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Chapter 1

Introduction

Problem 1

Consider an "afocal" arrangement where the lenses are separated by distance f0 + f1

1) Calculate ABCD transfer matrix between plane 0 located a distance s0 in front of lens
0, and plane 1 located a distance s1 behind lens 1.

2) What happens when s0 = f0 and s1 = f1 ? (This is called a 4f, or telecentric, imaging
con�guration)

How does 4f imaging compare with single-lens imaging? (e.g. which is better?)

Problem 2

Consider a 4f imaging arrangement of the type described in problem 1. That is, two lenses
of focal lengths f0 and f1 are separated by distances f0 + f1. The object plane is located
a distance f0 in front of the lens 0. The corresponding image plane is located a distance
f1 behind lens 1. Consider a slight error such that lens 1 is displaced a distance " from its
nominal 4f position (where "� f0 < f1).

1) Derive the imaging transfer matrix for the case where the object plane remains at it�s
initial position? What is the magni�cation? Why is this magni�cation not well de�ned?

2) Where should the imaging plane be for the magni�cation to be well de�ned?

Problem 3

Consider two single-lens imaging systems with lenses f0 and f1 and magni�cationsM0 andM1

respectively. Place these two imaging systems in tandem (i.e. 3 conjugate planes).
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CHAPTER 1. INTRODUCTION 4

1) Calculate the ABCD transfer matrix from the �rst conjugate plane to the last conjugate
plane. What is the net magni�cation? Is the imaging perfect?

2) Now place a lens f exactly at the middle conjugate plane (this is called a �eld lens).
Re-calculate the above ABCD matrix. Has the net magni�cation changed?

3) At what value of f is the imaging perfect?

4) A �eld lens is also useful for increasing the �eld of view. That is, given that lenses have
�nite diameters, a �eld lens can allow the imaging of bigger objects. Can you explain why
(qualitatively)?
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Chapter 2

Monochromatic wave propagation

Problem 1

A paraxial wave propagating in the z direction may be written as

E(~r) = A(~r)ei2��z (2.1)

where the envelope function A(~r) is slowly varying. The conditions for A(~r) to be slowly
varying are

�
@A(~r)

@z
� A(~r) (2.2)

�
@2A(~r)

@z2
� @A(~r)

@z
: (2.3)

1) Show that in free space (no sources), the envelope function of a paraxial wave satis�es a
simpli�ed version of the Helmholtz equation given by�

r2
? + i4��

@

@z

�
A(~r) = 0: (2.4)

This equation is known as the paraxial Helmholtz equation.

2) The Fresnel free-space propagator may be written as a paraxial wave, such that

H(~�; z) = HA(~�; z)e
i2��z (2.5)

where HA(~�; z) = �i�z e
i� �

z
�2 is the associated envelope function. Show that HA(~�; z) satis�es

the paraxial Helmholtz equation.

3) The radiant �eld associated with a paraxial wave may be written as

E(~�?; z) = A(~�?; z)ei2��z: (2.6)
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CHAPTER 2. MONOCHROMATIC WAVE PROPAGATION 6

Show that A(~�?; z) satis�es a mixed-representation version of the paraxial Helmholtz
equation given by �

��2? � i�
@

@z

�
A(~�?; z) = 0: (2.7)

4) Finally, show that a �eld that satis�es the Fresnel di¤raction integral also satis�es the
paraxial Helmholtz equation (hint: this is much easier to demonstrate in the frequency
domain).

Problem 2

Let A(~r) be the envelope function of a paraxial wave, as de�ned in Problem 1. That is, A(~r)
satis�es the paraxial Helmholtz equation. In general, A(~r) is complex and can be written as

A(~r) =
p
I(~r)ei�(~r) (2.8)

where I(~r) is the wave intensity and �(~r) is a phase, both real-valued.
Show that I(~r) and �(~r) satisfy the equation

2��
@I(~r)

@z
= �~r? � I(~r) ~r?�(~r): (2.9)

This is known as the intensity transport equation.

