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This thesis examines the electrical and mechanical properties of graphene 

sheets. We perform low temperature electrical transport measurements on gated, 

quasi-2D graphite quantum dots. In devices with low contact resistances, we use 

longitudinal and Hall resistances to extract a carrier density of 2-6 x 1011 holes per 

sheet and a mobility of 200-1900 cm2/V-s. In devices with high resistance contacts, we 

observe Coulomb blockade phenomena and infer the charging energies and capacitive 

couplings. These experiments demonstrate that electrons in mesoscopic graphite 

pieces are delocalized over nearly the whole graphite piece down to low temperatures. 

 We also fabricate nanoelectromechanical systems (NEMS) from ultra thin 

graphite and graphene by mechanically exfoliating thin sheets over trenches in SiO2. 

Vibrations with fundamental resonant frequencies in the MHz range are actuated 

either optically or electrically and detected optically by interferometry. We 

demonstrate room temperature charge sensitivities down to 2x10-3 e/Hz½. The thinnest 

resonator consists of a single suspended layer of atoms and represents the ultimate 

limit of a two dimensional NEMS. 

 In addition to work on doubly clamped beams and cantilevers, we also 

investigate the properties of resonating drumheads, which consist of graphene sealed 

microchambers containing a small volume of trapped gas. These experiments allow us 

to probe the membrane properties of single atomic layers of graphene. We show that 



 

these membranes are impermeable and can support pressure differences larger than 

one atmosphere. We use such pressure differences to tune the mechanical resonance 

frequency by ~100 MHz. This allows us to measure the mass and elastic constants of 

graphene membranes. We demonstrate that atomic layers of graphene have stiffness 

similar to bulk graphite (E ~ 1 TPa). These results show that single atomic sheets can 

be integrated with microfabricated structures to create a new class of atomic scale 

membrane-based devices. 
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CHAPTER 1 

INTRODUCTION 

 

1.1 Introduction 

The discovery of a new material brings with it some of the most exciting and 

fruitful periods of scientific and technological research. With a new material come 

new opportunities to reexamine old problems as well as pose new ones. The recent 

discovery of graphene- atomically thin layers of graphite- brought such a period 

(Novoselov, Geim et al. 2004). For the first time, it is possible to isolate single two-

dimensional atomic layers of atoms. These are among the thinnest objects imaginable. 

The strongest bond in nature, the C-C bond covalently locks these atoms in place 

giving them remarkable mechanical properties (Bunch, van der Zande et al. 2007; 

Meyer, Geim et al. 2007; Bunch, Verbridge et al. 2008). A suspended single layer of 

graphene is one of the stiffest known materials characterized by a remarkably high 

Young’s modulus of ~ 1 TPa. As an electronic material, graphene represents a new 

playground for electrons in 2, 1, and 0 dimensions where the rules are changed due to 

its linear band structure. Scattering is low in this material allowing for the observation 

of the Quantum Hall Effect (QHE), and the unique band structure of graphene gives 

this old effect a new twist (Novoselov, Geim et al. 2005; Zhang, Tan et al. 2005). 

Graphene research is still in its infancy and this thesis examines only the very 

beginnings of what will likely be an important material of the future. 

 

1.2 Outline 

This thesis presents some of the first experiments on the electrical and 

mechanical properties of graphene. Chapters 1-3 include an overview of the basic 

concepts relevant to the experimental results presented in Chapters 4-6. The 
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experimental section begins in Chapter 4 where we perform low temperature electrical 

transport measurements on gated, few-layer graphene quantum dots. We find that 

electrons in mesoscopic graphite pieces are delocalized over nearly the whole graphite 

piece down to low temperatures. A modified form of this chapter is published in Nano 

Letters 5, 287 (2005). An experimental study of the mechanical properties of 

suspended graphene begins in Chapter 5 where we study doubly clamped beams and 

cantilevers fabricated from graphene sheets. We fabricate the world’s thinnest 

mechanical resonator from a suspended single layer of atoms. A version of this 

chapter is published in Science 315, 490 (2007). Chapter 6 extends this work on 

mechanical resonators from graphene sheets to graphene membranes which are 

clamped on all sides and seal a small volume of gas in a microchamber. In this work 

we demonstrate that a graphene membrane is impermeable to gases down to the 

ultimate limit in thickness of only one atomic layer. A version of this chapter has been 

submitted. 

 

1.3 Electrical Properties of Materials 

Physicists love forces. Forces are one of the basic means by which they 

characterize materials. When presented with a new material they immediately want to 

know two things: how the electrons in the material respond to electrical forces and 

how the atoms respond to mechanical forces. The first of these is summed up by 

Ohm’s Law: 

 
IRV =        (1.1) 

where V is the voltage difference across the conductor, I is the current, and R is the 

resistance. A useful way to express this resistance is in terms of a resistivity ρ defined 

as: 
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A
LR ρ

=        (1.2) 

where L is the length of the material and A is the cross sectional area through which 

the current is flowing. The resistivity is of a material is independent of its geometry 

making it a useful quantity to compare different materials.  

Ohm’s law is a general formula applicable to 3D, 2D, and 1D conductors. In a 

typical conductor charges are moving and scattering at random with no net movement 

of charge across the sample. This situation changes when a voltage difference, V, is 

applied across the conductor. The voltage difference creates an electric field, E, which 

gives these randomly scattered electrons a net force in one direction. Some of the 

possible scattering mechanisms are phonons in the material, defects in the lattice, or 

charge inhomogeneities in the material. The velocity with which the charges move in 

the direction of the applied field is known as the drift velocity, vd and is related to the 

current density J by: 

 

J = nevd       (1.3) 

 

where n is the charge carrier density and e is the electron charge. When there is less 

scattering in a material, the charge carriers will travel farther with the same electric 

field. This ratio is defined as the mobility, µ = vd/E and is an important quantity that is 

used to characterize scattering in conductors. One can then express the resistivity of a 

material in terms of its mobility by: 

 

ρ = 1/(ne µ).        (1.4) 
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Hall Effect: 

Physicists aren’t limited to applying electrical forces to a material but love to 

apply magnetic forces as well. In a magnetic field, a moving charge experiences a  

Lorentz force. Using the Drude model with an applied magnetic field B, the current 

density is defined as: 

 

 ⎟
⎠
⎞

⎜
⎝
⎛ ×−= Bj

ne
EJ

rrrv 11

0ρ
      (1.5) 

which can be rewritten as: 

 

 Bj
ne

jE
rrrr

×+=
1

0ρ        (1.6) 

We can then formulate this equation in matrix form using Cartesian coordinates and 

under the assumption that we have a 2D system with a B field in the z direction and 

current in the xy plane.  Doing so we get: 

 

 ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛

⎟⎟
⎟
⎟

⎠

⎞

⎜⎜
⎜
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⎝

⎛

−
=⎟⎟

⎠

⎞
⎜⎜
⎝

⎛

y

x

y

x

j
j

ne
B

ne
B

E
E

0

0

ρ

ρ
      (1.7)   

Referring to Fig. 1.1, we define the Hall resistance, RH, as: 

 

 
I

V
R h

H ≡         (1.8) 

where: 

 
 ∫ ⋅= ldEV yh         (1.9) 



 

 5

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.1 Hall Bar geometry.
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With no current flow in the y direction (1.7) simplifies to: 

 

 xy j
ne
BE −=         (1.10) 

Plugging (1.10) into (1.9) we get: 

 

Wj
ne
Bdj

ne
BV xxh == ∫ l       (1.11) 

In 2 dimensions the current density is defined as: 

 

W
Ijx ≡         (1.12) 

Using this fact along with the definition for the Hall voltage in (1.8) we have that: 

 

 
ne
BRH =         (1.13) 

By sweeping a perpendicular magnetic field, B, and measuring RH one can determine 

the carrier density, n.  You can then use this density and the measured longitudinal 

resistivity ρ to measure the sample’s mobility µ. This is a technique known as the Hall 

Effect and is commonly used to characterize conducting samples. We will use this in 

Chapter 4 to determine n, ρ, and µ for mesoscopic graphene pieces. 

 

1.4 Two Dimensional Electron Systems 

Up until this point, we concerned ourselves with 3 dimensional conductors. If 

the thickness of a conductor becomes smaller than the size of the electron wavelength 

than the conductor forms a two-dimensional electron gas (2DEG) and interesting  
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Figure 1.2. a) A silicon MOSFET where a metal gate is used to 

pull charges towards the Silicon/Silicon Oxide interface where the 

2DEG is formed.  b)  A modulation doped GaAs/AlGaAs 

heterojunction.  The 2DEG forms at the interface where charges 

introduced by silicon dopants are pulled to the interface by an 

electric field.  
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quantum effects arise. The first high mobility 2DEG was formed from a Si metal oxide 

semiconductor field effect transistor (MOSFET).  Technologically, the Si MOSFET is 

the critical component behind the transistor and the modern computing revolution.  A 

schematic of the MOSFET is shown in Fig. 1.2a.  A SiO2 insulating layer is grown on 

top of Si and an electrostatic force applied to the gate electrode is used to pull charges 

towards the Si/SiO2 interface. 

The high quality interface between a Si and SiO2 can be fabricated into 

effective transistors and at low temperatures forms a relatively clean 2DEG which 

exhibits the QHE. The QHE in a silicon 2DEG was first demonstrated in 1980 by 

Klaus von Klitzing (Klitzing, Dorda et al. 1980). Despite the high quality of the 

Si/SiO2 interface, there still remains sufficient scattering such that the mobilities have 

been limited to 8×104 cm2/V-s for the highest quality samples(Stormer 1999). 

To circumvent the problem of scattering at a defective semiconductor-insulator 

boundary, researchers at Bell Labs invented a method called modulation doping which 

utilized Molecular Beam Epitaxy (MBE)(Dingle, Stormer et al. 1978).  Using MBE, a 

technique developed in the 1960s by Albert Cho also of Bell Labs, semiconductors 

can be prepared layer by layer in a nearly perfect crystalline form and a clean interface 

between two semiconductors is prepared. Scientists at Bell Labs chose to use GaAs 

and AlGaAs due to their matching lattice constants. This allowed a crystalline 

interface between these 2 materials which was nearly perfect yet remained insulating 

due to a lack of charge carriers in these intrinsic semiconducting materials.  To create 

a 2DEG, free charges must be generated.  In the MOSFET situation, charges are 

introduced through an electrostatic gate above the oxide.  For the case of the 

GaAs/AlGaAs heterojunction, researchers at Bell Labs had the clever idea of 

introducing impurity atoms far enough away from the interface such that they can 

donate their electrons but not contribute to scattering.  In this case, called modulation  
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Figure 1.3 Progress made in improving the mobility of 

GaAs/AlGaAs heterojuntions.  The solid black square (■) is the 

current mobility record for graphene on silicon oxide(Novoselov, 

Geim et al. 2005) (Zhang, Tan et al. 2005). The solid circle (●) is 

the current record for suspended graphene (Bolotin, Sikes et al. 

2008). Figure adapted from (Stormer 1999)  
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doping, Si impurity atoms are introduced into the AlGaAs material during growth. 

When Si is substituted in for Ga in the lattice it releases its extra electron.  Since the 

conduction band of GaAs is 0.19 eV below the conduction band of AlGaAs, negative 

charges fall toward the GaAs side but are attracted by the positive charges that remain 

on the AlGaAs side. This results in the bands bending and confining the charge at the 

“perfect” AlGaAs-GaAs interface thereby forming the 2DEG (Fig. 1.2b).  Loren 

Pfeiffer and collaborators at Bell Labs have spent the last 2 decades perfecting their 

MBE system so as to make it as clean as possible.  Progress in perfecting the quality 

of this interface is shown in Fig. 1.3 and mobilities larger than 107 have been 

achieved.  These samples have a ballistic mean free path of about 120 µm for an 

electron confined to this interface and such high quality samples have allowed for the 

investigation of many exotic properties of electrons in 2 dimensions. These 

GaAs/AlGaAs samples are the current state of the art in terms of charge carrier 

mobility in solid state systems. As a comparison, the current record mobilities for 

graphene are also plotted. 

 

1.5 Quantum Dots 

If electrons in a conductor are confined in all 3 of their dimensions a 0 

dimensional structure forms known as a quantum dot. Typically, quantum dots are 

conducting island connected to a reservoir of electrons by a tunnel barrier (Fig. 1.4a). 

They are most commonly patterned on AlGaAs 2DEGs due to the ease of fabrication 

and high quality electron gas in these structures (Fig. 1.4b). The electron gas is 

confined into small islands of charge using electrostatic gate. The electrostatic gates 

deplete the underlying gas thereby creating a confined geometry with entrance and 

exit channels to an electron reservoir. To properly localize a discrete number of 

electrons on the dot, a tunnel barrier with a resistance Rt > h/2e2 is required. For  
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Figure 1.4 a) Schematic of a quantum dot connected to a source, drain, and 

gate electrode. b) (upper) Schematic of a quantum dot defined on an 

AlGaAs/GaAs heterostructure using gate defined depletion regions. (lower) 

Scanning electron  microscope image of a single (left) and double (right) 

quantum dot. The white dot defines the region of electron confinement in the 

dot and the white arrows denote the conducting path of the electrons. The 

ohmic contacts to the dot are shown by black crosses. c) (upper) Energy 

levels in a quantum dot during coulomb blockade (left) and during conduction 

through the dot (right). (lower) Coulomb blockade oscillations. The spacing 

between the peaks is given by the energy to add an additional electron to the 

dot. Figure adapted from (Hanson, Kouwenhoven et al. 2007). 
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an electron to tunnel onto the dot, an energy cost must be paid given by e2/C, where C 

is the total capacitance of the dot. This is known as the charging energy of the dot and 

having to pay this energy cost is known as Coulomb blockade. A small dot has a small 

capacitance and a large charging energy. When thermal fluctuations become smaller 

than this energy cost e2/C > kT, single electron charging is observable.   

This charging energy can be paid either with a voltage applied to a gate 

electrode or to the source or drain electrode. For a gate voltage, the addition of an 

electron onto the dot is simply:  

 

∆Vg = e/Cg           (1.14) 

 

where ∆Vg is the amount of voltage applied to the gate that shifts the charge on the dot  

by one electron and Cg is the gate-dot capacitance while for a source drain bias it is: 

 

∆Vsd = e/C         (1.15) 

 

where ∆Vsd  is the amount of voltage applied to the source drain electrode and C = Cs 

+ Cd +Cg. The ratio of these two voltages is defined by a constant α which is given by: 

 

α = ∆Vsd / ∆Vg = Cg/ (Cs + Cd +Cg)    (1.16) 

 

This constant defines the coupling of the dot to the gate and source drain electrodes. 

By fixing the source drain bias and varying the gate voltage a series of 

oscillations in the current are observed (Fig. 1.4c). These are known as Coulomb 

oscillations and their spacing is given by ∆Vg. The current spikes result from the dot 

not knowing if it prefers N electrons or N+1 and so the dot alternates between these 
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two states. The requirement for this to occur is that an energy level on the dot is 

aligned with both the Fermi energy of the source and drain electrode (Fig. 1.4c). 

It might be helpful to think of the current oscillations in a conducting quantum 

dot as a confused and frustrated system. When N electrons occupy the dot, it is happy 

and satisfied with the number of electrons residing in its humble little space. By 

changing the electrostatics of the system, the dot starts to think it can accommodate 

N+1 electrons instead of the N electrons which previously made it happy. During a 

Coulomb oscillation the dot’s frustration is optimized and charges move across the dot 

as it shuttles electrons on and off. Eventually the electrostatics is such that the dot is 

no longer frustrated. Instead it is now happy to accommodate N+1 electrons. This 

situation repeats itself with N+1 and N+2 electrons.  

