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1. Device Fabrication 
 

Suspended graphene membranes were fabricated by a combination of standard micro-

fabrication techniques and mechanical exfoliation of graphene. An array of annular cavities with 

designed dimensions was first patterned by photolithography on a silicon wafer with a layer of 

90 nm thick silicon oxide grown by thermal oxidation. The annular rings were further dry-etched 

down into silicon substrate with about 110 nm depth by reactive ion etching (RIE). After etching, 

the chips were cleaned with acetone and isopropanol followed by further cleaning in a Nanostrip 

bath at 60°C for 20 minutes. Finally, suspended graphene membranes were mechanically 

exfoliated using the Scotch tape method over the annular micro-cavities. 

2. Determination of Graphene Thickness 
 

We used a combination of Raman spectroscopy and optical contrast to determine the number 

of graphene layers. Raman spectroscopy uses Raman (inelastic) scattering of monochromatic 

light to investigate rotation and vibrational modes in a system. We used the relative integrated 

intensity of the graphene G peak and the Silicon optical phonon peak, I(G)/I(Si) as described in 

Koh et al
1
 to count the number of layers. Figure 1 shows the locations where the Raman 

spectrum is measured on the monolayer and multi-layered flakes used in the experiment using 

black and green dots respectively. The plot on the right shows the recorded Raman spectrum 

with the Si, G and 2D peaks identified. For reference, the Raman spectrum is also measured on a 

graphene flake with 1-5 layers of graphene identified optically. The recorded spectrum and the 
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flake with the spots, where the spectrum is measured identified, is as shown in Fig. 2. The 

relative integrated intensity I(G)/I(Si) is plotted in Fig. 3 and as expected it varies linearly with 

the number of layers. The blue circular dots are from the reference flake and the red triangular 

dots are from the experimental flakes. 

  

 

Figure 1 Raman spectroscope of the graphene flakes (optical images on the left) used in the 

experiment - monolayer (black) and multilayer (green) graphene. The top image on the left is 

that of monolayer and the bottom one is that of multi-layered graphene. The location where the 

Raman spectroscopy is done is denoted by black and green dots respectively. 

 

 

Figure 2 Raman spectroscope of a graphene flake with 1 to 5 layers (n=1 – black, n=2 – green, 

n=3 – red, n=4 – blue, n=5 – cyan with the solid plot for this flake and the dashed plot for the 

experimental flake) used to confirm the number of layers in the multilayer graphene flake. 

● 

● 

▬ n = 1 

▬ n = 5 

● 
● 

● 

● 
● 

▬ n = 1 

▬ n = 2 

▬ n = 3 

▬ n = 4 

▬ n = 5 

Si peak G peak 2D peak 



3 

 
Figure 3 Integrated intensities, I(G)/I(Si) for differently thick graphene sheets. The blue dots are 

for the graphene in the reference flake and the red triangles are for the sheets that make up the 

experimental flakes. 

3. Mechanics of the Annular Blister Configurations 
 

The mechanics of the annular shaped axisymmetric deformation with the membrane adhered 

and thereby fixed at � � � and � � �, is described by the equation:  

 �
�� ��� ��

�� 	 � 
� 

 

(1) 

Here � is the radial coordinate, � is the deflection, 
 is the pressure load across the membrane 

and � is the membrane stress in the radial direction. With � also being a function of � along with �, there are no known general analytical solutions to eq. (1) with the current boundary 

conditions to our knowledge
2,3

. To obtain an approximate solution, it is assumed that tangential 

strain �� is negligible following Saif et al
4
 and that the radial tension � is uniform. This greatly 

simplifies eq. (1) and after integration, we obtain: 

 

� � 
�
4� � �� ln��� � � 

 

(2) 

The integration constants �� and � can be determined using the boundary conditions at � � � 

and � � �, thus giving: 

 

� � 

4� ��� � �� � �� ln ��

��� 
�� � � � �

ln ��/�� 
 

(3) 
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The negative sign is ignored so as to align the deformation along positive direction. Now that we 

have the deflection profile, the maximum deflection ( ) can be obtained by solving ��/�� � 0. 