Problem 3

Consider two point sources located on the x0 axis at x0 = d
2
and x0 = �d

2
. Use the Fres-

nel and Fraunhofer di¤raction integrals to calculate the resultant �elds EFresnel(x; 0; z) and
EFraunhofer(x; 0; z) obtained after propagation a large distance z. Derive the corresponding
intensities IFresnel(x; 0; z) and IFraunhofer(x; 0; z) (note: these are observed to form fringes).

1) Derive the fringe envelope functions of IFresnel(x; 0; z) and IFraunhofer(x; 0; z). In particular,
what is the ratio of these envelope functions at the location x = z ?

2) Derive the fringe periods of IFresnel(x; 0; z) and IFraunhofer(x; 0; z). In particular, what is
the ratio of these periods at the location x = z ? (note: the periods may vary locally)

3) Which approximation, Fresnel or Fraunhofer, is better o¤ axis?
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Chapter 3

Monochromatic �eld propagation
through a lens

Problem 1

Consider a 4f imaging system of unit magni�cation (i.e. both lenses of focal length f), with
an unobstructed circular aperture of radius a.

1) Derive CSF(�) in the case where an obstructing disk of radius b < a is inserted into the
aperture.

2) Derive CSF(�) in the case where the disk is transmitting but produces a phase shift of
90�.

3) Derive CSF(�) in the case where the disk is transmitting but produces a phase shift of
180�.

4) Consider imaging an on-axis point source of light with either of the above systems. Com-
pared to the unobstructed aperture system, is it possible to obtain an increase in the image
intensity on axis? If so, under what conditions? Is it possible to obtain a nul in the image
intensity on axis? If so, under what conditions?

Problem 2

Consider inserting a thin wedge into an otherwise unobstructed circular pupil of radius a of
a 4f imaging system (both lenses of focal length f). The wedge induces a phase shift that
varies linearly from 0 at the far left to 2� at the far right of the aperture. Derive the CSF
of this imaging system. (Hint: use the Fourier shift theorem).
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CHAPTER 3. MONOCHROMATIC FIELD PROPAGATION THROUGH A LENS 8

Problem 3

1) Show that if P (~�) is binary (i.e. P (~�) = 0 or 1), thenZ
CSF(~�c +

1

2
~�d)CSF

�(~�c �
1

2
~�d)d

2~�c = CSF(~�d): (3.1)

2) What is the implication of the above relation? In particular, what does it say about
the imaging properties of two identical, unit-magni�cation, binary aperture imaging systems
arranged in series?
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Chapter 4

Intensity propagation

Problem 1

Derive the variable change identity given by Eq. 4.5. (Hint: use a Jacobian).

Problem 2

For a circular pupil imaging system, an alternative de�nition of resolution is given by what is
known as the Rayleigh criterion. This criterion states that two point objects are resolvable if
they are separated by a minimum distance ��Rayleigh such that the maximum of the PSF(�)
of one point lies at the �rst zero of the PSF(�) of the other point. That is, ��Rayleigh is
de�ned as the minimum distance such that PSF(��Rayleigh) = 0.

1) Derive ��Rayleigh in terms of � and NA (you will have to do this numerically).

2) Consider a circular pupil imaging system where the pupil is partially obstructed by a
circular opaque disk (centered) whose radius is � times smaller than the pupil radius (� < 1).
Derive the PSF for this annular pupil system. What is the ratio PSFannular(0)=PSFcircular(0)?

3) Provide a numerical plot of PSFannular(��?�) and PSFcircular(��?�) for � = 0:9 (normalize
both plots to unit maximum). What does the Rayleigh resolution criterion say about the
resolution of the annular pupil system compared to that of the circular pupil system? Would
you say the annular system has better or worse resolution?