In addition to the charging energy of the dot, there are additional quantum 

energy level spacings, ∆E. These excited states are a result of the higher order states of 

the electron wavefunction and are related to the density of states in the dot. For a two 

dimensional square dot with length L and charge carriers with a parabolic dispersion 

∆E is given by: 

 

2

2

mL
E

π
h

=∆         (1.17) 

(Kouwenhoven, Marcus et al. 1997). A 100 nm 2D dot made from GaAs/AlGaAs, has 

∆E ~ 30 µeV which is 1000 times smaller than the corresponding charging energy e2/C 

~ 30 meV. A whole subfield of condensed matter physics grew out of the study of 

these frustrated little conducting islands. For a more extensive review of quantum dots 

discussing all of these situations please refer to (Kouwenhoven, Marcus et al. 1997). 
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1.6 Conclusion 

This chapter reviews some of the interesting effects that arise when electrons 

in a conductor are confined to nanoscale dimensions.  In Chapter 4 of this thesis, we 

will look at mescoscopic graphene electronic devices where electrons are confined in 

2 and 0 dimensions in this unique material. In the next chapter, we will examine the 

mechanical properties of materials with a focus on characterizing nanoscale 

mechanical structures. 
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CHAPTER 2 

 

NANOMECHANICS 

 

2.1 Mechanical Properties of Materials 

The mechanical equivalent to Ohm’s law is Hooke’s law. For a material in one 

dimension it is expressed as: 

 

xx Eεσ =        (2.1) 

 

where the stress σ is the force per unit area, E is the Young’s modulus, and ε is strain. 

This assumes an isotropic system where there is no preferred crystal orientation. In 

many bulk solids, this is a valid assumption considering that single crystals tend to be 

separated into grains of random orientation. When taken as a whole the elastic 

constants average to some bulk value (Timoshenko 1934). Table 2.1 shows typical 

Young’s modulus for various materials.  

Most materials tend to contract in the direction perpendicular to the applied 

strain. The ratio of the strains in these 2 directions defines a quantity known as 

Poisson’s ratio: 

 

x

y

ε
ε

υ −≡        (2.2) 

Typical Poisson’s ratios are shown in Fig 2.1. Some materials like the cork of a wine 

bottle have υ ~ 0 while others like rubber have υ ~ 0.5. There is also exists a class of 

exotic materials with υ < 0 (Fig. 2.1c). 
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Material Young's modulus (E) in GPa 

Rubber (small strain) 0.01-0.1 

PTFE (Teflon) 0.5 

Nylon 3-7 

Oak wood (along grain) 11 

High-strength concrete (under compression) 30 

Aluminium alloy 69 

Glass (see also diagram below table) 65-90 

Titanium (Ti) 105-120 

Copper (Cu) 110-130 

Silicon (S) 

Wrought iron and steel 

150 

190-210 

Tungsten (W) 400-410 

Silicon carbide (SiC) 450 

Diamond (C) 1,050-1,200 

Single walled carbon nanotube 1,000 

Graphite/Graphene (within the plane) 1,000 

Table 2.1 Approximate Young’s modulus for various 

materials Adapted from Wikipedia: Young’s Modulus.  
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Figure 2.1 A lattice with a positive Poisson’s ratio: (A) unstretched and (B) 

stretched. Lattice with a negative Poisson ratio: (C) unstretched and (D) stretched. 

The sheet of paper behind each figure has the same dimensions. Figure from 

(Campbell and Querns 2002) (E) A table of Poisson’s ratio for common materials. 

Adapted from Wikipedia-Poisson’s ratio.  
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2.2 Anisotropic Materials 

It is not always possible to assume a material is isotropic. This thesis is 

primarily concerned with single crystals and layered materials for which anisotropy is 

an important consideration. Stress and strain are second rank tensors and so relating 

stress to strain requires a fourth rank tensor which has 81 components. For real 

materials in equilibrium, there are no net forces and torques so the stress-strain 

relation is vastly simplified to the following 6 x 6 symmetric matrix (Senturia 2001): 
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  (2.3) 

where τ is the shear stress and γ is the shear strain. For a cubic crystal such as silicon 

symmetry allows this equation to be further simplified to: 
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where the elastic constants for silicon are C11 = 166 GPa, C12 = 64 GPa, and C44 = 80 

GPa (Senturia 2001). Graphite is a special case where the elastic constants along the 

plane are vastly different than those between the sheets. The various elastic constants 
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of graphite will be further examined in Chapter 3. 

 

2.3 Biaxial Strain 

Equations (2.1) and (2.2) can be combined to give the isotropic three 

dimensional version of Hooke’s law which relates stress to strain as: 

 

 ( )( )zzyyxxxx E
σσνσε +−=

1
     (2.5) 

Biaxial strain is a common type of strain where both the x and z component of strain 

are equivalent: εx = εz = ε. An example is the surface of a spherical balloon where a 

pressure difference across the balloon applies an equal strain to both directions. For 

biaxial strain of an isotropic plate, the modified form of Hooke’s law simplifies to: 

 

ε
υ

σ ⎟
⎠
⎞

⎜
⎝
⎛
−

=
1

E .      (2.6) 

It should be noted that cubic crystals are biaxially isotropic along the (111) and (100) 

planes.  

 

2.4 Bulge Test 

The bulge test is a method commonly used to measure the in-plane mechanical  

properties of thin films such as Young’s modulus, residual stress, and Poisson’s ratio 

(Vlassak and Nix 1992; Jay, Christian et al. 2003). The following discussion follows 

closely the lecture notes of Professor William Nix at Stanford University (Nix 2005). 

In the simplest implementation, a pressure difference is applied across a clamped 

circular film with a radius of curvature R and the maximum deflection, z, at the top of 

the film is measured. The pressure difference, ∆p, applies a well defined and uniform 
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force across the membrane of thickness t, which is balanced by the induced biaxial 

stress, σ, in the membrane: 

 
RtRp πσπ 22 ⋅=⋅∆         (2.7) 

t
pR
2
∆

=σ        (2.8)  

For the case of small deflection where (z<<a), the Pythagorean Theorem can be used 

to express the radius of curvature in terms of the radius of the base, a, as:  

 

z
aR
2

2

≈        (2.9)   

We can then plug (2.9) into (2.8) to get: 

 

tz
pa
4

2∆
=σ        (2.10) 

or expressed as a surface tension S = σt, this becomes: 

 

z
paS
4

2∆
=        (2.11) 

The strain in the membrane is  

 

2

2
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a
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=
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 21

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.2 (a-c) Schematic of the Bulge test. 
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By plugging in (2.9) into this expression we get: 

 

2

2

3
2
a
z

≈ε        (2.13) 

Equation (2.6) is used to obtain the surface tension S due to biaxial elastic strain:  

 

( )ευ−
=

1
EtS        (2.14)  

This can be combined with (2.13) to express a pressure induced surface tension Sp: 

 

  ( )υ−=
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2
2

2

a
EtzS p       (2.15) 

 The total surface tension S can be written as the initial surface tension S0 added to the 

pressure induced surface tension Sp. Setting this equal to (2.11) we get: 
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   (2.16) 

Solving (2.16) for the pressure difference gives the “bulge equation” for a circular 

membrane: 
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Etz
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For the geometry of a square membrane, the equation is slightly modified to (Vlassak 

and Nix 1992): 
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where c1 = 3.393 and c2 = (0.8+0.062υ)-3 and for a rectangle this becomes (Nix 2005): 
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where W is the length along the short end of the rectangle.  

Using equations (2.18) and (2.19) one can measure E and υ by a bulge test 

performed on the same material in a square and rectangular geometry. The 2 measured 

deflections will lead to 2 equations with 2 unknowns (E and υ). Chapter 6 of this thesis 

applies the bulge test for the first time to atomic scale membranes to extract the elastic 

constants of graphene. The experiments in this thesis only measured a combination of 

E and υ and not each independently since we studied only a square membrane.  

 

2.5 Nanoindentation 

A common alternative to the bulge test for measuring the elastic constant of 

free standing structures is nanoindentation. Commonly, an Atomic Force Microscope 

tip with a calibrated spring constant and well-known radius of curvature is used to 

push on a suspended structure and the deflection of the structure and tip is measured. 

From such a force-displacement curve it is possible to deduce the local spring constant 

of the free standing structure. Neglecting the bending rigidity, the tension can be 

obtained from the measured spring constant k, at the center of the membrane using S ≈ 

(k/2π) ln (R/r), where R is the radius of the membrane and r is the radius of the AFM 

tip  (Tanizawa and Yamamoto 2004). A detailed theoretical review of this technique 

for indentation of thin films in the membrane regime can be found in (Begley and 

Mackin 2004). 
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This technique has been used by others to determine the mechanical properties 

of few layer graphene sheets (Frank, Tanenbaum et al. 2007; Poot and van der Zant 

2008). In Chapter 6 of this thesis, we apply this technique to a single layer graphene 

membrane to determine the initial tension. 

 

2.6 Harmonic Oscillator 

The harmonic oscillator is a classic well-studied system which describes 

everything from grandfather clocks and guitars to atoms and dark energy. Historically, 

it has played a pivotal role in the development of both classical and quantum physics. 

A simple example is a pendulum which has an oscillation frequency proportional only 

to its length as first observed by Galileo in the early 17th century. Another common 

example is a mass on a spring. For small displacements, the spring follows Hooke’s 

law, F = kx where x is the displacement from equilibrium and k is the spring constant.  

Real life situations involve damping terms which dissipate the vibrational 

energy of the system killing the vibration. We will denote this by a constant b. We 

typically also need to drive the oscillations so we include a periodic driving force with 

amplitude F and frequency ω. These two terms will modify our equation of motion to: 

 

   )cos(2

2
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xdM ω=++     (2.21) 

The steady state solution to this equation is given by the following: 
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Figure 2.3 The amplitude and phase of a driven damped harmonic 

oscillator. Figure from (Sazonova 2006). 
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c

mQ 0ω=        (2.26) 

(Timoshenko, Young et al. 1974). The resonance frequency is given by ω0 = 2πf0, the 

phase is θ, and Q is the quality factor. The damping term prevents the resonance 

amplitude from going to infinity at the drive amplitude. The maximum amplitude 

QF/k is at the resonance frequency and the full-width at half maximum of the resonant 

peak is f0/Q (Fig. 2.3). 

 

2.7 Doubly Clamped Beams and Cantilevers 

The simple harmonic oscillator can be used to describe the dynamic properties 

of suspended elastic beams. The fundamental resonance frequency for a suspended 

beam with clamped fixed ends is given by: 
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where 
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20 L
tEAf

ρ
=       (2.28) 

and E is the Young’s modulus, S is the tension per width, ρ is the mass density, t and 

L, are the thickness and length of the suspended graphene sheet, and A = 1.03 for 

doubly-clamped beams and 0.162 for cantilevers (Timoshenko, Young et al. 1974; 

Bokaian 1990) 

 

2.8 Membrane Dynamics 

The 2-dimensional version of a tense string is a stretched membrane. In the 

limit of a large uniform tension S, along the length of the boundary the bending 

rigidity can be neglected. This simplifies the potential energy of the displaced 

membrane, and one can solve for the vibration frequencies using the principle of 

virtual displacements(Timoshenko, Young et al. 1974). The vibration frequencies for a 

rectangular membrane are: 
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where m is the mass per unit area, a and b are the lengths of each side (Timoshenko, 

Young et al. 1974). For the fundamental mode of a square membrane this simplifies 

to: 

 

21,1 2ma
Sf =       (2.30) 

A circular membrane of radius r, has the slightly modified form of the fundamental 

mode (Timoshenko, Young et al. 1974): 
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21,1 404.2
mr

Sf =       (2.31) 

  

2.9 Plate Dynamics 

When the tension in the membrane is small, the stiffness is dominated by the 

flexural rigidity, D: 
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As the elastic sheet vibrates out of plane, the potential energy due to small 

displacements comes from this flexural rigidity instead of the tension. This structure is 

referred to as a plate. If one assumes simply supported edges, the vibration frequencies 

for a rectangular plate are: 
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This simplifies to the following for the fundamental mode of a square plate: 

 

t
D

a
f

ρ
π

21,1 =       (2.34) 

The case of a rectangular plate with all edges free or clamped is significantly more 

difficult to solve. An approximate solution for a circular plate with a radius r, fixed at 

the boundary gives a fundamental frequency: 
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2.10 Actuation 

One of the most common methods to actuate vibrations in suspended beams is 

electrostatic drive. This uses an alternating electric field to drive the resonant motion 

of the beam.  A capacitor is formed between the electrically contacted suspended 

beam and a nearby gate electrode.  A voltage Vg, applied to this capacitor induces a 

charge q = CgVg  onto the beam where Cg  is the capacitance of the beam to the gate 

electrode. The total electrostatic force on this beam is then given by: 
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where z is the distance to the gate electrode. A small AC voltage is combined with a 

DC voltage to give: 
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Combining (2.36) with (2.37) we get: 
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where we have neglected the small term δVg
2.  

A useful technique to actuate out of plane vibrations in resonators without 

electrical contacts is an optical drive. This operates by locally modulating the 

temperature on or near a resonator using a focused laser. The thermal drive works 
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either by actuating the graphene itself through thermal contraction and expansion or 

the graphene/SiO2 clamping point or through thermal stresses at this interface due to 

the different thermal expansion coefficients of SiO2 and graphene (Ilic, Krylov et al. 

2005). Both will result in a periodic driving force that causes resonant motion in the 

resonator.  

If the resonant motion is due to thermal expansion and contraction of the 

suspended graphene itself, then the maximum attainable frequency can be estimated 

from the thermal properties of graphene. For a well clamped graphene resonator 

thermal expansion along the length of the graphene will lead to out of plane motion. 

For such an actuation scheme to work, the thermal time constant, 1/λ of the resonator 

must be smaller than the out of plane vibrations to allow for thermal equilibration. For 

a circular resonator of radius R, λ is given by: 
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where c is the specific heat, ρ is the mass density, κ is the thermal conductivity, and µ 

= 2.4 is a root of the Bessel function J0 (Aubin 2005). Using typical values for the 

suspended graphene resonators in this thesis, this corresponds to a thermal time 

constant 1/λ, = 0.2 ns which places an upper bound of the optical drive at ~ 5 GHz. 

This is considerably larger than the typical fundamental resonant frequencies we 

observe ~ 50 MHz. 

 

2.11 Optical Detection 

Just as electrical and optical means can be used to actuate resonant motion, 

they can also be used to detect motion. Optical techniques have the advantage of high 

sensitivity and the simplicity of not requiring any electrical contacts. All work in this 
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thesis used optical detection so I refer the reader to Vera Sazonova’s thesis for an 

overview of electrical detection schemes (Sazonova 2006).  

Beam Deflection: 

Those of us who have ever used an Atomic Force Microscope (AFM) are 

familiar with optical detection to measure the resonance frequency of a cantilever. An 

AFM uses a beam deflection method where a laser beam is reflected off of the 

backside of a cantilever and onto a split-photodetector (Fig. 2.4a). The laser spot is 

positioned such that the light incident on the photodetector is divided evenly between 

the 2 regions of the photodector. As the cantilever vibrates, the relative intensity 

between these 2 regions changes and resonant motion is detected.  

Interferometric Detection: 

 A more sensitive means of detecting motion optically is to utilize the 

interference effect resulting from two wave fronts of light. For a Michelson-Morley 

interferometer, a single beam of light is split into two beams one of which is incident 

on the sample and the other onto a reference mirror (Fig. 2.4b). The beams then 

recombine and an interference pattern results. In Fabry-Perot interferometry a single  

beam is incident on a partially reflecting reference mirror and a back mirror directly 

behind and parallel to the reference mirror (Fig. 2.4c). The light reflected from the 

reference mirror combines with that reflected off of the back mirror to form an 

interference pattern. It should be noted that for NEMS which reflect very little light 

one can neglect multiple reflections in the Fabry Perot cavity.  