Equation (4) describes the relationship between maximum deflection   and the load 
. 

 

 � 

4� "� � ��2 � ��2 ln $ ��2�%& 

 

(4) 

The volume occupied by the deformed membrane is given by: 

 

'( � ) � 2*���(
+

� *
2



4� �� � ���� � � � ��� 

 

(5) 

The radial membrane stress, � is still an unknown; it can be obtained from the average radial 

strain, �,- . Assuming the slope �. � ��/�� to be small, we have: 
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(6) 

Completing the integration, we get: 

 

� � " 34 

16�1 � 2� �� � � � ���&

�6
 

 

(7) 

4. Finite Element Simulations 
 

We assumed that the tangential strain (��� is zero and used averaged radial strain (�,� to 

obtain an average measure for radial membrane stress (�). While our analysis follows that of Saif 

et al closely, they averaged the strain along the diameter whereas we averaged it over the entire 

area of the membrane. Williams
5
 assumed equi-biaxial strain condition and obtained an areal 

average for the total strain – radial and tangential combined. The pressure-displacement relation 

obtained by us is: 

 � "
�1 � 2�
434 &

�6 "� � ��2 � ��2 ln $��2 %& �� � � � ���7 �6 

 

(8)

The expression obtained by Saif et al’s approach is – 

 � "
�1 � 2�
834 &

�6 "� � ��2 � ��2 ln $��2 %& "� � � � ��
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(9)
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Finally the expression obtained Williams is: 

 � "
�1 � 2�
234 &

�6 "� � ��2 � ��2 ln $��2 %& �� � � � ���7�6 

 

(10)

To determine which of the three above mentioned approaches give the best 

approximation we carried out finite element simulations, the details of which follow. We used an 

axisymmetric model with two different geometries - a = 2 μm and b = 0.5 or 1 μm. Two noded 

axisymmetric shell elements (SAX) with thickness 0.34 nm are used to mesh the membrane to 

account for both bending and stretching of the membrane. Values of E = 1 TPa and 2 = 0.16 are 

used for material elastic properties which correspond to those of graphene. The “pressure load 

versus maximum displacement” results from the simulations along with the expressions in eqs. 

(8), (9) and (10) are plotted in Fig. 4.  

The overall load versus deflection response matches quite closely with our analytical 

expression. The figure 5a shows the deflection profile from our analysis (dashed curves) 

compared with the FE results at 
 = 2.51 MPa. We have a reasonably good description of the 

deflection profile from the theory, even though the radius at which the maximum deflection 

occurs is not in very good agreement with the FE results. The figures 5b and 5c show the stresses 

as obtained from the FE simulations at 
 = 2.51 MPa for the two different geometries ((b) � = 1 μm and (c) � = 0.5 μm). The average radial stress values in each case as calculated from the 

analysis are 13.29 GPa and 17.54 GPa respectively and are also shown as dashed lines. They are 

in good agreement with the averaged values for radial stresses calculated from the simulations – 

13.24 GPa and 17.04 GPa respectively. The tangential stresses are also in good agreement and 

consistent with our assumption that the tangential strain is negligible. Also it is to be noted that 

the residual stress found in graphene membranes is usually of the order of 0.30 GPa which is 

small compared to the radial stresses we have here at about p = 2 MPa, thereby allowing us to 

neglect its effect. Even at p = 100 kPa, from eq. (7) the average radial stress is 1.55 GPa, which 

is still 5 times the typical values of residual stress in graphene. 

 

 
 

Figure 4 Comparison of the FE simulation results (blue) through the load versus maximum 

deflection plots with the different analytical expressions - current analysis (eq. (8), dashed), Saif 

et al’s result (eq. (9), red), Williams’ result (eq. (10), green) with Et = 340 N/m and 2 = 0.16  for 

two different geometries (a) a = 2 =>, � = 1 => and (b) a = 2 =>, b = 0.5 =>.  