Problem 3

1) Consider the propagation of incoherent light through a lens of focal length f . The lens is
situated a distance f from the light source, whose 2D intensity distribution is given by I0(~�0).
Use the Fresnel approximation to derive a resultant 3D coherence function at an arbitrary
position f~�1c; z1cg beyond the lens. In particular, show that this 3D coherence function is
given by
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CHAPTER 4. INTENSITY PROPAGATION 10

�1(~�1d; z1d) =
1

W
ei2��z1d

Z
I0(~�0c)e

�i2� �
f
~�1d�~�0ce

�i� �
f2
z1d�

2
0cd2~�0c: (4.1)

Hint: you may �nd it helpful to start with Eq. 3.6.

2) Consider the speci�c example where the intensity distribution of the incoherent source is
given by

I0(~�0) =
1

2
I0
�
1 + cos(2��20=a

2)
�

(4.2)

as illustrated in the �gure. You will �nd that �1(~�1d; z1d) is peaked when f�1d; jz1djg ! f0; 0g,
as expected; but it is also peaked for another value of f�1d; jz1djg. What is this value?

f

f

{ }1 1, zρ
r

{ }1 1, zρ′ ′r

0 0( )I ρ
r

0 0( )I ρ
r

f

f

{ }1 1, zρ
r

{ }1 1, zρ′ ′r

0 0( )I ρ
r

0 0( )I ρ
r
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Chapter 5

3D Imaging

Problem 1

1) Derive Eq. 5.22.

2) What is the implication of the above relation? In particular, what does it say about
the imaging properties of two identical, unit-magni�cation, binary-aperture imaging systems
arranged in series?

Problem 2

Consider a unit-magni�cation 4f imaging system (all lenses of focal length f) with a square
aperture de�ned by

P (�x; �y) =

�
1 j�xj < a and j�yj < a
0 elsewhere.

(5.1)

Based on the Fresnel approximation, derive analytically:
1) CTF(�x; 0; 0) and CTF(0; 0; z)
2) CSF(x; 0; 0) and CSF(0; 0; z)
3) PSF(x; 0; 0) and PSF(0; 0; z)
4) OTF(�x; 0; 0) and OTF(0; 0; z):

It will be convenient to de�ne a bandwidth ��? = 2� af .

Note, CTF and OTF are in mixed representations. You will run into special functions
such as sinc(...) and erf(...). As such, this problem is best solved with the aid of integral
tables or symbolic computing software such as Mathematica. Be careful with units and
prefactors. For example, make sure the limits x! 0 and z ! 0 converge to the same values!
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CHAPTER 5. 3D IMAGING 12

Problem 3

Consider a unit-magni�cation 4f imaging system (of spatial frequency bandwidth ��?) with
a circular aperture. A planar object at a defocus position zs emits a periodic, incoherent
intensity distribution (per unit depth) given by

I0z(x0; y0; z0) = I0 (1 + cos (2�qxx0)) �(z0 � zs) (5.2)

where I0 is a constant.

1) Write Eq, 5.39 in terms of intensity spectra and an OTF, all in mixed representation.

2) Based on your result above, derive an expression for the imaged intensity distribution.
This expression should look like

I1(x1; y1) _ (1 +M(qx; zs) cos (2�qxx1)) : (5.3)

In other words, the imaged intensity is also periodic, but with a modulation contrast
given by M(qx; zs). What is M(qx; zs)?

3) In the speci�c case where qx = 1
2
��?, what is the modulation contrast when the object

is in focus? At what defocus value does the modulation contrast fade to zero (express your
result in terms of �, n and NA)? What happens to the modulation contrast just beyond this
defocus? (Hint: use the Stokseth approximation).

Please note: there is an error in the expression for the Stokseth approximation (Eq. 5.35).
The factor of 4 in the jinc function is erroneous and should be omitted.
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Chapter 6

Radiometry

Problem 1

Consider the following single-lens imaging system, of arbitrary magni�cationM , which obeys
the thin-lens formula. Assume the lens is large and A0 � A1.