The advantage of Fabry-Perot detection for NEMs applications is that the 2 

mirrors are typically parallel and close together making the setup less sensitive to 

mechanical vibrations. The disadvantage is that it is impossible to directly measure the 

displacements. In Michelson-Morley interferometry the reference mirror can be  

moved a calibrated distance and therefore absolute displacement detection is possible.  
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Figure 2.4 a) Schematic of an Atomic force microscope which uses the beam 

deflection method of detection. Figure taken from Wikipedia/Atomic Force 

Microscope b) Schematic of a Michelson-Morley detection scheme. c) 

Schematic of a Fabry-Perot detection scheme. 
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The disadvantage is the increased mechanical noise in such a setup. This is improved 

by utilizing a path stabilized variant(Karabacak 2008). For a detailed review of these 

interferometric detection techniques as applied to nanolectromechanicals systems I 

refer the reader to (Shagam 2006; Karabacak 2008). Chapter 5 and 6 of this thesis uses 

Fabry Perot interfermetry to detect the resonant motion of graphene NEMS. 

 

2.12 MEMS and NEMS Applications 

Microelectromechanical systems (MEMS) have established themselves as 

commercially viable components in a range of products from MEMS-based 

accelerometers found in air bag deployment systems and gyroscopes in car electronic 

stability control. The most dominant market for MEMS is in ink jet printer nozzles. 

One can even find MEMS in new video game systems such as Nintendo Wii where 

accelerometers are used to sense motion in the hand held game controller. The MEMS 

market in 2007 is $7.1 billion and expected to rise to $14 billion by 2012 (Fig. 2.5). 

Most of this growth is expected to take place in non-traditional areas of MEMS such 

as RF-MEMS which utilize MEMS for RF signal processing, microfluidic chips for 

drug delivery, silicon microphones, microfluidic chips for diagnostics, micro tips and 

probes, and micro-bolometers which can be used as infrared detectors for thermal 

imaging (Staff 2008)(Fig. 2.5b). 

One of the more promising applications of NEMS which are the nano version 

of MEMS is in sensing. The advantage of NEMS is that smaller is usually better. 

Three opportunities for NEMS where there small size is particularly advantageous are 

in force, mass, and charge sensing. These are explored in Chapter 5 of this thesis.  

 

2.13 Conclusions 

 This chapter reviewed some of the aspects relevant to the experimental  
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Figure 2.5 a) Top 30 MEMS manufacturers worldwide 

based on 2007 revenues according to Yole. b) MEMS market 

forecast 2007-2012. (Figures from (Staff 2008)) 
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nanomechanics results presented in Chapter 5 and Chapter 6 of this thesis. In the next 

chapter, we will review the properties of graphene - the material of focus of this thesis. 
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CHAPTER 3 

 

GRAPHENE 

 

3.1 Carbon vs. Silicon 

We currently live in the age of silicon nanotechnology. Silicon based 

transistors drive the modern computing revolution. The size of transistors has 

consistently been decreasing allowing more transistors to be packed onto a single chip 

thereby increasing computer power. This rate approximately follows Moore’s law 

which states that the number of transistors on a chip is doubling approximately once 

every 2 years. The economic reason for such a phenomenal rate is the ~ $1 trillion 

computer market is driven by a worldwide demand for faster and more affordable 

computers. The physical reason behind the growth rate is the ability of engineers and 

scientists to fashion silicon into smaller and more efficient computer circuitry. The 

most recent Intel processor has a transistor with a channel length of 45 nm – a true 

nanotechnology (Fig. 3.1a and 3.1b)  

More recently this ability to control silicon fabrication has extended into the 

mechanical realm where interest in silicon as a mechanical material has driven MEMS 

technology (Petersen 1982)(Fig. 3.1c and 3.1d). As previously discussed in Chapter 

2.12, silicon MEMS are finding applications in a wide array of products. Silicon 

fabrication processes and equipment are readily available due to the microelectronics 

boom making silicon a natural choice for MEMS. But is silicon the best choice? A 

potential alternative to silicon is carbon which forms several distinct structures that 

have superior electrical, mechanical, and thermal properties to silicon. 
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Figure 3.1 (a) Intel’s 45 nm transistor which uses a Hafniun based 

dielectric. (b) A wafer of the 45 nm transistors photographed with a 

dime. The processors incorporate 410 million transistors for each dual 

core chip, and 820 million for each quad core chip. Figures taken from 

http://www.intel.com/pressroom/kits/45nm/photos.htm. (c-d) Images 

of MEMS from Sandia Labs. Images taken from Sandia MEMS 

webpage. 
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3.2 Forms of Carbon 

Carbon sits directly above silicon on the periodic table and therefore both have 

4 valence electrons. However, unlike silicon, carbon’s 4 valence electrons have very 

similar energies, so their wavefunctions mix easily facilitating hybridization. In 

carbon, these valence electrons give rise to 2s, 2px, 2py, and 2pz orbitals while the 2 

inner shell electrons belong to a spherically symmetric 1s orbital that is tightly bound 

and has an energy far from the Fermi energy of carbon.  For this reason, only the 

electrons in the 2s and 2p orbitals contribute to the solid-state properties of graphite. 

This unique ability to hybridize sets carbon apart from other elements and allows 

carbon to form 0D, 1D, 2D, and 3D structures (Fig. 3.2) (Saito, Dresselhaus et al. 

1998). 

Diamond: 

The three dimensional form of carbon is diamond. It is sp3 bonded forming 4 

covalent bonds with the neighboring carbon atoms into a face-centered cubic atomic 

structure (Fig. 3.2a). Because the carbon-carbon covalent bond is one of the strongest 

in nature, diamond has a remarkably high Young’s modulus and high thermal 

conductivity. Undoped diamond has no free electrons and is a wide band gap (~5.5 

eV) insulator (Singh 1993). 

The exceptional physical properties and clever advertising such as “Diamonds 

are forever” contribute to its appeal as a sought after gem. When properly cut and 

polished, it is set to make beautiful pieces of jewelry. One of the most famous of these 

is the Hope Diamond shown in Fig. 3.2b. For many of the large, high quality crystals 

used to make jewelry, diamond must be mined. The smaller defective crystals are used 

as reinforcement in tool bits which utilize its superior hardness for cutting 

applications. The supply of diamonds is well controlled at the few diamond mines 

scattered around the world stabilizing the high price and maintaining the demand for  
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Figure 3.2 a) Diamond lattice. Picture taken from http://mrsec.wisc.edu b) 

Hope Diamond. Image from Smithsonian. c) Lab grown diamond. Image from 

Apollo diamond, Inc. d) Graphite lattice. Image from. 

http://www.scifun.ed.ac.uk/ e) Pencil. Image from  www.xara.com. f) Graphite. 

Image from U.S. Geological Survey. g) single layer of graphene. Image from 

http://ewels.info.com. h) Single walled carbon nanotubes. Image created by 

Michael Ströck from Wikipedia. 
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this prized gemstone. 

The high thermal conductivity of diamond makes it a potentially useful 

material for microelectronics where heat dissipation is currently a major problem. 

However, diamond’s scarcity makes this unappealing. To this end, scientists and 

engineers are trying to grow large diamond wafers. One method to do so is chemical 

vapor deposition (CVD) where solid carbon is deposited from carbon containing gases 

such as methane or ethylene. By controlling the growth conditions, it is possible to 

produce defect free diamonds of limited size. An example of a high quality diamond 

grown by this technique is shown in Fig. 3.2c. Currently this technique is producing 

diamonds for jewelry and research is ongoing to scale the technology up to wafer size 

diamond growth. It is only with such large scale growth that diamond will make any 

technological impact beyond its current industrial uses in the machining industry. 

Fullerenes:  

More exotic forms of carbon are the low dimensional forms known as the 

fullerenes which consist of the 0 dimensional C60 molecule and its 1 dimensional 

derivative, carbon nanotubes. A single walled carbon nanotube is a single layer of 

graphite, referred to as graphene, rolled into a cylindrical tube with a ~ 1 nm diameter 

(Fig. 3.2h). Carbon nanotubes can be metals or semiconductors and have mechanical 

properties similar to diamond. They attracted a lot of attention from the research 

community and dominated the scientific headlines during the 1990s and early 2000. 

This interest in nanotubes was partly responsible for the resurgent interest in graphene 

as a potentially important and interesting material for electrical and mechanical 

applications.  

Graphene and Graphite: 

Graphene and Graphite are the two dimensional sp2 hybridized forms of 

carbon found in pencil lead (Fig. 3.2e). Graphite is a layered material formed by stacks 
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of graphene sheets separated by 0.3 nm and held together by weak van der Waals 

forces (3.2d) (Kelly 1981). The weak interaction between the sheets allows them to 

slide relatively easily across one another. This gives pencils their writing ability and 

graphite its lubricating properties, however the nature of this interaction between 

layers is not entirely understood. It has been known for decades that the presence of 

water reduces the frictional force considerably (Savage 1948; Pertsin and Grunze 

2006). Another frictional effect believed to be important is the registry of the lattice 

between the layers. A mismatch in this registry is believed to give graphite the 

property of superlubricity where the frictional force is reduced considerably 

(Dienwiebel, Verhoeven et al. 2004). Mechanical experiments based on few layer 

graphene may help to elucidate some of these mechanisms clearly (Zheng, Jiang et al. 

2008). 

A single 2-D sheet of graphene is a hexagonal structure with each atom 

forming 3 bonds with each of its nearest neighbors (Fig. 3.2g). These are known as the 

σ bonds oriented towards these neighboring atoms and formed from 3 of the valence 

electrons. These covalent carbon-carbon bonds are nearly equivalent to the bonds 

holding diamond together giving graphene similar mechanical and thermal properties 

as diamond.  The fourth valence electron does not participate in covalent bonding. It is 

in the 2pz state oriented perpendicular to the sheet of graphite and forms a conducting 

π band. The remarkable electronic properties of carbon nanotubes are a direct 

consequence of the peculiar band structure of graphene, a zero bandgap semiconductor 

with 2 linearly dispersing bands that touch at the corners of the first Brillouin zone 

(Wallace 1947). Bulk graphite has been studied for decades (Kelly 1981) but until 

recently there were no experiments on graphene. This was due to the difficulty in 

separating and isolating single layers of graphene for study. 
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3.3 Graphene Fabrication 

The most common method of graphene fabrication is exfoliation which finds 

its roots with a technique that has been around for centuries – writing with a graphite 

pencil. By writing with a pencil you create many graphene sheets spread over your 

paper. Unfortunately this method is uncontrollable and you are typically left with 

many sheets of varying thicknesses. If you want to study a single graphene sheet you 

need to locate it. The problem amounts to trying to find a needle in a haystack. A way 

around this problem was solved by Andre Geim’s group in Manchester (Novoselov, 

Geim et al. 2004). By gently rubbing or pressing a freshly cleaved graphite crystal on 

an oxidized silicon wafer graphene flakes with the correct thickness of oxide, single 

atomic layers are visible under an optical microscope due to thin film interference 

effects (Novoselov, Jiang et al. 2005; Blake, Hill et al. 2007). This technique 

simplifies the process of finding single graphene sheets but obviously limits this 

fabrication scheme to devices for research purposes.  For the case of suspended 

graphene sheets as discussed in this thesis, this process may take ~ 1 hour to find 

relatively thin ~ 1-5 nm thick suspended graphene devices but could take several days 

or weeks to find a suitable single suspended layer.  

There are recent attempts to improve the quality and yield of exfoliation 

techniques. These include stamping methods which use silicon pillars to transfer 

graphene flakes and electrostatic voltage assisted exfoliation which uses electrostatic 

forces to controllably separate graphene from bulk crystals (Liang, Fu et al. 2007; 

Sidorov, Yazdanpanah et al. 2007). These are very recent developments and only time 

will tell whether they yield significant improvement over standard exfoliation.  

Another common graphene fabrication technique is to disperse graphene from 

solution. This technique was used in Chapter 4 to fabricate few layer graphene 

quantum dots (Bunch, Yaish et al. 2005). In this method graphite flakes are sonicated  
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Figure 3.3 a) Growing few layer graphene on SiC. (figure from (Berger, Song et 

al. 2004). b) AFM image of a few layer graphene quantum dot fabricated by 

dispersion from solution. (figure adapted from (Bunch, Yaish et al. 2005). c) 

Nanopencil used to extract few layer graphene flakes from HOPG. Figure from 

(Zhang, Small et al. 2005). Optical image of a few-layer graphene sheet. Figures 

from (Novoselov, Geim et al. 2004). 
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in a solution and then dispersed onto a wafer. An AFM is used to locate individual 

sheets making this technique very time consuming relative to the optical detection 

scheme. Long sonication times are needed to break the graphite down and this 

typically results in small flakes. Recently a similar technique was used to fabricate 

graphene ribbons with nm-scale widths (Li, Wang et al. 2008).  One of the difficulties 

in dispersing graphene from solution is separating the layers without breaking them. A 

way around this is to intercalate the graphite and dissolve it in a solvent. When the 

intercalant dissolves it separates the graphene sheets. This technique was shown to 

work effectively for graphene oxide. However, the success of similar techniques on 

graphene is limited due to the chemistry required to keep individual graphene sheets 

from aggregating in solution. 

The technique which currently seems to have the greatest potential for mass 

production is the direct growth of graphene. Typically this is accomplished by heating 

a SiC wafer which results in the partial graphitization of the upper layer (Berger, Song 

et al. 2004). However, controlling the number of layers as well as the grain sizes is 

difficult with this technique limiting the mobilities achieved so far with this form of 

graphene (Berger, Song et al. 2006). Furthermore, isolating single sheets is 

problematic and additional lithography is required to pattern electrostatic gates on top 

of the graphene. Making suspended mechanical structures from grown graphene has 

yet to be demonstrated.  

Chemical vapor deposition (CVD) and molecular beam epitaxy (MBE) are two 

other potential routes to graphene growth. Carbon nanotubes and diamond are 

successfully grown using CVD and the preferred method of growth for high quality 

GaAs/AlGaAs heterostructures is MBE. For the time being, exfoliation remains the 

preferred method for most of the experimental research groups around the world. 

However as in diamond, wide spread applicability of graphene is limited by the crude 
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and time consuming methods currently used to fabricate and isolate single graphene 

sheets. The research community is currently in need of a reliable and reproducible 

graphene fabrication method if graphene is ever to move beyond being a laboratory 

curiosity. 

 

3.4 Electrical Properties of Graphene 

Most of the experimental research on graphene focuses on the electronic 

properties. The most notable feature about the early work on graphene transistors was 

the ability to continuously tune the charge carriers from holes to electrons. An 

example of the gate dependence in single layer graphene is shown in Fig. 3.4a. This 

effect is most pronounced in the thinnest samples whereas samples from multiple 

layers show much weaker gate dependence due to screening of the electric field by the 

other layers.  

At low temperatures and high magnetic fields, the exceptional mobility of 

graphene allows for the observation of the quantum hall effect for both electrons and 

holes (Fig. 3.4b)(Novoselov, Geim et al. 2005; Zhang, Tan et al. 2005). Due to its 

unique band structure, the graphene quantum hall effect exhibits a subtle difference 

from the conventional quantum Hall effect in that plateaus occur at half integers of 

4e2/h rather than the typical 4e2/h.  

For more practical applications one would like to utilize the strong gate 

dependence of graphene for either sensing or transistor applications. Unfortunately, 

graphene has no band gap and correspondingly resistivity changes are small. 

Therefore, a graphene transistor by its very nature is plagued by a low on/off ratio. 

However one way around this limitation, is to carve graphene into narrow ribbons. By 

shrinking the ribbon the momentum of charge carriers in the transverse direction 

becomes quantized which results in the opening of a band gap. This band gap is  
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Figure 3.4 a) The resistivity of a single layer of graphene vs. gate voltage. b) The 

Quantum Hall Effect in single layer graphene. Figures taken from (Novoselov, 

Geim et al. 2005) 



 

47 

proportional to the width of the ribbon. This effect is pronounced in carbon nanotubes 

where a nanotube has a band gap proportional to its diameter. The opening of a band 

gap in graphene ribbons has recently been observed in wide ribbon devices 

lithographically patterned from large graphene flakes (Han, Ozyilmaz et al. 2007) and 

in narrow chemically synthesized graphene ribbons (Li, Wang et al. 2008). 

