
The TBSignatureProfiler: A Novel R Package for Comparing 
Tuberculosis Gene Expression Signatures

BACKGROUND & MOTIVATION

METHODS

RESULTS

• Collected set of 34 published signatures
• These differentiate patients with multiple disease 

backgrounds
• e.g., patients with TB, at risk of TB treatment 

failure, or have latent TB infection (LTBI) that 
will likely progress to active TB disease

• Profiling methods analyze expression levels for gene groups
• Known as “gene expression profiles”, which may then be 

scored and correlated to TB outcomes 
• (e.g., active TB vs. LTBI)

• 6 main methods: GSVA10, ssGSEA8, ASSIGN9, singscore7, 
PLAGE5, and comparing Z-scores11

• TBSignatureProfiler features
• Signature strength estimation: bootstrapping estimates’ 

AUC and leave-one-out cross-validation (LOOCV) of 
logistic regression

• Visualization: sample-signature score heatmaps, bootstrap 
area under the curve (AUC, a statistical evaluation metric) 
& LOOCV boxplots, and results tables

• Heatmaps for individual signature composition and 
between-signature comparison

• Analysis of malnutrition comorbidity data
• Cohort from Chennai and Bengaluru, India
• Study focused on identifying active TB from LTBI in 

severely malnourished individuals

DISCUSSION & FUTURE WORK
• Existing blood RNA signatures of TB generally work in the undernutrition setting
• Some differences may reflect gene signature size (i.e., smaller signatures may not 

perform as well) and/or original data training setting
• Lee_4 (AUC = 0.50), Maertzdorf_4 (AUC = 0.54), & Sloot_HIV_2 (AUC = 0.70) 

signatures do not perform well in the setting of severe undernutrition
• Findings suggest that most TB signatures are robust and could work with many 

different settings/comorbidities
• Further studies needed to understand impact of additional comorbidities on 

signature performance
• (e.g., diabetes, alcoholism, pregnancy)
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disease mortality worldwide

• ~1.4 million deaths in 201712

• Traditional phlegm/sputum tests not always 
accurate in TB diagnosis 

• e.g. pediatric, slow-growth
• Published gene expression signatures can be used 

instead as blood-based disease biomarkers6

• Most of 30+ published signatures lack cross-
condition validation testing

• e.g., testing TB in samples from diverse 
geographic and comorbidity backgrounds  
of the signatures performed 

• Aim: Formally aggregate these signatures as a 
single, unified resource, and develop open source 
software for their visual & quantitative 
comparison

• Developed the  “TBSignatureProfiler” R package 
to characterize gene signatures’ diagnostic ability in 
multiple comorbidity settings.

1.4 
MILLION
DEATHS
IN 2017

Figure 3. ROC plots for the best and worst performing signatures –
Bloom_OD_140 and Lee_4, respectively. We obtain AUC estimates by 
finding the area under the pink curve. The tan ribbons illustrate 95% CI 
bands. Across the samples, 82% of signatures perform well with AUCs 
above 80%. These ROC plots were generated using the 
signatureROCplot_CI() function from the TBSignatureProfiler. 
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Figure 1. Heatmap of scaled ssGSEA scores for all 34 signatures (rows) for the 
malnourished/HIV infected TB and LTBI individuals (columns). The topmost color bar 
designates whether the sample is from an LTBI individual (red) or an individual with 
active TB (blue). Collectively, these signatures accurately separate most of the TB 
samples from the LTBI samples, and the scores are largely concordant. This heatmap was 
generated using the SignatureHeatmap() function from the TBSignatureProfiler. 

Figure 2. Boxplots of bootstrapped AUC estimates (y-axis) from bootstrapped  
(n = 1000) samples for each signature (x-axis) using the ssGSEA algorithm.  All 
AUC estimates were above the 0.50 mark.

Bloom_OD_140 ROC Plot, 95% CI 
AUC = 0.994

Lee_4 ROC Plot, 95% CI
AUC = 0.994
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