 

a b 
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Figure 5 (a) Plots comparing the deflection profile at p 1 2.51 MPa as obtained from the 

analysis (eq. (3)) and FE (a = 2 =>, Blue – b = 1 =>, Black – b = 0.5 =>, Solid – FE, Dashed 

– Current Analysis), (b,c) Radial and Tangential stresses in black and blue colored solid curves 

respectively at p 1 2.51 MPa along the radius of the membrane with a = 2 => and (b) b = 1 =>, (c) b = 0.5 =>. The black and blue dashed lines are the averaged radial and tangential 

stresses respectively calculated using the current analysis. 

5. Free Energy Contributions 
 

Here we describe in detail how we arrive at eq. (3) in the main text. We stated in the main 

text that the total free energy, ? is the sum of elastic strain energy in the membrane (?@A@�, free 

energy associated with isothermal expansion of the fixed mass of gas molecules (?B(C), adhesion 

energy (?(DE� and the free energy associated with the external environment. 

 ? � ?@A@ � ?B(C � ?(DE � ?AF� 

 

(11) 

The membrane free energy, ?@A@ is the elastic strain energy stored as it deforms when subjected 

to a pressure difference across it of 
 �  
G – 
A where 
G is the pressure in the chamber. For any 

fixed values of radii � and �, we can compute ?@A@  by equating it to the work done by the quasi-

statically expanding gas in the cavity and using eqs. (4) and (5): 

 

?@A@ � I 
�'(│(,+ � 
'(4  

 

(12) 

For specified blister radii, eq. (4) provides a relationship between 
,  , � and �; through eq. (5) 

the volume ('() and radii (� and �) are related to the maximum height of the island blister,  .  

The free energy change due to gas expansion in the cavity with a fixed number of molecules is: 

 

?B(C � �I 
�' � �
�'� ln L'� � '('� M 

 

(13) 

where '� � *N��� � ��� is the initial volume of the gas i.e. the volume of the micro-cavity with 

h being the depth of the cavity.  The adhesion energy is simply: 

 ?(DE � O*�� � ��� � O*��� � �� 

 

(14) 

a b c 
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As the blister expands by '(, the volume of the surrounding atmosphere decreases by an equal 

amount '( (assuming no volume change of the membrane) and thus the free energy of the 

surrounding pressure reservoir changes by: 

 ?AF� � 
A'( 
 

(15) 

Addition of these free energy contributions gives eq. (3) in the main text: 

 

?��, �� � 
'(4 � 
�'� ln L'� � '('� M � 
A'( � O*�� � ��� � O*��� � �� 

 

(16) 

6. Stability of the Constant N Island Blister Growth  
 

In the main text, we concluded that delamination is favored on the island but not on the 

outer boundary when the adhesion energies are the same. Hence the only free parameter in the 

free energy now is the inner radius �:  

 

?��� � 
���'(���
4 � 
�'� ln L'� � '(���

'� M � 
A'(��� � O*��� � �� 

 

(17) 

Here, 
 � 
G � 
A is related to the inner radius via the following equation where �� � ��� ���/ln ���/��: 
  

�
� � 
G
G 	6 '�6 � *6�1 � 2�
3234 ��� � ��6� �� � � � ����
G � 
A� 

 

(18) 

The equilibrium configuration is obtained by finding the extrema of the free energy i.e. �?/�� �0 which gives: 

 

O � 
���
8 "
����1 � 2�

434 &
�6 5�: � ��� � 5��� � ��:

���� � � � ����6
 

 

(19) 

 