 

3.5 Mechanical Properties of Graphite and Graphene 

Graphite is unique in that the elastic constants in the direction perpendicular 

are vastly different than the elastic constants along the basal plane. This was known 

for quite some time and was experimentally measured during the 1960s and 1970s. 

Due to the resurgent interest in graphene and few layer graphene structures, it is 

worthwhile to revisit this history of graphite. A detailed discussion of the mechanical 

properties of graphite is given in (Kelly 1981). I will briefly summarize the main 

conclusions here. 

The following set of six equations can be used to describe the stress and strain 

of a hexagonal lattice such as graphite where the x and y axis are along the basal plane 

(Kelly 1981). 

exx = S11 Txx + S12 Txy + S13 Tzz  

eyy = S12 Txx + S11 Tyy + S13 Tzz  

ezz = S13 Txx + S13 Tyy + S33 Tzz  

ezx = S44 Tzx 

ezy = S44 Tzy 

exy = ½(S11 - S12)Txy  

where e is the strain, T is the stress, and S is the compliance. 

The inverse of these six equations are: 

Txx = C11 exx + C12 exy + C13 ezz  
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Tyy = C12 exx + C11 eyy + C13 ezz  

Tzz = C13 exx + C13 eyy + C33 ezz  

Tzx = C44 ezx 

Tzy = C44 ezy 

Txy = ½(C11 - C12)exy  

where C is the elastic modulus. Both C and S can be experimentally measured using 

different techniques. Acoustic wave propagation or ultrasonic testing gives C while 

flexural vibrations and static stress-strain curves are determined by S. It is therefore 

useful to have equations that relate the two constants. Solving these equations one gets 

the following relations between S and C: 

 C44 = (S44)-1 

(C11 – C12) = (S11 – S12)-1 

C13/X = -S13 

C33/X = S11 + S12 

(C11 + C12)/X = S33 

where X = C33 (C11 + C12) – 2 (C13)2= [S33 (S11 + S12) – 2 (S13)2]-1. The Young’s 

modulus parallel and perpendicular to the basal plane is 1/S11 and 1/S33, respectively. 

The shear modulus parallel to the basal planes is G = 1/S44 = C44. 

The first careful attempts to determine the mechanical elastic constants 

measured the resonance frequency of cantilevers of natural graphite flakes. Cantilevers 

with length, L = 0.4 cm – 1.0 cm and thicknesses t = of 0.01 cm – 0.05 cm were cut 

from natural graphite flakes. For vibrations dominated by shear, the resonance 

frequency is determined solely by the shear modulus G: 
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where ρ0 is the density while for vibrations dominated by bending, the resonant 

frequency is dictated by E = 1/S11: 

 

0
2162.0

ρ
E

L
tf =       (3.2) 

By examining the length dependence, Baker and Kelly determined that vibrations in 

as-received graphite samples were dominated by shear with a modulus, G = 0.1 GPa 

while irradiated crystals were dominated by bending with E = 0.6 TPa (Kelly 1981). 

This value of G is considerably lower than the value determined by specific heat data 

and attributed to dislocations in the basal plane which reduce the “true” value of G in 

the nonirradiated samples. 

A more thorough study was conducted by a group at Union Carbide (Blakslee, 

Proctor et al. 1970). Utilizing ultrasonic pulses, sonic resonance, and static test 

methods the elastic constants were determined to be: 

C11 = 1.06 ± 0.02 TPa   S11 = 0.98 ± 0.03 TPa-1 

C12 = 180 ± 10 GPa   S12 = -0.16 ± 0.06 TPa-1 

C13 = 15 ± 5 GPa   S13 = -0.33 ± 0.08 TPa-1 

C33 = 36.5 GPa   S33 = 2.3 ± 0.2 TPa-1 

C44 = 0.18 – 0.35 GPa   

E = 1/S11 = 1.02 ± 0.03 TPa   

C12/C11 = 0.17 ± 0.01   -S12/ S11 = 0.16 ± 0.06 

The spread in values of C44 is due to irradiated and nonirradiated samples 

exposed to fast neutrons with irradiated samples giving the higher value. This is 

consistent with what was observed in the above resonance frequency measurements 

where irradiation increased C44 by reducing basal plane dislocations. This higher value 

is believed to be the “true” value as it also matches specific heat data.  
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The Poisson’s ratio along the basal plane of graphite is defined as υ = -S12/ S11. 

The Union Carbide group experimentally measured the ratio C12/C11 = 0.17. They then 

used the above expression which relates C and S to assume that C12/C11 must be less 

than or equal to υ. From this, they get a Poisson’s ratio along the basal plane of 

graphite to be υ = 0.16 ± 0.06. 

The experimental mechanical properties of graphene are largely unexplored 

and the time is ripe to revisit some of the old assumptions about bulk graphite to 

determine how the elastic constants scale down to the atomic thicknesses. By working 

with single atomic layers or few atomic layers some of the uncertainties involved in 

working with large single crystals such as dislocations and defects are avoided. 

Chapter 5 and 6 will present some of the first attempts to measure the mechanical 

properties of single and few layer graphene. 

 

3.6 Cornell NEMS Band 

Cornell has a long tradition of making small musical instruments out of 

vibrating nanomaterials. The first and probably most well known example is the 

silicon nanoguitar from Harold Craighead’s group in 1997. This was followed by a 

nanotube guitar from Paul McEuen’s group in 2004 (Sazonova, Yaish et al. 2004). 

This guitar was formed by a vibrating nanotube which has a diameter of ~ 1nm. This 

pushes the fundamental limits on how small a vibrating guitar string can be made. 

However, the band has two guitars but no percussion. Imagine Led Zeppelin with no 

John Bonham, Rush without Neal Peart, Toto less Jeff Porcaro, or Metallica minus 

Lars Ulrich. For that reason, we created the world’s thinnest drum fabricated from 

graphene - a suspended single layer of atoms – and therefore added a critical piece 

towards completing the Cornell NEMS band (Fig. 3.5). We leave it to the next 

generation of Cornell NEMS enthusiast to fabricate a lead vocalist.
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Figure 3.5 a) Silicon nanoguitar from Harold Craighead’s group. b) Suspended 

carbon nanotube guitar (Sazonova, Yaish et al. 2004) c) Cookie Monster 

playing guitar. Sesame Street. d) Monster muppet playing drums. Image from 

http://www.wordmagazine.co.uk/. e) Schematic of a graphene drum. f) AFM 

image of a single layer graphene drum. Images from (Bunch, Verbridge et al. 

2008) 
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CHAPTER 4 

 

COULOMB OSCILLATIONS AND HALL EFFECT IN QUASI-2D GRAPHITE 

QUANTUM DOTS 

 

4.1 Introduction 

One exciting possibility for graphene is the creation of quantum dots: micron 

scale, nanometer-thick graphene sheets on an insulating substrate with patterned 

metallic contacts. Quantum dots have previously been made from GaAs 

heterostructures (Kouwenhoven, Marcus et al. 1997)small metal grains (Ralph, Black 

et al. 1997), carbon nanotubes (Bockrath, Cobden et al. 1997; Tans, Devoret et al. 

1997; Buitelaar, Bachtold et al. 2002), single molecules (Liang, Shores et al. 2002; 

Park, Pasupathy et al. 2003), and many other materials, but graphite’s layered 

structure and unusual electronic spectrum make it a promising new material for 

quantum dot studies. Devices with low resistance contacts allow the basic transport 

parameters of the material to be determined, while those with high contact resistances 

(Rc ≥ h/2e2 = 13 kΩ) are in the Coulomb blockade regime, where the addition and 

excitation spectrum of electrons is measured. Experiments described in this chapter 

demonstrate two methods to wire up mesoscopic graphite pieces. Devices with low 

contact resistances at room temperature (‘open dots’) maintain their small resistance to 

low temperatures, and four-probe measurements are made to extract the Hall and 

longitudinal resistivity of the graphite. Those with high contact resistances at room 

temperature (‘closed dots’) show Coulomb blockade oscillations at low temperatures. 
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4.2 Device Fabrication 

The devices are fabricated as follows. Natural graphite flakes (Asbury Carbons 

Grade 3061) are sonicated in Dichlorobenzene solution for approximately 5 minutes. 

A drop of the solution is placed onto a degenerately doped Si wafer with a 200 nm 

thermally grown oxide. The chip is then rinsed with isopropyl alcohol and dried with 

nitrogen. This leaves a dispersion of graphite pieces ranging in thickness from several 

hundred nanometers to as small as a few nanometers (See Fig. 4.1). We use two 

separate methods to wire up the graphite pieces. In the “designed electrode” method, 

an AFM is employed to locate thin pieces with respect to predefined alignment marks 

and then electron beam lithography is used to define multiple (two to six) electrodes to 

the piece (Figure 4.1b). After lithography, 50 nm of Pd is evaporated followed by 

liftoff. The resulting quasi-2D graphite quantum dots have typical lateral dimensions 

of approximately 1 µm and vary in thickness from a few to tens of nanometers.  

In the “random electrode” method, graphite is dispersed as described above 

and a series of electrodes with a separation of 1-2 µm are defined by photolithography 

and evaporating 5 nm of Cr and 50 nm Au (Fig. 4.1d and 4.1e). The resistance of each 

pair of electrodes is measured to determine if a graphite piece was contacted. It has the 

advantage of being quick but lacks the control and flexibility of the designed electrode 

method.  

 

4.3 Device Characterization 

The devices were measured at room temperature in a field effect geometry 

with a bias voltage of 10 mV applied between source and drain electrodes. The back 

gate voltage Vg was varied from 10 V to -10 V at room temperature.  As shown in Fig. 

4.2, the two-point resistance of most of the devices was between 2 and 10 kΩ, with a  
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Figure 4.1 (a) AFM image of a graphite piece with a height of 18 nm 

dispersed onto a SiO2/Si wafer. (inset) Line trace showing the height. (b) 

Optical image of electrodes fabricated by electron beam lithography. When a 

desired graphite piece is located in AFM, its position with respect to the 

predefined alignment marks visible in the image is determined. Electron beam 

lithography and liftoff is then used to define the electrodes. (c) AFM image of 

6 electrodes defined by electron beam lithography contacting an 18 nm thick 

graphite dot (designed electrode). (d) AFM image of two electrodes contacting

a 5 nm thick graphite dot (random electrode). (e) Optical image of a set of 

electrodes defined by photolithography over randomly dispersed graphite 

(random electrode). 
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few > 100 kΩ. The conductance was relatively independent of Vg, but some samples 

showed a few percent decrease in the conductance with positive Vg. 

Low temperature measurements on the devices were performed at 1.5 K in an 

Oxford variable temperature insert (VTI) cryostat or 100 mK in an Oxford dilution 

refrigerator. The devices with low resistances at room temperature (open dots) 

displayed only a small increase in their resistance upon cooling, as seen in Fig. 4.2. In 

such devices with multiple contacts, we performed longitudinal and Hall resistance 

measurements to extract the carrier density, sign of the carriers, and resistivity. Fig. 

4.3 shows data from a 5 nm tall dot, corresponding to approximately 15 stacked 

graphene sheets, measured at ~ 100 mK using standard AC lock-in techniques. Similar 

results were obtained at 4 K and 1.5 K.  The Hall resistance Rxy is approximately 

linear, and the longitudinal resistance Rxx shows weak fluctuations as a function of 

magnetic field with little change in its average value. 

 

4.4 Data Analysis 

To analyze these results, we make the simplifying assumption that the entire 

graphite piece is a uniform conductor with a single density and in-plane mobility. This 

is appropriate if the electrodes make contact to all the graphene layers and the doping 

in the crystal is uniform. (Neither of these assumptions has been independently 

verified). From the standard equation for the Hall resistance RH = B/ne, the slope of 

the line in Fig. 3 corresponds to a density of 9.2 x 1012 cm-2. The sign of the Hall 

voltage indicates that the dominant charge carriers are holes. A similar measurement 

on a 2nd device with a height of 18 nm shown in Fig. 1a and 1c gives a hole density of 

1.3 x 1013 cm-2. Assuming that all sheets are contacted and the charge is relatively 

uniformly distributed among the sheets, we approximate a density of n1 = 2 x 1011 cm-2 

for a single graphene sheet in the 18 nm thick device and n1 = 6 x 1011 cm-2 for the 5  
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Figure 4.2 A scatter plot of the ratio of the low (T ~ 100 mK) to room 

temperature 2-point resistance versus the room temperature 2-point resistance for 

all the devices for which there is low temperature data. (inset) Schematic of the 

device layout. The graphite is in a field effect transistor geometry with a 200 nm 

gate oxide. Source and drain electrodes are patterned on top 
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nm tall device. This density is larger than what has previously been found in bulk 

graphite samples (Du, Tsai et al.; Soule 1958; Tokumoto, Jobiliong et al. 2004) and 

indicates a significant amount of hole doping in this device.  The origin of this doping 

is unknown. 

After accounting for the geometrical factors, we infer the resistance per square, 

R , of the entire sample and the resistance per square of a single graphene layer, R1 . 

For the 5 nm thick device at 100 mK, we have R   = 3.4 kΩ and R1   = 51 kΩ.  Using 

the equation µ = 1/neR , we get a mobility of µ = 200 cm2/V-s. A similar analysis for 

the sample with a thickness of 18 nm shown in Fig. 1a and 1c at 1.5 K yields R   = 

260 Ω, R1   = 14 kΩ, and µ = 1900 cm2/V-s. The inferred mobilities are significantly 

lower than in bulk purified natural graphite flakes, which range from 1.5-130 x 104 

cm2/V-s (Soule 1958). 

We can use a gate to vary the carrier density in the graphite quantum dot. We 

assume the capacitance to the gate is that of a parallel plate capacitor; Cg= εoεA/d, 

where d = 200 nm is the thickness of the SiO2, εo is the permittivity of free space, ε is 

the dielectric constant of SiO2, and A is the area of the device. This gives a capacitance 

per area of C’g= 1.8 x 10-8 F/cm2 implying that 10 V applied to the back gate results in 

a change of density of 1 x 1012 holes/cm2. This is only a small fraction of the total 

density in even the thinnest samples studied. Nevertheless, it is consistent with a small 

decrease in conductance observed in many samples at room temperature; the holes are 

slightly depleted by the gate. At low temperatures, any such changes are obscured by 

reproducible fluctuations in the conductance as a function of Vg.      

 

4.5 Coulomb Blockade 

Devices with room temperature 2-point resistances greater than 20 kΩ (closed 

dots) show Coulomb blockade at low temperatures. Data from a device fabricated  
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Figure 4.3 Longitudinal and Hall resistance measured as a function of 

magnetic field at 100 mK for the 5 nm thick graphite dot shown in the 

insets. The Hall resistance, Rxy, was determined using standard lock-in 

techniques by applying a 43 nA excitation current between electrodes 2 and 

6 and measuring the voltage drop between electrodes 1 and 4. The 

longitudinal resistance, Rxx, was determined by measuring the voltage drop 

between electrodes 5 and 6 while an excitation current of 10 nA was passed 

between electrodes 1 and 4. The slope of Rxy versus B (black line) 

corresponds to a total density of 9.2 x 1012 cm-2. The longitudinal resistance 

(red line) shows only weak fluctuations as a function of B.  (inset a) AFM 

image of a graphite piece with a height of 5 nm and its corresponding line 

trace. (inset b) The graphite piece shown in inset (a) with electrodes 

patterned on top using the designed electrode method. 
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using the random electrode method is shown in Fig. 4.4.  At T = 100 mK, the 

conductance exhibits well defined Coulomb blockade oscillations with a period in gate 

voltage of ∆Vg = 1.5 mV.  A plot of dI/dVsd vs Vg and Vsd is shown in Fig. 4.4. The 

maximum voltage that could be applied and still be in the blockade regime is ∆Vsd = 

0.06 mV.  