1) Calculate the throughput of this system using the recipe outlined in Section 6.3.1, treating
plane a as the output plane. Identify the aperture and �eld stops.

2) Now do the same, but this time treating plane b as the output plane. Are the aperture
and �eld stops the same?

Note: you should �nd that the throughput is independent of which plane a or b is treated
as the ouput plane.

f

fz

0A 1A

Plane a Plane b

f

fz

0A 1A

Plane a Plane b

Problem 2

A lamp in a housing emits incoherent light through an aperture of area Alamp (see �gure).
The emitted light power is Wlamp. This light illuminates an objective comprising a lens and
an aperture at the back focal plane, both of area Aobj (assume Aobj . Alamp). The lens has
focal length fobj. A variable distance z separates the lamp and the objective.
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CHAPTER 6. RADIOMETRY 14

lampA
z f

Output
plane

Input
plane

Lamp

objA objA

Objective

f

f

lampA
z f

Output
plane

Input
plane

Lamp

objA objA

Objective

f

f

1) In the case where the lamp touches the objective (i.e. z = 0), estimate the number of
modes (coherence areas) that enter the objective at the input plane. What is maximum
power of the beam at the output plane (i.e. the objective "front" focal plane)? What is the
coherence area of the beam at the output plane? Estimate the beam spot size (total beam
area) at the output plane.

2) In the case where the lamp separated a large distance z from the objective, estimate the
number of modes that enter the objective at the input plane. What is the maximum power
of the beam at the ouput plane? What is the coherence area of the beam at the output
plane? Estimate the beam spot size at the output plane.

3) At what value of z does the beam at the output plane become a di¤raction-limited spot
(i.e. single mode)? At this value, what is the number of modes that enter the objective at
the input plane?

Note: perform rough estimates only �that is, angular spreads of 2� steradians can be
approximated as angular spreads of 1 steradian.

Problem 3

Consider a more general Gaussian-Schell beam whose mutual intensity is given by

J0(~�0c; ~�0d) =
�
I0e

�2�20c=w2c
��

e��
2
0d=2w

2
d

�
: (6.1)

(Note: this di¤ers from the single-mode Gaussian beam described by Eq. 6.14 in that
wc > wd).

1) Calculate the number of modes in this beam.

2) Calculate the area and coherence area of this beam upon propagation a large distance z.
Show explicity that the number of modes is conserved.

3) Consider using a lens of numerical aperture NAi to focus this beam. If the beam just �lls
the lens (roughly speaking), estimate the size the the resultant focal spot.

4) If instead the beam over�lls the lens such that only 1% of the beam power is focused,
estimate the size of the resultant focal spot.
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Chapter 7

Intensity �uctuations

Problem 1

Non-monochromatic �elds can be described by explicitly taking into account their time
dependence. It can be shown that when the time dependence of a �eld is made explicit, the
radiative Rayleigh-Sommerfeld di¤raction integral (Eq. 2.21) can be re-written in the form

E(~�; z; t) = �i�0
Z
cos �

R
E(~�0; 0; t�R=c)d2~�0 (7.1)

which is valid for narrowband �elds whose wavenumber is centered around �0 (assuming
propagation in vacuum). This expression can be simpli�ed using the Fresnel approximation
(Section 2.3). Based on this expression, evaluate the intensity distribution I(~�; z) a distance
z from two pinholes irradiated by a beam I0(~�0; 0) that is partially coherent both in space
and time. In particular, assume that the irradiating beam is both quasi-homogeneous and
quasi-stationary, with a separable mutual coherence function given by

�(~�; ~� 0; t; t+ �) = hI0i�(�d)(�) (7.2)

where �d = j~�� ~� 0j, and �(�d) and (�) are Gaussian. That is, we have

�(�d) = e��
2
d=2�

2
� (7.3)

(�) = e�i2��0�e���
2=2�2 (7.4)

where �0 = �0c.
The pinholes are separated by a distance a along the x direction (see Figure).