Putting � � �� in (19) gives the critical charging pressure at which delamination begins. Due to 

the intractable nature of the algebra of showing explicitly the stability or instability of the 

constant N island blister growth, we use numerical examples to show the same. We start with a 

system which is close to our experimental geometry with �� � 2 =>, �� � 0.5 => and � �0.2 =>. Assuming the adhesion energy on the island is O � 0.2 R/> and using monolayer 

graphene’s material properties (34 � 340S/> and 2 � 0.16), the critical charging pressure is 

1.39 MPa. The free energies with ?���� as the reference are plotted in Fig. 6 at the critical 

charging pressure load of 1.30 MPa as well as two other pressures each of which are below and 

above the critical charging pressure. 
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Figure 6 Free energy of the constant N island blister system, ?��� at the critical charging 

pressure, 
� � 1.39 UV� (Black curve) for �� � 2 =>, �� � 0.5 =>, � � 0.2 =>. The blue and 

red curves are at 
� � 1 UV� and 
� � 1.8 UV� respectively. 

At 
� = 1 MPa, the system clearly has an energy barrier and thus there will be no delamination. 

But as 
� is increased to 1.39 MPa the barrier vanishes and we have a local maximum at � � �� 

leading to unstable delamination of the membrane from the island. Beyond the critical charging 

pressure, there is no energy barrier and the system has a favorable gradient for delamination. 

 

Now let us look at a system where �� � 1.8 => and � � 0.02 => while the rest of the 

parameters are the same as mentioned in the previous example. The critical charging pressure 

obtained from eq. (19) is 17.74 MPa. The free energy is again plotted as a function of the island 

blister radius in Fig. 7. In this case, as in the previous case, we have a local maximum at � � �� 

at the critical charging pressure but we also have an additional maximum and a minimum in 

between the two maxima. Hence the delamination will be stable due to the presence of the 

minimum but as the charging pressure is increased, the minimum and maximum come closer and 

coincide and at this pressure again the delamination will be unstable. It can be seen by the trend 

in the black and red curves in Fig. 7 how the minimum and maximum come closer. Hence the 

delamination will be stable only for a specific range of pressures. 
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Figure 7 Free energy of the system with  �� � 2 =>, �� � 1.8 =>, � � 0.02 => at charging 

pressures 16 MPa (Blue), 17.74 MPa (Black) and 19 MPa (Red) respectively. 

Now if in the previous case the depth of the cavity is changed to 0.01 => keeping everything 

else the same, we see a different behavior from the system as shown in Fig. 8. The free energy in 

this case has a minimum at the critical charging pressure (= 23.32 MPa) at � � �� meaning the 

delamination off of the island will be stable. But as in the previous case, the minimum vanishes 

at a specific charging pressure again resulting in unstable delamination. 

In summary, the constant N island blister delamination is unstable for most geometries but can 

be made stable for a given outer diameter by decreasing the depth of the cavity and increasing 

the radius of the island. This in effect decreases the initial volume occupied by the pressurized 

gas. Mathematically speaking, the delamination is unstable because the stiffness of the 

membrane as it delaminates decreases at a larger rate than the pressure of the expanding gas. But 

having a large inner radius � and small initial volume can reverse this trend, albeit only for a 

specific range of pressures. 

 

Figure 8 Free energy of the system with  �� � 2 =>, �� � 1.8 =>, � � 0.01 => at charging 

pressures 20 MPa (Blue), 23.32 MPa (Black) and 27 MPa (Red) respectively. 

Figures 9 and 10 show the variation of various critical charging pressures with respect to the 

system parameters ��, ��, � and O. We plotted here the critical charging pressures for 

delamination to occur from outside, delamination from the island and delamination if we have a 

spherical bulge (instead of annular bulge) in black, blue and red respectively. For Fig. 9, we used 

parameters 34 � 340 S/>, 2 � 0.16, �� � 2 =>, �� � 0.5 =>, � � 0.2 => and O � 0.2 R/> 

when not being varied. It is clear that delamination pressure from the outer boundary is always 

larger compared to the delamination pressure from the island in line with our conclusion in the 

main text. The interesting aspect to be observed here is that there is a critical inner radius (outer 

radius) above (below) which the critical delamination charging pressure for the island is higher 

than the critical charging pressure for the spherical blister. This implies that as soon as the 
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membrane delaminates from the island and forms a spherical blister, it starts to delaminate in the 

outward direction too.  