A device made by the designed electrode method is shown in Fig. 4.5. The thickness 

of the device is 6 nm, corresponding to 18 sheets. The Coulomb blockade oscillations 

have a period of ∆Vg = 11 mV and a maximum blockade voltage of ∆Vsd = 0.3 mV. A 

third device fabricated by the random electrode method shown in Fig. 4.1d has a 

height of 5 nm and shows Coulomb oscillations with a period in gate voltage of ∆Vg = 

1.3 mV.   

To describe these results, we use the semiclassical theory of the Coulomb 

blockade (Beenakker 1991). The period of the Coulomb oscillations in gate voltage is 

given by: ∆Vg = e/Cg, and using the previous expression for Cg, we can approximate 

the area of the graphite quantum dot. For the device in Fig. 4.5 with ∆Vg = 11 mV, the 

expected area of dot is A = 0.08 µm2. The measured total area of the graphite piece 

shown is 0.12 µm2 while the area between the electrodes is 0.05 µm2. This 

demonstrates that nearly the entire graphite piece is serving as a single quantum dot 

and it likely extends beyond the electrodes. For the device shown in Fig. 1d, the 

measured gate voltage period is ∆Vg = 1.3 mV which corresponds to a quantum dot 

with A = 0.70 µm2. The area between the electrodes is 0.45 µm2 again implying that 

the dot extends into the graphite piece lying under the electrodes.  

The charging energy for the dot is determined by its total capacitance C and is equal 

to the maximum blockade voltage observed: e/C = ∆Vsd. Notably, for our graphite 

quantum dots, the ratio of the charging energy to the gate voltage period is small: α =  
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Figure 4.4 (a) Current as a function of gate voltage with Vsd = 10 µV at T ~ 100 

mK for a device fabricated by the random electrode method. Coulomb 

oscillations are observed with a period in gate voltage of ∆Vg = 1.5 mV. (b) The 

differential conductance dI/dVsd plotted as a color scale versus Vsd and Vg. Blue 

signifies low conductance and red high conductance. The charging energy of the 

quantum dot is equal to the maximum height of the diamonds: ∆Vsd = 0.06 mV. 

The center-to-center spacing between the diamonds is the Coulomb oscillation 

period ∆Vg = 1.5 mV. 
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(e/C)/∆Vg = Cg/ (Cs + Cd +Cg) << 1, where Cs and Cd are the capacitances to the 

source and drain electrodes. The devices shown in Fig. 4.4 and Fig. 4.5 have α = 1/25 

and 1/40 respectively. Such small values imply that the graphite pieces have a much 

greater capacitive coupling to the source and drain electrodes than to the gate. 

We can estimate the source and drain capacitance per unit area Cs,d’ using the 

measured charging energies and the area of the electrodes over the graphite. For the 

device shown in Fig. 4.5, this yields a capacitance per unit area of Cs,d’ = 2 x 10-6 

F/cm2. Using the parallel plate capacitor equation, Cs,d’ = εoεr/d yields d/εr = 0.5 nm. 

This is consistent with a very thin tunnel barrier between the electrode and the 

graphite. The origin and nature of  this barrier is unknown. Since it is only present in 

the few samples that show Coulomb blockade oscillations (closed dots), it is likely the 

result of a contamination layer between the metal and the graphite.   

 

4.6 Magnetic Field Dependence 

We also examined the magnetic field dependence of the Coulomb blockade 

oscillations (Fig. 4.5). The closed dot at B = 0 T has well defined oscillations. As the 

magnetic field is increased, the peaks evolve in a complicated fashion. Most notably, 

the oscillations no longer go to zero suggesting that the dot becomes more open. The 

open dot shows complex fluctuations in the peak positions as a function of magnetic 

field. Other devices showed similar transitions from closed to more open dots along 

with changes in the peak positions as a function of field. The origin of these effects is 

currently unknown. 

 

4.7 Conclusions 

In conclusion, we fabricated and measured quasi 2-D graphite quantum dots. In 

devices with good contacts (open dots), we performed resistivity measurements and  
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Figure 4.5 (a) The differential conductance dI/dVsd plotted as a color scale versus 

Vsd and Vg for the device shown in (d) at T ~ 100 mK. The charging energy is

∆Vsd = 0.3 mV and the gate voltage period is ∆Vg = 11 mV. (b) Current as a 

function of gate voltage with Vsd = 10 µV at T ~ 100 mK for the device shown in 

(d). Coulomb blockade oscillations are seen with a period of ∆Vg = 11 mV. (c) 

Current as a function of gate voltage versus magnetic field with Vsd = 10 µV at T 

~ 100 mK for the device shown in (d). (d) AFM image of a device fabricated 

using the designed electrode method. The white rectangular outlines show the 

position and size of the electrodes that were evaporated on the device. The total 

area of the graphite piece is 0.12 µm2 and the area under the source and drain 

electrodes is 0.013 µm2 and 0.015 µm2, respectively.  The area of the graphite 

piece between the source and drain electrodes is 0.05 µm2. (inset) Line trace 

showing the 6 nm height of the graphite. 
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extracted carrier densities of 2-6 x 1011 holes per sheet and mobilities of 200-1900 

cm2/V-s.  In the case of tunnel contacts (closed dots), we observed Coulomb charging 

phenomena and inferred the gate and source-drain capacitances. Future studies can 

investigate the nature and role of interlayer coupling between the sheets, explore the 

single particle energy level spectrum, and the effects of a magnetic field. Studies on 

devices with a variety of thicknesses and improved control over the contacts will help 

address these issues. It should be noted that graphene’s massless band dispersion 

relation results in a different density of states which gives ∆E ~ vfh/2D for a square dot 

of length D where vf  ~ 106 m/s is the Fermi velocity (Ponomarenko, Schedin et al. 

2008). For example, the quantum dot in Fig. 4.5 has D ~ 200 nm which gives  ∆E ~ 10 

meV. This is about 30x the charging energy. Recent work by Andre Geim’s group 

explored this regime for graphene quantum dots with D < 100 nm fabricated from 

single layers of graphene (Ponomarenko, Schedin et al. 2008). 
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CHAPTER 5 

 

ELECTROMECHANICAL RESONATORS FROM GRAPHENE SHEETS 

 

5.1 Introduction 

The miniaturization of electromechanical devices promises to be revolutionary 

in the coming decades as the miniaturization of electronic devices was in the previous 

ones. Devices ranging from nanoscale resonators, switches, and valves have 

applications in tasks as diverse as information processing, molecular manipulation, 

and sensing. The prototypical nanoelectromechanical system (NEMS) is a nanoscale 

resonator, a beam of material that vibrates in response to an applied external force 

(Craighead 2000; Ekinci and Roukes 2005). The ultimate limit would be a resonator 

one atom thick, but this puts severe constraints on the material. It should be robust, 

stiff, and stable as a single layer of atoms. 

Graphite consists of stacked layers of graphene sheets separated by 0.3 nm and 

held together by weak van der Waals forces (Kelly 1981). It has extremely high 

strength, stiffness, and thermal conductivity along the basal plane. In addition, 

graphite can be exfoliated onto an insulating substrate, producing micron-sized 

graphene sheets with thicknesses down to a single atomic layer (Bunch, Yaish et al. 

2005; Novoselov, Geim et al. 2005; Novoselov, Jiang et al. 2005; Zhang, Tan et al. 

2005; Wilson 2006). Thus far, research on these thin graphene sheets has focused 

primarily on their electronic properties. We demonstrate a method of suspending 

single and multilayer graphene sheets over trenches and show such sheets can be 

mechanically actuated. This work also makes a detailed study of the mechanical 

properties of these graphene resonators including resonance frequency, spring 

constant, built in tension, and quality factor. 
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5.2 Device Fabrication 

Suspended graphene sheets are fabricated using a peeling process similar to 

that reported previously in which a freshly cleaved piece of Kish graphite (Toshiba 

Ceramics) is rubbed onto a silicon wafer with 260 - 330 nm (280 nm ideal) of 

thermally grown SiO2.  (Novoselov, Geim et al. 2005; Novoselov, Jiang et al. 2005; 

Zhang, Tan et al. 2005). In our case, the graphene sheets are mechanically exfoliated 

over predefined trenches etched into a silicon oxide surface (Fig. 5.1). Trenches with a 

depth of 260 - 500 nm and widths and lengths of 0.5 – 10 µm are defined on the SiO2 

by dry RF plasma etching. Electrodes are defined by photolithography and consist of 5 

nm of Cr and 30 nm Au. The graphene sheets peel off on the edges of the large 

trenches and electrodes and are suspended over nearby small trenches. The result is a 

micron-scale doubly clamped beam or cantilever clamped to the silicon oxide surface 

via van der Waals attraction (Fig. 5.1A, 5.1D).  

 

5.3 Device Characterization – AFM and Raman 

A non-contact mode AFM was used to quantitatively measure the thickness of 

the sheets on the substrate next to the trench, as shown in the inset in Fig. 5.1D. All 

non-contact mode AFM images are taken using a Dimension 3100 operating in 

ambient conditions using silicon cantilevers with resonance frequencies of 250 – 350 

kHz.  

However, for sheets thinner than 2-3 nm, such measurements are unreliable for 

determining the actual thickness (Ferrari, Meyer et al. 2006; Gupta, Chen et al. 2006; 

Graf, Molitor et al. 2007). For these we used spatially resolved Raman spectroscopy to 

determine the number of layers (Fig. 1E) (Ferrari, Meyer et al. 2006; Gupta, Chen et 

al. 2006; Graf, Molitor et al. 2007). Using a Renishaw InVia Raman microscope, light  
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Figure 5.1 (A) Schematic of a suspended graphene resonator. (B) An optical 

image of a double layer graphene sheet that becomes a single suspended layer over 

the trench. Scale bar = 2 µm. Each colored circle corresponds to a point where a 

Raman spectrum was measured. (C) Raman signal from a scan on the graphene 

piece. Each colored scan is data taken at each of the matching colored circles. The 

top scan is used as a reference and corresponds to the Raman shift of bulk 

graphite. (D) An optical image of few (~ 4) layer graphene suspended over a 

trench and contacting a gold electrode. Scale bar = 1 µm (inset). A line scan from 

tapping mode AFM corresponding to the dashed line in the optical image. It shows 

a step height of 1.5 nm. (E) A scanning electron microcope image of a few (~ 2) 

layer graphene resonator. Scale bar = 1 µm. 
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with a wavelength of 488 nm is focused on the resonator using a 50x objective and 

each Raman trace is taken with a 1 - 5 second integration time. The sample sits on a 

piezoelectric stage which is scanned to take a Raman spectrum at specific points along 

the graphene sheet. The graphene sheet in Fig. 5.1B has an AFM-determined height of 

0.9 nm. By comparison with previous results (Ferrari, Meyer et al. 2006; Gupta, Chen 

et al. 2006; Graf, Molitor et al. 2007), the shape of the Raman peak near 2700 cm-1 

suggests the sheet is two layers thick over the area lying on the SiO2 substrate (Fig. 

5.1E), while the section suspended over the trench is a single graphene layer. 

 

5.4 Resonance Measurements 

All resonator measurements are performed at room temperature and a pressure 

of < 10-6 torr unless otherwise indicated. The resonators are actuated using either 

electrical (Fig. 5.1A) or optical modulation (Fig. 5.2). In the case of electrical 

modulation, a time-varying radio frequency (RF) voltage δVg at frequency f is 

superimposed on top of a constant voltage and applied to the graphene sheet. This is 

accomplished by combining a time varying RF voltage from the RF output of an 

Agilent E4402B Spectrum Analyzer and a DC voltage from a Yukogawa 7651 DC 

source. The result is an electrostatic force between the suspended graphite sheet and 

the substrate: 

 

  ( ) g
DC

gg
DC

ggel VVCVCF δ'2'

2
1

+≈    (5.1) 

where Cg’ is the derivative of the gate capacitance with respect to the distance to the 

gate, and Vg
DC and δVg are, respectively, the DC and time varying RF voltages applied 

to the gate (Sazonova, Yaish et al. 2004). For optical actuation, the intensity of a diode 

laser focused on the sheet is modulated at frequency, f, causing a periodic  
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Figure 5.2 Schematic of the experimental setup used to actuate and detect 

vibrations. (Adapted from Rob Reichenbach) 
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contraction/expansion of the layer that leads to motion. A 432 nm diode laser whose 

intensity is modulated at a frequency defined by the network analyzer is used (Fig. 

5.2). In both cases, the motion is detected by monitoring the reflected light intensity 

from a second laser using a fast photodiode. The suspended graphene sheet and the 

silicon back plane form an interferometer through which vibrations are detected by 

looking at variations in the intensity of the reflected light from a second 632.8 nm He-

Ne laser focused on the resonators (Ilic, Krylov et al. 2005). 

 

5.5 Resonance Spectrum 

Figure 5.3A shows the measured amplitude versus frequency for a 15 nm thick 

sheet suspended over a 5 µm trench. Multiple resonances are observed, the most 

prominent one at the lowest frequency. We associate this dominant peak with the 

fundamental vibrational mode; its detected intensity is largest as the motion is in-

phase across the entire suspended section. We will limit our discussion primarily to 

this fundamental mode. A fit to a Lorentzian yields a resonance frequency fo = 42 

MHz and a quality factor Q = 210.  Figure 5.3B shows similar results for the single 

layer graphene resonator from Fig. 5.1B; fo = 70.5 MHz and Q = 78. Figure 5.4 shows 

the results of measurements of 33 resonators with thicknesses varying from a single 

atomic layer to sheets 75 nm thick. The frequencies fo of the fundamental modes vary 

from 1 MHz  to 166 MHz with quality factors, Q of 20 – 850. 

For mechanical resonators under tension T, the fundamental resonance mode f0 

is given by: 
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Figure 5.3 (A) Amplitude versus frequency for a 15 nm thick multilayer 

graphene resonator taken with optical drive. (inset) An optical image of the 

resonator. Scale bar = 5 µm (B) Amplitude versus frequency taken with 

optical drive for the fundamental mode of the single layer graphene 

resonator shown in Fig. 5.1(B). A Lorentzian fit of the data is shown in 

red. 
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where E is the Young’s modulus, S is the tension per width, ρ is the mass density, t 

and L, are the thickness and length of the suspended graphene sheet, and A = 1.03 for 

doubly-clamped beams and 0.162 for cantilevers (Timoshenko, Young et al. 1974). In 

the limit of small tension, Eq. 5.2 predicts that the resonance frequency fo scales as 

t/L2. Figure 5.4 shows the resonance frequency of the fundamental mode for 

resonators with t > 7 nm as a function of t/L2 plotted as solid squares. Also plotted is 

the theoretical prediction, Eq. 5.2, in the limit of zero tension, for both cantilevers and 

beams, where we have used the known values for bulk graphite ρ = 2200 kg/m3 and E 

= 1.0 TPa (Kelly 1981). This is a valid comparison considering the extensive 

theoretical and experimental work which shows the basal plane of graphite to have a 

similar value for E as graphene and carbon nanotubes (Kelly 1981; Qian, Wagner et 

al. 2002). To account for possible errors in E, we plot dashed lines which correspond 

to values of E = 0.5 TPa and 2 TPa.  The data follow the predictions reasonably 

accurately, indicating that thicker resonators are in the bending-dominated limit with a 

modulus E characteristic of the bulk material. This is among the highest modulus 

resonator to date, greater than 53 – 170 GPa in 12 – 300 nm thick Si cantilevers and 

similar to single walled carbon nanotubes and diamond NEMS (Sekaric, Parpia et al. 

2002; Li, Ono et al. 2003; Sazonova, Yaish et al. 2004). In contrast to ultra thin Si 

cantilevers, the graphene resonators show no degradation in Young’s modulus with 

decreasing thickness (Li, Ono et al. 2003).  

