that the elastic scattering of electrons with
defects shall become the most effective scattering mechanism
(notice that at those long lengths, the diffusive process is
again dominated by acoustic phonons); then, as in the case
L0 < λac < L, the nanotube conductance will be controlled
by a thermally activated process22 due to acoustic phonons
in the localized regime (thin red dashed line).

In conclusion, we have presented a detailed analysis on
how the resistance of a SWNT evolves with its length. We
have shown how the electrical transport regimes in SWNTs
can be quasiballistic, localized, diffusive, and both diffusive
and localized depending on the density of defects, length,
and voltage. The phenomenology found in the electronic
transport through SWNTs is more rich and complex than
the one observed in classical conductors, and we have been
able to capture it by means of a Monte Carlo approach to
the one-dimensional Boltzmann’s equation.
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