1) Consider only the x direction and derive an expression for I(x; z). Your expression should
look something like

I(x; z) _ 1

z2
hI0i (1 +M(x) cos 2�x=p) (7.5)

representing a fringe pattern of modulation M(x) and period p.
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0 0( ,0)I ρ
r

( , )I zρ
r

z

a

0 0( ,0)I ρ
r

( , )I zρ
r

z

a

2) What is the maximum modulation strength M(x)max? What happens to this strength as
�� or � tends toward in�nity? Does this strength depend on z?

3) What is the period p of the fringes? Express your answer in terms of �0 and � = a
z
,

corresponding to the angle subtended by the pinholes.

4) How far do the fringes extend in x? Speci�cally, at what value x1=e does the modulation
strength decrease by a factor of 1=e relative to its maximum? Express your answer in terms
of � and the coherence length l = �c. Does x1=e depend on ��?

Problem 2

A technique of laser speckle contrast analysis can be used to assess blood �ow within tissue.
In this technique, laser light is back-scattered from tissue, and a CCD camera is used to
record the resultant speckle pattern (assumed to obey circular Gaussian �eld statistics).
Any motion in the tissue causes the speckle pattern to �uctuate in time. By measuring the
contrast of these �uctuations as a function of the camera exposure time T one can deduce
a temporal coherence time �. The local blood �ow velocity can then be inferred from �,
provided one is equipped with a theoretical model relating the two.

1) The coherence function of light scattered from randomly �owing particles is often assumed
to obey the statistics of a phase-interrupted source (see Eq. 7.11). Derive the expected
contrast of the measured speckle �uctuations as a function of � and T .

2) Verify that when � � T the contrast obeys the relation given by Eq. 7.48.
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Problem 3

Consider the intensity distribution I1(~�1) at the image plane of a unit-magni�cation imaging
system whose point spread function is written PSF(~�). This intensity distribution is detected
by a CCD camera, which consists of a 2D array of detectors (pixels), each of area A = L�L:
As a result, I1(~�1) becomes integrated upon detection, and then sampled. The detected
power, prior to sampling, can thus be written as

WA(~�1) = A

Z
DA(~�1 � ~� 01)I1(~�

0
1)d

2~� 01: (7.6)

1) Provide expressions for DA(~�) and its Fourier transform DA(~�?).

2) Let the intensity distribution at the object plane I0(~�0) be a "fully developed" speckle
pattern produced by incoherent light. It can be shown (e.g. see Section 17.3) that the
coherence function of a such a speckle pattern is given by

j�0(~�0d)j2 =
PSFs(~�0d)
PSFs(0)

(7.7)

where PSFs is the point spread function associated with the speckle generation (not neces-
sarily the same as PSF).
Express the spatial contrast of the imaged speckle pattern recorded by the CCD camera

in terms of DA(~�?), OTF(~�?) and OTFs(~�?).

3) What happens to the above contrast as the size of the CCD pixels becomes much larger
than the spans of both PSF(~�) and PSFs(~�)?
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Chapter 8

Detector Noise

Problem 1

1) Show that if the instantaneous power W of a light beam obeys a negative-exponential
probability density, then, upon detection, the number of photoelectron conversions per de-
tector integration time T obeys a probability distribution given by

PK(K) =
1

1 + hKi

�
hKi

1 + hKi

�K
(8.1)

where hKi = �
h�
hW iT .

This is called a Bose-Einstein probability distribution (in probability theory it is called
a geometric distribution).

2) Based on the above result, verify that the variance in the detected number of photoelectron
conversions is

�2K = hKi+ hKi
2 : (8.2)

Note: for part 2, you will �nd the following identity to be useful:

1X
k=0

knk =

8><>:
1
1� (n = 0)

n(n+1)!