The resonance frequency versus t/L2 for the resonators with t < 7 nm are shown 

as hollow squares in Fig. 5.4. The frequencies of these thinner resonators show more 

scatter with the majority having resonance frequencies significantly higher than 

predicted by bending alone. A likely explanation for this is that many of the resonators 

are under tension, which increases fo.  
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Figure 5.4 (A) A plot showing the frequency of the fundamental mode of 

all the doubly clamped beams and cantilevers versus t/L2. The cantilevers 

are shown as solid triangles (▲). The doubly clamped beams with t > 7 nm 

are shown as solid squares (■) while doubly clamped beams with t < 7 nm 

are shown as hollow squares (□). All thicknesses determined by AFM. The 

solid line is the theoretical prediction with no tension and E = 1 TPa. The 

dashed lines correspond to E = 0.5 TPa and 2 TPa.  
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5.6 Tension 

The single layer graphene resonator shown in Fig. 5.1B illustrates the 

importance of tension in the thinnest resonators. It has a fundamental frequency fo = 

70.5 MHz, much higher than the 5.4 MHz frequency expected for a tension-free beam 

with t = 0.3 nm, L = 1.1 µm, and w=1.93 µm. From Eq. 1, this implies that the 

graphene resonator has a built in tension of Sw = 13 nN. Using the expression ∆L/L = 

Sw/(EA), this corresponds to a strain of 2.2 x 10-3 %.   

The tension in resonators with t < 7 nm was inferred to be 10-8 to 10-6 N. This 

is reasonable considering the large van der Waals attraction between the graphene and 

silicon oxide. Our group has strained carbon nanotubes lying on an oxide surface up to 

2 percent, and the van der Waals force remains sufficient to hold the nanotube in 

place. The Lieber and Park group at Harvard have reported that the van der Waals 

force is sufficiently strong to hold strains as high as 10 percent for a nanotube on 

oxide (Bozovic, Bockrath et al. 2003).  

So far we are unable to control the initial tension for the resonator. The tension 

could result from the fabrication process, where the friction between the graphite and 

the oxide surface during mechanical exfoliation stretches the graphene sheets across 

the trench. Another possibility is a self tensioning mechanism due to strong van der 

Waals’ interaction between the graphene and the sidewalls of the trench. This is 

investigated in more detail in Chapter 6.  

 

5.7 Young’s Modulus 

The Young’s modulus remains a useful concept for atomic scale devices 

provided the right effective thickness is used (Qian, Wagner et al. 2002). There is 

extensive theoretical work on the mechanical properties of carbon nanotubes which 

are rolled up graphene sheets, and a Young’s modulus for these nanostructures is 
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commonly used. However, there is a significant variation in the literature of both the 

accepted and measured values of the Young’s modulus (Qian, Wagner et al. 2002). 

Determining inferred tension from the Young’s modulus is misleading for thick 

resonators, because any error in the Young’s modulus results in a large error in the 

inferred tension. However, it still is accurate to deduce the tension in the thinner 

resonators since many of these are in a high tension limit.  

 

5.8 Tuning the Resonance Frequency  

Data for electrical drive on resonance for the 1.5 nm thick graphene sheet in 

Fig. 5.1D are shown in Fig. 5.3. The amplitude and frequency of the fundamental 

mode as well as the higher mode increase linearly with Vg
DC at a fixed δVg as expected 

from equation (5.1) (Fig. 5.3 C). Also shown is a plot of the resonance frequency vs. 

Vg
DC at a fixed δVg for both modes (Fig. 5.3 D). In this case, the higher mode increases 

in frequency with Vg
DC while the fundamental mode is unchanged. Most of the modes 

measured in different resonators exhibited either no tuning or positive tuning in which 

the frequency increased with Vg
DC. A few of the resonators displayed negative tuning 

where the frequency decreased with increasing Vg
DC. The fundamental mode for the 

resonator in Fig. 5.8 displayed such negative tuning (Fig. 5.6 B). Resonators with 

frequencies lower than expected (presumably with slack) such as the one in Fig 5.8, 

decrease in frequency with capacitive force. Resonators with tension (the majority) 

either show no tuning or an increase in frequency with capacitive force. The different 

kinds of tuning have previously been observed in other NEMS devices and attributed 

to spring constant softening due to the electrostatic attraction to the gate, increasing  

tension from stretching, and a transition from bending to catenary regime (Sazonova, 

Yaish et al. 2004; Kozinsky, Postma et al. 2006). 
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Figure 5.5 (A) Amplitude versus frequency for the fundamental mode from 

the resonator shown in Figure 1(D) taken using electrical drive with Vg
DC = 2 

V and increasing δVg. (inset) The amplitude on resonance as a function of δVg. 

(B) Amplitude versus frequency of a higher mode from the resonator shown in 

Figure 1(B) taken using electrical drive with δVg = 15 mV and increasing 

Vg
DC. (C) Amplitude of oscillation versus Vg

DC at δVg = 15 mV for both the 10 

MHz mode (▲) and 35 MHz mode (■). (D) Frequency versus Vg
DC at δVg = 

15 mV for both the 10 MHz mode (▲) and 35 MHz mode (■). 
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Figure 5.6 (A) Amplitude of oscillation versus Vg
DC at δVg = 50 mV for the 

fundamental mode shown in Fig. 5.8A. (B) The frequency at maximum amplitude 

versus Vg
DC at δVg = 50 mV for the fundamental mode shown in Fig. 5.8A. 
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5.9 Quality Factor 

An important measure of any resonator is the normalized width of the 

resonance peak characterized by the quality factor Q= f0/∆f.  A high Q is essential for 

most applications, as it increases the sensitivity of the resonator to external 

perturbation.  A plot of the Q versus the thickness for all the graphene resonators (Fig. 

5.7) shows that there is no clear dependence of Q on thickness. This contrasts with 

results on thicker NEMS resonators fabricated from silicon (Yasumura, Stowe et al. 

2000). The quality factors at room temperature are lower than diamond NEMS (2500 

– 3000) of similar volume and significantly lower than high stress Si3N4 nanostrings 

(200,000), yet similar to those reported in single walled carbon nanotubes (50-100) 

(Sekaric, Parpia et al. 2002; Sazonova, Yaish et al. 2004; Verbridge, Parpia et al. 

2006). Preliminary studies on a 20 nm thick resonator found a dramatic increase in Q 

with decreasing temperature (Q = 100 at 300 K to Q = 1800 at 50 K). This suggests 

that high Q operation of graphene resonators should be possible at low temperatures.  

There was no striking dependence of Q on thickness, frequency, or mode 

number in our graphene resonators. Upon cooling, the Q increased for most of the 

devices, but this was accompanied by noise in the frequency position of the resonance 

frequency peak, making a systematic study difficult. 

No clear dependence of quality factor on resonator thickness was observed. 

This suggests that the dominant dissipation mechanism is different than that of 

standard silicon NEMS. Since the structure and quality factor of graphene resonators 

is similar to carbon nanotube resonators, it is possible that the dissipation mechanism 

is similar. However, there is currently no clear understanding of the dissipation 

mechanism in carbon nanotube resonators. An extrinsic mechanism such as clamping 

loss or fluctuating charge noise may dominate dissipation in graphene resonators. 
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Figure 5.7 The quality factor of the fundamental mode vs. thickness for all 

resonators measured. 
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5.10 Vibration Amplitude 

Even when a resonator is not being driven, it will still vibrate due to thermal 

excitation by an rms amount xth = [kBT/κeff]1/2, where κeff = meff ω0
2 = 0.735Lwtρω0

2 is 

the effective spring constant of the mode (Ekinci and Roukes 2005). An example is 

shown in Fig. 5.8A, where a 5 nm thick resonator with f0 = 35.8 MHz and κeff = 0.7 

N/m has a room temperature thermal rms motion of xth = 76 pm. For resonators where 

the thermal vibrations could be measured, we use this thermal rms motion to scale the 

measured photodetector voltage with resonator displacement. To detect thermal 

vibrations, both large thermal amplitude (low spring constant) and large reflectivity 

(high optical signal) from the graphene is required. This was only the case for a few of 

the resonators studied. 

Figure 5.8B shows such a rescaled plot of the displacement amplitude versus 

RF drive voltage. The resonator is linear up to displacements of 6 nm, or on the order 

of its thickness, where nonlinearities associated with additional tension are known to 

set in (Ekinci and Roukes 2005). This nonlinearity is characterized as a deviation from 

a linear increase in amplitude with driving force and accompanied by a decrease in Q 

(Fig. 5.8B). 

 

5.11 Thermal Noise Spectrum 

After determining the resonance frequency of a particular resonator we turn off 

the drive and measure the fluctuations. The voltage noise power spectrum Sv
f = V2/B, 

where V is the voltage output of the photodiode and B is the resolution bandwidth. SV
f 

has a contribution from a constant background electrical noise in the system, Sf
 electrical,  

and a contribution from the thermal mechanical oscillation peak, Sx
f. Sf

 electrical and Sx
f 

are incoherent noise sources so their contributions to the voltage power add linearly  
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Figure 5.8 (A) Noise power density versus frequency taken at a resolution 

bandwidth of 1 kHz. (inset) An optical image of the resonator.  The resonator 

has dimensions t = 5 nm, L = 2.7 µm, and w = 630 nm. Scale bar = 2 µm. (B) 

Amplitude of resonance and quality factor versus δVg for Vg
DC = 2 V. (C) 

Expanded view of (B) for small δVg. 
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such that Sv
f=Sf

 electrical+α Sx
f, where α is a constant scaling factor relating resonator 

displacement with changes in the measured photodetector voltage. 

The thermal oscillation of a resonator is expected to have a spectral density 

given by: 
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where the total thermal motion of a resonance peak must obey the equipartion 

theorem.   
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Fitting the voltage power spectral density Sv
f to the theoretical distribution Sx

f, we 

determine the scaling factor α.  

The amplitude of a driven resonance, xdriven, is related to the measured voltage 

signal, Vdriven, by:   

 

x2
driven = (V2

driven- V2
background)/α      (5.5) 

 

Once again, Vbackground is the constant offset due to the background electrical noise. It is 

important to note that the scaling factor is dependent on the device measured as well 

as the precise optical conditions such as laser focus and spot location. Any changes to 

these parameters require a recalibration of the scaling factor.  

 

5.12 Sensitivity 

Two applications of nanomechanical resonators are ultralow mass detection 
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and ultrasensitive force detection. The low effective mass coupled with high surface 

area makes graphene resonators ideal candidates for mass sensing. The minimum 

detectable mass for a resonator is: 

 

20102
DR

eff Q
fmM −∆

≈
ω

δ      (5.6) 

where the dynamic range, DR, is the decibel measure of the ratio between the 

amplitude of onset of non-linearity to the noise floor and ∆f is the measurement 

bandwidth (Ekinci, Yang et al. 2004). For the resonator shown in Fig. 5.8, the 

dynamic range is ~ 60 dB, giving a room temperature mass sensitivity of ~ 0.2 

zeptograms/Hz1/2. This is a few times better in sensitivity to current state of the art 

room temperature NEMS (Ilic, Craighead et al. 2004). Even though the mass is much 

lower than standard NEMS due to the small thickness of graphene, the quality factor at 

room temperature is lower by a similar amount. Nevertheless this mass sensitivity is 

smaller than a single Au atom (0.3 zeptograms) making single atom mass sensing at 

room temperature possible. In addition, mass sensing with graphene NEMS would be 

greatly enhanced by improving the quality factor. 

The ultimate limit on the force sensitivity is set by the thermal fluctuations in 

the resonator: 
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For the resonator in Fig. 5.8A, this results in a force sensitivity of 0.9 fN/Hz½. Using 

Eq. 1, this corresponds to a charge sensitivity of dQf = dFf d/VDC = 8x10-4 e/Hz½. This 

is a remarkable sensitivity demonstrated at room temperature; at low temperatures 

with the onset of higher quality factors it could rival those of RF SET electrometers 
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(1x10-5 e/Hz½) (Schoelkopf, Wahlgren et al. 1998; LaHaye, Buu et al. 2004). The high 

Young’s modulus, extremely low mass, and large surface area make these resonators 

ideally suited for use as mass, force, and charge sensors (Cleland and Roukes 1998; 

Kenny 2001; Burg and Manalis 2003; Knobel and Cleland 2003; Lavrik and Datskos 

2003; Ekinci, Huang et al. 2004; Ilic, Craighead et al. 2004).  

 

5.13 Conclusions  

In this chapter, we created mechanical resonators form graphene sheets. Our 

thinnest resonator consisted of only a single atomic layer of atoms. This is the thinnest 

object imaginable. Using a simple drive and detection system we were able to measure 

the fundamental resonance frequency of these suspended atomic layers and this 

allowed us to characterize the quality factor, Young’s modulus, tension, and ultimate 

sensitivities of these devices. However, the application of graphene NEMS extends 

beyond just mechanical resonators. This robust, conducting, membrane can act as a 

nanoscale supporting structure or atomically thin membrane separating two disparate 

environments. Chapter 6 examines this for the case of gases.  

 



 

84 

CHAPTER 6 

 

IMPERMEABLE ATOMIC MEMBRANES FROM GRAPHENE SHEETS 

 

6.1 Introduction 

Membranes are fundamental components of a wide variety of physical, 

chemical, and biological systems, used in everything from cellular 

compartmentalization to mechanical pressure sensing. They divide space into two 

regions, each capable of possessing different physical or chemical properties. A simple 

example is the stretched surface of a balloon, where a pressure difference across the 

balloon is balanced by the surface tension in the membrane. Graphene, a single layer 

of graphite, is the ultimate limit: a chemically stable and electrically conducting 

membrane one atom in thickness(Bunch, van der Zande et al. 2007; Geim and 

Novoselov 2007; Meyer, Geim et al. 2007). An interesting question is whether such an 

atomic membrane can be impermeable to atoms, molecules and ions. In this chapter, 

we address this question for gases. We show that these membranes are impermeable 

and can support pressure differences larger than one atmosphere. We use such 

pressure differences to tune the mechanical resonance frequency by ~100 MHz. This 

allows us to measure the mass and elastic constants of graphene membranes. We 

demonstrate that atomic layers of graphene have stiffness similar to bulk graphite (E ~ 

1 TPa). These results show that single atomic sheets can be integrated with 

microfabricated structures to create a new class of atomic scale membrane-based 

devices. 
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Figure 6.1 (a) Schematic of a graphene sealed microchamber. (Inset) Optical 

image of a single atomic layer graphene drumhead on 440 nm of SiO2. The 

dimensions of the microchamber are 4.75 µm x 4.75 µm x 380 nm. (b) Side 

view schematic of the graphene sealed microchamber. (c) Tapping mode 

atomic force microscope (AFM) image of a ~ 9 nm thick many layer graphene 

drumhead with ∆p > 0. The dimensions of the square microchamber are 4.75 

µm x 4.75 µm. The upward deflection at the center of the membrane is z = 90 

nm.  
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6.2 Device Fabrication 

A schematic of the device geometry used here—a graphene-sealed 

microchamber—is shown in Fig. 6.1a. Graphene sheets are suspended over predefined 

wells in silicon oxide using mechanical exfoliation. First, a series of squares with areas 

of 1 to 100 µm2 are defined by photolithography on an oxidized silicon wafer with a 

silicon oxide thickness of 285 nm or 440 nm. Reactive ion etching is then used to etch 

the squares to a depth of 250 nm to 3 µm leaving a series of wells on the wafer. 

Mechanical exfoliation of Kish graphite using Scotch tape is then used to deposit 

suspended graphene sheets over the wells.  

Each graphene membrane is clamped on all sides by the van der Waals force 

between the graphene and SiO2, creating a ~ (µm)3 volume of confined gas. The inset 

of Fig. 1a shows an optical image of a single layer graphene sheet forming a sealed 

square drumhead with a width W = 4.75 µm on each side. Raman spectroscopy was 

used to confirm that this graphene sheet was a single layer in thickness(Ferrari, Meyer 

et al. 2006; Gupta, Chen et al. 2006; Graf, Molitor et al. 2007). Chambers with 

graphene thickness from 1 to ~ 75 layers were studied.  