 

 
Figure 9 Variation of critical charging pressures with inner radius �� and outer radius ��. When 

not varied, the values of the other parameters are 34 � 340 S/>, 2 � 0.16, �� � 2 =>, �� � 0.5 =>, � � 0.2 => and O � 0.2 R/>. 
In Fig. 10, we show similar results but we vary the depth of the cavity and the adhesion strength 

on the island here. The system parameter used in these plots are the same as in Fig. 9 except �� � 1.5 => here. The variation in the depth of the cavity gives a result which looks similar to 

the results in Fig. 9. When the adhesion strength on the island (Fig. 10b) is varied assuming the 

adhesion strength on the outer boundary is still 0.2 R/>, there is a critical adhesion strength at 

which delamination off of the outer boundary is favored over island delamination. In other 

words, as we increase the adhesion strength on the island there is a critical value above which the 

energy release rate for island delamination goes below that for delamination from outer 

boundary. 

 

 
Figure 10 Variation of critical charging pressures with cavity depth � and island adhesion 

energy O. When not varied, the values of the other parameters are 34 � 340 S/>, 2 � 0.16, �� � 2 =>, �� � 1.5 =>, � � 0.2 => and O � 0.2 R/>. 
  

a b 

a b 



11 

7. AFM Height Scans of a Monolayer Device 
 

 
 

Figure 11 Full AFM Height Scans of a monolayer device arranged in increasing order of 

charging pressures left to right and top to bottom. Darker regions indicate deflected membrane, 

while the white region is the graphene adhered to the substrate which is also the reference plane.  

8. Sliding of Graphene Membranes 
 

 Hencky’s series solution
5,6

 for clamped/fixed circular membranes describes the 

mechanics with two constants W� and W. Since the interfacial shear strength of graphene-SiOx is 

finite and if it is small enough, the graphene membrane can slide on the substrate while still 

being adhered to the substrate
7
. This condition will lead to a larger membrane deflection than 

that predicted by Hencky’s solution. We modified Hencky’s solution to reflect the sliding 

boundary condition, and it turns out that the functional form of the solution remains the same 

except W� and W are now different. We can show that even if W� is increased by 10% from the 

value obtained from Hencky’s solution (0.525), the resulting increase in the calculated averaged 

adhesion energy is only about 3.4%. Hence, for simplicity we kept W� = 0.525 and used the 

resulting value of adhesion energy, 0.160 J/m
2
. We then use W as the lone fitting parameter to 

make the experimental observations (X, � and 
G) self-consistent. We obtain a value of 0.755 that 

fits the theory with the experimental observations. This value is 10% higher than the value from 

Hencky’s solution. Figure 12 below shows the results of the fit. 
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Figure 12 (a) Maximum deflection, (b) Equilibrium pressure and (c) Outer radius of the circular 

bulge versus the charging pressure for multi-layered graphene membranes. In each case, the 

green curve corresponds to the annular deformation, blue curve is for the circular deformation 

without delamination, and red curves are for circular deformation with delamination for 

different adhesion energies (dashed - W �0.755, solid - W �0.686). 

 

Sliding boundary conditions can also result in symmetry breaking deformation and hence 

wrinkling
8
. Apparent wrinkling in varying degrees is observed in all of the multi-layered devices 

at higher pressures (Y 2.56 MPa) as shown in Fig. 13. 

 

 

 
 

Figure 13 AFM height scans (top row) and respective derivatives (bottom row) showing 

wrinkling of a multi-layered device at higher pressures. 