(1�)n+1

n�1X
m=0

m+1X
j=0

(�1)j (m�j+1)
n

j!(n�j+1)!
�m (n � 1) (8.3)

Problem 2

Consider a detector voltage measured through an impedance R = 105 
 (this is a typical
value). Assume that the detector is at room temperature, but that dark current is negligible.
The charge of a single electron is 1:6� 10�19C.
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CHAPTER 8. DETECTOR NOISE 20

1) Let�s say a single photoelectron is generated at the detector cathode (i.e. input). What
is the minimum detector bandwidth B required for the measurement of this photoelectron
to be shot-noise limited?

2) The bandwidth derived above is found to be unrealistic. In fact, the detector bandwidth is
known to be 10MHz (also a typical value). What is the minimum current preampli�cationM
required for the measurement of the single photoelectron to be shot-noise limited? (assuming
this preampli�cation to be noiseless).

Problem 3

Consider a CCD camera with a 12-bit dynamic range and a pixel well capacity of 10,000e�.
Assume that the camera gain G is properly set to accomodate these ranges. The camera
ampli�er produces a readout noise of 10e� (i.e. �r = 10; note that the readout noise is in
units of number of electrons as opposed to electron charge). Assume the illumination light is
stable (i.e. exhibits no classical �uctuations). Dark noise and Johnson noise are negligible.

1) What is the minimum average readout value hNi for the measured signal to be shot-noise
limited?

2) This is not good enough. Let us say we want to measure a signal as low as hNi = 1. To do
this, we will incorporate an electron multiplication stage in our CCD camera. What electron
multiplication gain M is required to guarantee that the measurement will be shot-noise
limited even at this low signal? (consider the electron multiplication stage to be noiseless).
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Chapter 9

Absorption and scattering

Problem 1

We have seen that when a plane wave is sent through a thin transmitting sample, the
scattered �eld far from the sample (Eqs. 9.7 or 9.16) is not quite a perfect Fourier transform
of the sample transmittance function (absorption or phase). The problem is that there
remains a residual, spatially-dependent phase prefactor ei�

�
z
�2in the scattered �eld.

Show that by using point-source illumination and a single lens, this residual phase pref-
actor can be eliminated for a particular sample location zs (see �gure). That is, the �eld
at the image plane of the source is given by the perfect Fourier transform of the sample
transmission function t(~�s). What is this sample location zs and what is the resulting �eld
at the illumination plane? Use the Fresnel approximation and assume that s0 and s1 obey
the thin-lens formula.

f

sz

Plane 1Plane 0 0s 1s

( )st ρ
r

f

sz

Plane 1Plane 0 0s 1s

( )st ρ
r

Note: There are several ways to solve this problem. Use the fact that a forward projection
of the �eld from the sample plane to the image plane is equivalent to a backward projection
of this �eld to the illumination plane (without the sample), followed by a forward projection
to the image plane. This last projection is given by Eq. 3.15.
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CHAPTER 9. ABSORPTION AND SCATTERING 22

Problem 2

The scattering cross section of a small dielectric sphere can be calculated exactly by matching
solutions of the �eld inside and outside its boundary. This is the well-known Clausius-
Mossotti boundary-value solution, which is generally presented in the literature as

�scatt =
8�

3
k4a6

����n2r � 1n2r + 2

����2 (9.1)

where a is the radius of the dielectric sphere (a � �), nr is the ratio ns=n (where ns and
n are the index of refraction of the dielectric sphere and surrounding medium respectively),
and k is the angular wavenumber of the incident light in the medium.

Show that, to lowest order in �n=n, the scattering cross sections given by the Clausius-
Mossotti solution and by Eq. 9.65 are identical.