 

6.3 Pressure Differences 

 After initial fabrication, the pressure inside the microchamber, pint, is 

atmospheric pressure (101 kPa). If the pressure external to the chamber, pext, is 

changed, we found that pint will equilibrate to pext on a time scale that ranges from 

minutes to days, depending on the gas species and the temperature. On shorter time 

scales than this equilibration time, a significant pressure difference ∆p = pint - pext can 

exist across the membrane, causing it to stretch like the surface of a balloon (Fig. 

6.1b). Examples are shown for ∆p > 0 in Fig. 6.1c and ∆p < 0 in Fig. 6.2a.  
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Figure 6.2 (a) AFM image of the graphene sealed microchamber of Fig. 6.1a 

with ∆p = -93 kPa across it. The minimum dip in the z direction is 175 nm. (b) 

AFM line traces taken through the center of the graphene membrane of (a). The 

images were taken continuously over a span of 71.3 hours and in ambient 

conditions. (Inset) The deflection at the center of the graphene membrane vs. 

time. The first deflection measurement (z = 175 nm) is taken 40 minutes after 

removing the microchamber from vacuum.  
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 To create a positive pressure difference, ∆p > 0, as shown in Fig. 6.1c, we 

place a sample in a pressure chamber with pext = 690 kPa N2 gas for 3 hours. After 

removing it, a tapping mode atomic force microscope (AFM) image at ambient 

external pressure (Fig. 6.1c) shows that the membrane bulges upwards. Similarly, we 

can create a lower pressure in the chamber, ∆p < 0, by storing the device under 

vacuum and then returning it to atmospheric pressure. The graphene-sealed 

microchamber from Fig. 6.1a (inset) is placed in a pressure of ~ 0.1 Pa for 4 days and 

then imaged in ambient conditions by AFM (Fig. 6.2a). The graphene membrane is 

now deflected downward indicating pint < pext.  

 

6.4 Leak Rate 

Over time, the internal and external pressures equilibrate. Figure 6.2b shows a 

series of AFM line traces through the center of the graphene membrane taken over a 

period of three days. The deflection z at the center of the membrane is initially zo = 

175 nm and decreases slowly over time, indicating a slow air leak from the 

microchamber. The time scale for decay is approximately 24 hours. We characterize 

the equilibration process by monitoring the pressure change and using the ideal gas 

law to convert this to a leak rate: 

 

dt
dp

Tk
V

dt
dN in

B

=       (6.1) 

where N is the number of atoms or molecules in the chamber. Figure 6.3 shows results 

for several different membranes of various thicknesses and for different gases. Air and 

argon show similar leak rates, while helium is 2 orders of magnitude faster. The 

helium leak rates ranged from 105 atoms/s to ~106 atoms/s with no noticeable 

dependence on thickness from 1 – 75 atomic layers. All the data was taken in a similar  
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Figure 6.3 Scatter plot of the gas leak rates vs. thickness for all the devices 

measured. Helium rates are shown as solid triangles (▲), argon rates are 

shown as solid squares (■) and air rates are shown as hollow squares (□). 
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manner where approximately the same pressure difference was applied across the 

membrane (see A.2).  

The lack of dependence of the leak rate on the membrane thickness indicates 

that the leak is not through the graphene sheets, or though defects in these sheets. This 

suggests it is either through the glass walls of the microchamber or through the 

graphene-SiO2 sealed interface. The former can be estimated from the known 

properties of He diffusion through glass(Perkins and Begeal 1971). Using Fick’s law 

of diffusion and typical dimensions for our microchambers we estimate a rate of ~ 1-5 

× 106 atoms/sec. This is close to the range of values measured (Fig. 6.3).  

Using this measured leak rate, we estimate an upper bound for the average 

transmission probability of a He atom impinging on a graphene surface as: 

 

<
Nv

d
dt
dN 2   10-11     (6.2) 

where d is the depth of the microchamber, and v is the velocity of He atoms. In all 

likelihood, the true permeability is orders of magnitude lower than the bound given 

above. Simple estimates based on WKB tunneling of He atoms through a perfect 

graphene barrier (~ 8.7 eV barrier height, 0.3 nm thickness) and through a “window” 

mechanism whereby temporary bond breaking lowers the barrier height to ~ 3.5 eV, 

give a tunneling probability at room temperature many orders of magnitude smaller 

than we observe (see A.3)(Hrusak, Bohme et al. 1992; Saunders, Jimenez-Vazquez et 

al. 1993; Murry and Scuseria 1994). If we approximate Helium atoms as point 

particles, classical effusion through single atom lattice vacancies in the graphene 

membrane occurs in ~ 1 sec and therefore much faster than the rates we measure (see 

A.4). We therefore conclude that the graphene layer is essentially perfect and for all 

intents and purposes impermeable to all standard gases, including He. 
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6.5 Elastic Constants  

The impermeability of the graphene membrane allows us to use pressure 

differences to apply a large, well-defined force that is uniformly distributed across the 

entire surface of the membrane. This ability to create controlled strain in the 

membrane has many uses. First, we can measure the elastic properties of the graphene 

sheet. A well-known and reliable method used to study the elastic properties of films 

is the bulge test technique(Vlassak and Nix 1992). The deflection of a thin film is 

measured as a uniform pressure is applied across it. This surface tension, S, is the sum 

of two components: S = S0 + Sp where S0 is the initial tension per unit length along the 

boundary and Sp is the pressure-induced tension. Tension is directly related to the 

strain, ε, as 

 

( )ευ−
=

1
EtS        (6.3) 

where E is the Young’s modulus, t is the thickness, and υ is Poisson’s ratio. For the 

geometry of a square membrane, the pressure difference as a function of deflection 

can be expressed as(Vlassak and Nix 1992): 
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where c1 = 3.393 and c2 = (0.8+0.062υ)-3.  

 Using the deflection and pressure difference in Fig. 6.2b and accounting for 

initial slack in the membrane as discussed later in the text, we determine the elastic 

constants of graphene to be Et/(1-υ) = 390 ± 20 N/m (see A.1 and A.5). The accepted 

values for the experimental and theoretical elastic constants of bulk graphite and 
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graphene—both 400 N/m(Blakslee, Proctor et al. 1970; Kelly 1981; Huang, Wu et al. 

2006)—are within the experimental error of our measurement. This is an important 

result in nanomechanics considering the vast literature examining the relevance of 

using elastic constants for bulk materials to describe atomic scale structures 

(Yakobson, Brabec et al. 1996; Huang, Wu et al. 2006). 

 

6.6 Surface Tension  

The surface tension in the pressurized membrane can be readily obtained from 

the Young-Laplace equation, ∆p = S(1/Rx + 1/Ry) where Rx(y) is the radius of curvature 

of the surface along the x(y) direction. The shape of the bulged membrane with ∆p = -

93 kPa in Fig. 1d directly gives Rx(y). At the point of maximum deflection it is Rx = Ry 

= 21 µm which amounts to a surface tension S = 1 N/m. This is 14 times the surface 

tension of water, but corresponds to a small strain in the graphene of 0.26 %. The 

atomically thin sealed chambers reported here can support pressures up to a few 

atmospheres. Beyond this, we observe that the graphene slips on the surface. Improved 

clamping could increase allowable pressure differentials dramatically. 

This pressure induced-strain in the membrane can also be used to control the 

resonance frequency of the suspended graphene. This is shown in Fig. 6.4a for a 

monolayer device prepared with a small gas pressure pint in the chamber. Figure 6.4b 

shows results on a 1.5 nm thick membrane. The vibrations of the membrane are 

actuated and measured optically, as previously reported(Bunch, van der Zande et al. 

2007). The frequency changes dramatically with external pressure, exhibiting a sharp 

minimum at a specific pressure and growing on either side. Sufficiently far from the 

minimum frequency, f0, the frequency scales as f3 α ∆p (Fig. 6.4b). 
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Figure 6.4 (a) Resonance frequency vs. external pressure for the single-layer 

graphene sealed microchamber shown in Fig. 6.1a. (Upper inset) Resonance 

frequency curve taken at pext = 27 Pa with a resonance frequency of f = 66 MHz 

and Q = 25. (Lower insets) Schematic of the configuration of the microchamber 

at various applied pressures. The graphene is puffed upwards or downwards 

depending on ∆p. (b) (upper) Resonance frequency vs. pext for a 1.5 nm-thick few 

layer graphene sealed microchamber. Each curve was taken at a different time 

over a span of 207 hours, and the device was left in pext ~ 0.1 mPa in between 

each measurement. (lower) (Resonance frequency)3 vs. pext for the red scan in 

Fig. 4b. A linear fit to the data is shown in red. 
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This behavior follows from the pressure induced changes in the tension S in the 

membrane. Neglecting the bending rigidity, the fundamental frequency of a square 

membrane under uniform tension is given by: 

 

 2
0

2mW
SS

f p+
=        (6.5) 

where m is the mass per unit area(Timoshenko, Young et al. 1974). Sufficiently far 

from f0, equations (6.4) and (6.5) can be combined with the approximation: 

 

z
pWS
16

2∆
≈        (6.6) 

to get the following expression:  

 

( )υ−
∆=

12048 43
23

Wm
Etc

pf      (6.7) 

This gives the functional form observed in Fig. 6.4b with the prefactor consisting of 

the elastic constants of the membrane and the mass. Using Et/(1-υ) determined 

previously, we fit (6.7) to the data of Fig. 6.4a and 6.4b to determine the mass per area 

of the membranes. We find m = 9.6 ± 0.6 x 10-7 kg/m2 for the monolayer of Fig. 6.4a. 

This is 30 % higher than the theoretical value for a single layer of graphene of 7.4 x 

10-7 kg/m2. One possibility for this extra mass is adsorbates which would significantly 

shift the mass of a single atom membrane. The 1.5 nm-thick few-layer membrane of 

Fig. 6.4b has a m = 3.1 ± 0.2 x 10-6 kg/m2. This corresponds to ~ 4 atomic layers in 

thickness. Previous attempts to deduce the mass from resonance measurements of 

doubly clamped beams were obscured by the large initial tension in the 

resonators(Bunch, van der Zande et al. 2007). Exploiting the impermeability of  



 

95 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6.5 (a) Tapping mode AFM image of the single-layer graphene sealed 

microchamber shown in Fig. 6.1a with ∆p = 0. (b) Line cut through the center 

of the graphene membrane in (a). (c) Schematic of the graphene membrane at 

∆p = 0 with an initial deflection z0 due to self-tensioning. (d) Force-distance 

curve taken at the center of the graphene membrane in (a) at ∆p = 0. The 

spring constant of the cantilever used is ktip = 0.67 N/m. 
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graphene membranes to controllably tune the resonance frequency gives us the mass 

of the suspended graphene membrane regardless of this initial tension. To our 

knowledge, this is the first direct measurement of the mass of graphene. 

 The minimum frequency, f0, corresponds to Sp = 0, i.e. pint = pext. The 

monolayer graphene membrane in Fig. 6.4a has f0 = 38 MHz when ∆p = 0. This 

frequency is significantly higher than expected for a graphene square plate under zero 

tension (0.3 MHz) suggesting that at ∆p = 0, the resonance frequency is dominated by 

S0 and not the bending rigidity. Using the experimentally measured mass of the 

monolayer membrane above we deduce an S0 ~ 0.06 N/m. This is similar to what was 

previously observed in doubly-clamped graphene beams fabricated by the same 

method (see Chapter 5) (Bunch, van der Zande et al. 2007).  

 

6.7 Self-Tensioning 

The origin of this tension is clear from Fig. 6.5a which shows a tapping-mode 

AFM image of the suspended monolayer graphene membrane of Fig. 6.2a with ∆p = 0. 

The image shows the graphene membrane to have a ~ 17 nm dip along the edges of 

the suspended regions where the graphene meets the SiO2 sidewalls (Fig. 6.5b). This 

results from the strong van der Waals interaction between the edge of the graphene 

membrane and the SiO2 sidewalls (Fig. 6.5c), which previously has been estimated to 

be U ~ 0.1 J/m2 (Ruoff, Tersoff et al. 1993; Hertel, Walkup et al. 1998). This 

attraction yields a surface tension S0 = U ~ 0.1 N/m which is close to the value 

extracted from the resonance measurement.  

The tension in the membrane can also be probed by pushing on the membrane 

with a calibrated AFM tip (Frank, Tanenbaum et al. 2007). This force-deflection curve 

gives a direct measure of the spring constant kgraphene = 0.2 N/m of the graphene 

membrane, as shown in Figure 6.5d. Neglecting the bending rigidity, the tension can 
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be obtained using S ≈ (kgraphene/2π) ln (R/r), where R is the radius of the membrane and 

r is the radius of the AFM tip (Tanizawa and Yamamoto 2004). Assuming r ~ 50 nm, 

this gives S ~ 0.1 N/m, close to both the theoretical value and the value measured 

using the resonance frequency technique above. These results show that self-

tensioning in these thin graphene sheets dominates over the bending rigidity, and this 

tension will smooth corrugations that may occur in tension-free graphene 

membranes(Meyer, Geim et al. 2007).  

 

6.8 Conclusions 

We envision many applications for these graphene sealed microchambers. 

They can act as compliant membrane sensors which probe pressures in small volumes 

and explore pressure changes associated with chemical reactions, phase transitions, 

and photon detection(Jiang, Markutsya et al. 2004; Mueggenburg, Lin et al. 2007). In 

addition to these spectroscopic studies, graphene drumheads offer the opportunity to 

probe the permeability of gases through atomic vacancies in single layers of 

atoms(Hashimoto, Suenaga et al. 2004) and defects patterned in the  graphene 

membrane can act as selective barriers for ultrafiltration(Rose, Debray et al. 2006; 

Striemer, Gaborski et al. 2007). The tensioned suspended graphene membranes also 

provide a platform for STM imaging of both graphene(Ishigami, Chen et al. 2007; 

Rutter, Crain et al. 2007; Stolyarova, Rim et al. 2007) and graphene-fluid interfaces 

and offer a unique separation barrier between 2 distinct phases of matter that is only 

one atom thick. 
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CHAPTER 7 

 

CONCLUSIONS  

 

7.1 Summary 

This thesis explored the electrical and mechanical properties of a new unique 

two dimensional atomic crystal - graphene. Chapters 1-3 included an overview of the 

basic concepts relevant to the experimental results presented in Chapters 4-6. Chapter 

1 began by discussing the mechanical and electrical properties of nanoscale systems. 

Chapter 2 provided an introduction to the field of nanoelectromechanical systems. 

This was followed by Chapter 3, which introduced graphene with a discussion of its 

electrical and mechanical properties and a brief overview of the current understanding 

of this new material.  

The experimental section began in Chapter 4. We performed low temperature 

electrical transport measurements on gated, few-layer graphene quantum dots. In 

devices with low contact resistances, we used longitudinal and Hall resistances to 

extract a carrier density of 2-6 x 1011 holes per sheet and a mobility of 200-1900 

cm2/V-s. In devices with high resistance contacts, we observed Coulomb blockade 

phenomena and inferred the charging energies and capacitive couplings. These 

experiments demonstrated that electrons in mesoscopic graphite pieces are delocalized 

over nearly the whole graphite piece down to low temperatures.  

An experimental study of the mechanical properties of suspended graphene 

began in Chapter 5. Nanoelectromechanical systems were fabricated from single and 

multilayer graphene sheets by mechanically exfoliating thin sheets from graphite over 

trenches in SiO2. Vibrations with fundamental resonant frequencies in the MHz range 

were actuated either optically or electrically and detected optically by interferometry. 
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We demonstrated room temperature charge sensitivities down to 8x10-4 e/Hz½. The 

thinnest resonator consists of a single suspended layer of atoms and represents the 

ultimate limit of two dimensional nanoelectromechanical systems.  