9. Adhesion Energy and Critical Charging Pressures 
 

We obtain the adhesion energy from outward delamination using eq. (20) in combination 

with measured (X, �) pairs: 

 

O � 5W�4 � 
�'�'� � 'C��� � 
A	 X��� 

 

(20) 

a b c 
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Applying eq. (20) to all the data points which exhibit outward delamination (� Z ��) and 

averaging the adhesion energy and the blister radius at each charging pressure, we obtain the 

values in Table 1. 

 

 Mono-layered Devices 

(�� � 1.5 μm) 

Multi-layered Devices 

(�� � 1.7 μm) 

Charging 

Pressure,  
� (MPa) 

Blister 

Radius, � 

(µm) 

Adhesion 

Energy, Γ 

(mJ/m
2
) 

Blister 

Radius, � 

(µm) 

Adhesion 

Energy, Γ 

(mJ/m
2
) 

2.05 1.61 112.13 - - 

2.56 1.86 126.97 1.80 128.78 

3.01 1.99 141.28 1.88 153.66 

3.43 2.20 142.40 2.07 161.13 

3.76 2.37 139.51 2.24 161.05 

4.16 2.52 141.58 2.41 162.36 

 

Table 1 Calculated adhesion energies along with the blister radii at different charging pressures 

 For mono-layered devices, it can be seen from Table 1 that the calculated adhesion 

energy increases from 112.13 mJ/m
2
 at 2.05 MPa to about 140 mJ/m

2
 at 3.01 MPa and then 

maintains at about this value at higher pressures. Likewise for multi-layered devices, the 

apparent adhesion energy is 128.78 mJ/m
2
 at 2.56 MPa and reaches a stable value of about 160 

mJ/m
2
 at and above 3.43 MPa. Thus the apparent adhesion energy near the edge of the cavity is 

lower than that in the regions sufficiently away from the edge. This is perhaps due to topographic 

variations near the perimeter of the cavity (as well as near the island boundary), including a non-

ideal circular boundary, a boundary that is not sharp (as assumed in our model), and roughness 

variations near the perimeter of the cavity.  In order to estimate the critical charging pressure, 
]̂  

with our theory, we used the lowest apparent adhesion energy in eq. (20) with � � �� to estimate 

the critical charging pressure, 
]̂ . This results in 
]̂   = 2.0 MPa for mono-layered membranes 

and 2.14 MPa for multi-layered ones. 

 

Experimentally we find that mono-layered membranes delaminate completely from the island 

at a charging pressure between 733 kPa and 1223 kPa. We found that two of the eight mono-

layered devices remain attached to the island at 929 kPa.  Based on these observations, we took 

929 kPa to be our best estimate of the critical charging pressure for island delamination, 
]G . This 

is because from Table 2 it is evident that the membranes are slowly delaminating from the island 

and at 929.0 kPa all but two of them delaminate completely. Other devices conceivably could 

have been still attached to the island at slightly lower charging pressures. Employing a similar 

argument, we assume that 
]G  is 733.0 kPa for multi-layered devices. With 
]G � 929.0 kPa and 
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� � 270.0 nm, the adhesion energy on the island is estimated to be 102.6 mJ/m
2
 for mono-

layered membranes using eq. (19). It is 123.8 mJ/m
2
 for multi-layered membranes with 
]G � 

733.0 kPa and � � 150.0 nm. These values are in reasonable agreement with 112.13 mJ/m
2
 and 

128.78 mJ/m
2
, the adhesion energies near the cavity boundary obtained with the outward 

delamination data for mono and multi-layered membranes respectively. 

 

  

Charging Pressure,  _` (kPa) 
289.8 512.6 733.0 929.0 

Mono-layered 

Island radius, � (nm) 

(�� � 350.0 nm) 

335.0 335.0 295.0 
270.0 

(2 devices) 

Multi-layered Island 

radius , b (nm) 

(�� � 250.0 nm) 

185.0 195.0 
150.0 

(3 devices) 
- 

 

Table 2 Averaged radii of the region of the membrane still attached to the island at different 

charging pressures 
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