Chapter 6 extended this work on mechanical resonators from graphene sheets 

to graphene membranes which are clamped on all sides and seal a small volume of gas 

in a microchamber. In this work, we demonstrated that a graphene membrane is 

impermeable to gases down to the ultimate limit in thickness of only one atomic layer. 

It can withstand a pressure difference greater than 1 atmosphere and we used such a 

pressure difference to determine the mass of the membrane and extract the elastic 

constants. We found that a single sheet of graphene is impermeable to helium gas 

atoms and therefore free of any significant vacancy over micron size areas. We also 

determined the elastic constants of a single layer of graphene to be similar to bulk 

graphite. This addresses a longstanding question in nanomechanics as to the relevance 

of using bulk elastic constants to atomic scale systems. Graphene represents the 

thinnest membrane possible, and by establishing a pressure difference across this 

membrane we created the world’s thinnest balloon.  

 

7.2 Future Outlook 

There are still many new and interesting problems to address with suspended 

graphene NEMS. An intriguing and potentially revolutionary application for 

suspended atomically thin graphene sheets which remains largely unexplored is as an 

ultrathin membrane with atomic scale pores. Ideal membranes which act as selective 

barriers should be as thin as possible to increase flux and reduced blockage, 

mechanically robust to prevent breakage, and have well defined pores to increase 

selectivity. Graphene represents the thinnest membrane possible (one layer of atoms) 

with the smallest pore sizes attainable (single atomic vacancies), and unprecedented 
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mechanical stability. Fabricating controlled atomic scale pores in these graphene 

membrane represents a significant technological achievement which may find use in a 

wide range of applications in defense (biological and chemical detection), 

biotechnology (ion and molecular separation), energy (batteries and fuel cells), and the 

environment (desalination and decontamination). 

These graphene membranes with atomic scale pores can be used to probe both 

gas and ionic transport. Due to the small volume of gas trapped in graphene sealed 

microchambers, gas effusion through atomic pores is extremely sensitive to the pore 

size (See A.4). Using the resonant frequency of the membrane the energetic of this 

small volume of trapped gas can be probed as well. Photon absorption, chemical 

reactions, and phase transitions can be examined with high time and energy resolution. 

Ionic transport through a voltage gated graphene membrane can be used to understand 

the electrostatics of ionic double layers and integrating graphene membranes with 

biological membranes and ion channels could yield new insights on how these 

biological systems function as well as new applications in biotechnology. 

 There are also many unanswered questions on the nanomechanics of graphene 

sheets. By performing the bulge test on rectangular and square membranes one will be 

able to experimentally measure Poisson’s ratio which has never been done for a single 

graphene sheet and may give different results depending on the number of stacked 

graphene sheets. A bulge test performed on few layer graphene sheets will also yield 

interesting information about the shear modulus of graphene sheets. Studying how 

these layers slide with respect to one another in varying environments would allow 

researchers to elucidate the exact mechanism and strength of this interlayer 

interaction. Finally, there are a bunch of neat opportunities to study folds, wrinkles, 

and crumpling of graphene sheets – something that can be termed graphene origami. 

This thesis just touched the surface of what is possible with this new and exciting 
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material, and hopefully new avenues open up as scientists and engineers continue to 

explore this unique new material. 
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APPENDIX  

 

A.1 Slack and Self Tensioning in Graphene Membranes at ∆p = 0 

Figure 6.5 shows an AFM image of a graphene membrane with ∆p = 0.   Since 

the cantilever-surface interaction is expected to be different for AFM measurements 

over the relatively-pliable suspended and the rigid SiO2-supported graphene, the depth 

of the membrane z0, at ∆p = 0  must be determined via force and amplitude 

calibrations of the cantilever over each surface (Whittaker, Minot et al. 2006).  A 

representative calibration measurement is shown in Fig. A.1. Both the amplitude 

(upper) and deflection (lower) of the AFM tip is measured while approaching the 

surface. 

Over the SiO2-supported surface, the difference between the actual surface 

position and the position given by the image in Fig. 6.4a can be determined by 

subtracting the height at which the AFM tip begins to bend due to unbroken contact 

with the surface (A) from the height at which the amplitude setpoint intersects with the 

amplitude response curve (B) (Fig. A.1). The surface is determined to be 30 nm below 

the amplitude set point position. 

Since suspended graphene is more pliable than supported graphene, the onset 

of the AFM cantilever’s deflection of Fig. A.1 is more gradual, and thus cannot be 

readily used to determine the equilibrium height of the suspended graphene.  Instead, 

we note that when in unbroken-contact with the graphene surface, any deviations of 

the AFM tip from the equilibrium (lowest-strain) depth of the membrane will result in 

an increase in the membrane tension as the tip either pulls up or pushes down on the 

membrane.  This increase in tension on either side of the equilibrium position will 

cause a decrease in cantilever response amplitude, resulting in a peak in the cantilever-

amplitude response at the equilibrium position, similar to what has been observed for  
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Figure A.1 (upper) Driven oscillation amplitude of the tapping mode AFM 

cantilever with resonance frequency = 349 kHz vs. piezo extension as tip is 

brought into contact with the surface. Black and red are extension and 

retraction curves over the supported graphene on SiO2 surface.  Green and 

blue are extension and retraction curves over the suspended graphene 

membrane. (lower) The deflection of the cantilever vs. piezo extension. 

The upper and lower traces were taken simultaneously. 
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suspended carbon nanotubes(Whittaker, Minot et al. 2006). This occurs at ~100 nm, or 

34 nm below the amplitude setpoint position (C). 

Comparing these setpoint-to-surface depths for suspended and supported 

graphene, we find that the equilibrium depth of the suspended membrane is 17 + (34 – 

30) = 21 nm below the SiO2-supported surface where 17 nm is the distance measured 

in Fig. 6.4a.  Repeating these measurements across the center of the membrane yields 

an average equilibrium membrane-depth depth z0 = 17 ± 1 nm + (6 ± 2 nm) = 23 ± 3 

nm. 

 

A.2 Measuring the Gas Leak Rates 

The gas leak rate in Chapter 6 is measured by monitoring pint vs. time. For the 

case of the leak rate of air, the microchamber begins with pint ~ 100 kPa Air. This is 

verified by a scan of frequency vs. pext. A similar scan is performed once every few 

hours to monitor pint while the device is left at pext ~ 0.1 mPa between each 

measurement (Fig. 6.4b). The leak rate of argon is measured in a similar manner 

except the microchamber begins with a pint ~ 0 kPa argon and ~ 10 kPa air. The 

microchamber is left in pext ~ 100 kPa argon between measurements to allow argon to 

diffuse into the microchamber. This diffusion is monitored by finding the minimum 

pressure in a scan of frequency vs. pext.   

 To measure the helium leak rate we apply a ∆p ~ 40 – 50 kPa He and monitor 

the resonance frequency as helium diffuses into the microchamber. It will diffuse until 

the partial pressure of helium is the same inside and outside the microchamber. From 

the slope of the line we extract a helium leak rate for the devices using equation (6.1) 

(Fig. A.2). Leak rates from square membranes with sides varying from 2.5 to 4.8 µm 

were measured with no noticeable dependence of the leak rate on area. 
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Figure A.2 Resonance frequency vs. time for a single layer 

graphene sealed nanochamber exposed to 357 torr external 

pressure of He. The internal pressure of the nanochamber is 

initially at 500 torr of Air. At time t = 0 sec, 357 torr external 

pressure of He is applied to the nanochamber. The resonant 

frequency is measured every few seconds until the frequency 

approaches its initial value.  
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A.3 Tunneling of He Atoms across a Graphene Sheet 

The probability of a particle with a mass m, tunneling across a finite potential 

barrier with a height V, and distance x, is given by: 

 
( )

h

EVmx

ep
−−

=
22

    ` (A.1) 

Simple estimates based on tunneling of He atoms through a perfect graphene barrier at 

room temperature (~ 8.7 eV barrier height, 0.3 nm thickness) give a tunneling 

probability ~250 orders of magnitude smaller than the experimental limit given above 

(Hrusak, Bohme et al. 1992; Murry and Scuseria 1994). Furthermore, measurements 

of He entering C60 through the “window” mechanism whereby temporary bond 

breaking lowers the barrier height to ~ 3.5 eV, which still gives a tunneling probability 

~150 orders of magnitude smaller than we observe in Chapter 6 (Saunders, Jimenez-

Vazquez et al. 1993; Murry and Scuseria 1994). 

 

A.4 Classical Effusion through Single Atom Lattice Vacancies 

For the case of classical effusion through a small hole, the number of 

molecules is given by: 
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      (A.2) 

where n0 is the initial number of molecules, A is the area of the hole, V is the volume 

of the container, kb is Boltzman’s constant, T is temperature, t is time, and m is the 

atomic mass of the gas (Reif 1965). For a defect area of 1 nm2, effusion of gas would 

take place in much less than one second. Even a one atom defect would leak in less 
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than one second.   

The reason for such fast effusion is the volume of the container for the 

graphene sealed microchambers is so small (typically ~ 1 µm3). The number of 

molecules in the microchamber depends on the ratio A/V, and a defect with an area of 

1 nm2 in a 1 µm3 box yields an area/volume ratio of 1 m-1. If this was scaled up to 

macroscopic dimensions, it is equivalent to a 1 m3 box with a defect of area = 1 m2. 

This suggests that any leak rate out of nanochambers is extremely sensitive to the 

defect area and therefore an accurate measure of that area. This makes detection of 

small changes in defect area by adsorbed molecules highly sensitive. One should note 

that such a detection scheme is impossible with thicker silicon NEMS since their 

compliance seriously diminishes when the lateral dimensions approach 1 µm. By 

using atomic scale thickness resonators, we can overcome these inherent limitations in 

Si MEMS technology. Previous attempts to fabricate compliant micron size 

membranes have focused on nanoparticle arrays and inorganic membranes(Jiang, 

Markutsya et al. 2004; Mueggenburg, Lin et al. 2007). Our graphene membranes are 

30X-100X thinner and have a single crystal structure making them much more robust. 

 

A.5 Extrapolating Deflections and Pressure Differences 

To determine the elastic constants of graphene using equation (6.3), we 

extrapolate the deflection in Fig. 6.1e (inset) to z = 181 nm to account for a 40-minute 

sample-load time, assume an initial pressure difference across the membrane, ∆p = 93 

kPa, and a negligible initial tension. The latter two assumptions are verified using 

resonance measurements. The actual deflection used in equation (6.3) is obtained by 

subtracting the extrapolated deflection z = 181 nm from the initial deflection z0 = 23 ± 

3 nm at ∆p = 0. This initial deflection is determined from the AFM image in Fig. 6.4a 

and AFM force-distance curves Fig. A.1. 
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A.6 Experimental Setup for Optical Drive and Detection 

 The experimental setup used to actuate and detect vibrations has previously 

been discussed in detail by Keith Aubin in his PhD thesis (Aubin 2005). I will follow 

his description closely. We will follow the red detection laser’s path (Fig A.1). The 

polarized laser light is directed around the table by 2 mirrors (B and C). One of these 

mirrors (C) is on a magnetic mount. This is to allow for an easy substitution of other 

detection lasers (a tunable 1 W Ti:Sapphire laser is an example). The beam then goes 

through a pinhole (D) that is used for alignment purposes. This is followed by a 

circular variable neutral density filter (E) which is used to control the intensity of the 

laser. The beam then goes through a beam expander which consists of 2 lenses with 

differing focal lengths f1 and f2. The first of these lenses (F) is an objective mounted on 

a 2 axis stage. The 2nd lens (G) is fixed. To make an effective Keplerian beam 

expander from 2 lenses must be aligned such that their focal lengths match. The 

expanded beam is made large enough to backfill the final objective (Z). This expanded 

polarized beam passes through a polarized beam splitter (H) which allows all the light 

to pass through. The function of this beam splitter is to direct the image of the sample 

and red laser into the camera (I) to align the red laser spot onto the resonator. The 

detection laser then passes through a removable linear polarizer (J) which is used only 

used during alignment and then removed. The polarizer is aligned 45o with respect to 

the detection laser. It is needed to change the polarization of reflected light from the 

chamber so that it is directed into the camera by the polarized beam splitter (H). The 

beam then enters an unpolarized beam splitter (R) where 50% of the light is directed 

into a power meter (T). A removable filter (S) is used to selectively filter the blue or 

red light to measure the power. The remaining 50% of the red light passes (R) 

combined with the blue drive laser. The blue laser (K) is modulated by a spectrum 
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analyzer (EE). The blue light passes through a pinhole (L) and a beam expander (M) 

and (N) which cleans the beam. This expanded beam is directed around a mirror (O) 

into a filter wheel (P) that is used to tune the intensity. It then is deflected by another 

mirror (Q) which directs the light into the unpolarized beam splitter (R). At this point, 

50% of the light goes into the power meter and 50% combines with the red detection 

laser and heads towards the sample chamber. Both the drive and detection laser beams 

pass through a ¼ wave plate (V) which circularly polarizes the beam. The beam passes 

a microscope slide that is used to reflect white light from a source (Y) focused with 

(X). The beam enters an objective (Z) which focuses the spot down to a diffraction 

limited spot onto the sample housed in a vacuum chamber (AA) which sits on a 

motorized xyz stage. The vacuum chamber is connected to a turbo pump (GG) and has 

a T valve connecting a vacuum gauge (FF) and a gas input (HH) consisting of a 

manual leak valve for leaking air or other gases.  

The reflected light is then collected down the same approach path. It first 

passes through the lens (Z) and the microscope slide (W). It then goes through the ¼ 

wave plate (V). The circularly polarized returning light now becomes linearly 

polarized in a direction perpendicular to the direction of the incoming beam. When 

this linearly polarized light is incident on the polarized beam splitter, nearly 100% of 

the reflected light is passed through. This light is passed through a filter (BB) which 

filters out the blue drive laser. The light is finally focused by a lens (CC) onto a high 

speed photodetector (DD) where the signal is collected by the spectrum analyzer 

(DD).  

When the blue drive laser is not needed as in the case of electrostatic drive and 

optical detection, the unpolarized beam splitter (R) can be removed. This will send 

100% of the red detection laser incident onto the sample. The data from the spectrum 

analyzer is collected by a Lab View program which has the capability to fit the 
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resonance peak to a Lorentzian and determine the quality factor from this fit. 

 

a. Helium Neon Laser. Polarized 632.8 nm JDS uniphase model 1145 P.  

b. Mirror 

c. Mirror on a magnetic mount. 

d. Pinhole 

e. Circular Variable Neutral Density Filter 

f. Lens LP1 Newport (beam expander component) 

g. Lens P100A Newport (beam expander component) 

h. Polarized beam splitter 

i. Camera on a 3 axis stage connected to a digital camera and color monitor. Lens 

is a Navitar 1-60191. 

j. Removable polarizer. 

k. Blue Diode Laser - Picoquant MDL 300 405 nm. 

l. Pinhole 

m. Lens Newport 4100 G (beam expander component) 

n. Lens Newport P100A (beam expander component) 

o. Mirror on movable mount U100-G Newport. 

p. Circular Variable Neutral Density Filter Newport model 946 
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q. Mirror on movable mount U100-G 

r. Non polarizing beam splitter mounted on an easily removable stand  

s. Filter 

t. Power meter 

u. Polarizing beam splitter 

v. ¼ wave plate 

w. Microscope slide 

x. Lens 

y. White light source 

z. Lens – objective  

aa. Sample chamber mounted on a motorized stage with xyz translation 

bb. Blue light filter 

cc. Lens 

dd. Photodetector - Visible 1 GHz low noise from New Focus. Mounted on a 3 

axis translation stage  - NRC model 430 Newport 360-90 

ee. Agilent E 4402 B ESA_E series Spectrum Analyzer 9kHz – 3GHz 

ff. Vacuum Guage 

gg. Turbo Pump 

hh. Input for gases. 
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Figure A.3 Schematic of the experimental setup used to drive and detect 

resonance 
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