Problem 3

Derive Eqs. 9.67 and 9.69.
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Chapter 10

Phase contrast

Problem 1

Consider a thin sample that induces both phase shifts �(~�0) and absorption �(~�0). The local
sample transmittance can then be written as t(~�0) = ei

e�(~�0), where e�(~�0) = �(~�0) + i�(~�0)
is a generalized complex phase function (�(~�0) and �(~�0) are real). Show that this complex
phase function can be e¤ectively imaged with a modi�ed Zernike phase microscope.
Speci�cally, consider a Zernike phase contrast microscope whose pupil function can be

controlled so that

P (�) =

8<:
ei � � "
1 " < � � a
0 � > a

where  is an adjustable phase shift that is user-de�ned (assume "� a).
The sample is illuminated with an on-axis plane wave of amplitude Ei. The resultant

intensity recorded at the image plane, for a given  , is written as I( )1 (~�1).

1) Show that by acquiring a sequence of four images with  =
�
0; �

2
; �; 3�

2

	
, and by processing

these four images using the algorithm

eI1(~�1) = 1

4

h�
I
(0)
1 (~�1)� I

(�)
1 (~�1)

�
+ i
�
I
(�=2)
1 (~�1)� I

(3�=2)
1 (~�1)

�i
we obtain

eI1(~�1) = iIi

Z
CSF(~�1 � ~�0)e�(~�0)d2~�0

where Ii = jEij2.
That is, the constructed complex "intensity" eI1(~�1) is e¤ectively an image of the complex

phase function of the sample, from which we can infer both �(~�0) and �(~�0). The imaging
response function is given by the microscope CSF. Use the weak phase approximation and
assume unit magni�cation.
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2) Derive a similar algorithm that achieves the same result but with a sequence of only three
images.

Problem 2

Consider a modi�ed Schlieren microscope where the knife edge, instead of blocking light,
produces a � phase shift. Compare this modi�ed Schlieren microscope with the standard
Schlieren microscope described in Section 10.2.2 (all other imaging conditions being equal).

1) Which microscope is more sensitive to samples that are purely phase shifting? (Assume
weak phase shifts.)

2) Which microscope is more sensitive to samples that are purely absorbing? (Assume weak
absorption.)

Problem 3

In DIC microscopy, a bias is used to adjust the relative phase between the cross-polarized
�elds. Such a bias can be obtained by introducing a quarter wave plate (QWP) between the
Nomarski prism and the polarizer in the DIC detection optics. When the fast axis of the
QWP is set to 45� from vertical (or horizontal), then the bias phase �� can be adjusted by
rotating the polarizer angle �. The Jones matrix for a QWP whose fast axis is aligned in
the vertical direction is given by

M(0�)
QWP = ei�=4

�
1 0
0 �i

�
: (10.1)

What is the relation between �� and �?
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Chapter 11

Holographic microscopy

Problem 1

Equations 11.11 and 11.13 are idealized in that they consider the integration over ~�h to be
in�nite. In practice, the integration can only be performed over the area of the CCD camera,
which has a �nite size Lx � Ly. Derive the e¤ect of this �nite size on the spatial resolution
of the reconstructed �eld E0(~�0). In particular...

1) Show that in the case of lensless Fourier holography (Fig. 11.2), this resolution is given
by �x0 = �

2n sin �x
and �y0 = �

2n sin �y
, where sin �x = Lx

2zd
and sin �y =

Ly
2zd
. (Assume �x0 and

�y0 are small).

2) Show that in the case of Fourier holography with a lens (Fig. 11.3), this resolution is
given by �x0 = �

2n sin �x
and �y0 = �

2n sin �y
, where sin �x = Lx

2f
and sin �y =

Ly
2f
. (Assume, for

simplicity, that zc = f).

In perfoming these calculations, you will run into sinc functions. De�ne the width of
sinc(ax) to be �x = 1

a
.

Problem 2

Consider performing digital holography with a CCD camera of size Lx�Ly comprising square
pixels of size �L��L. Calculate the maximum sample size (or �eld of view) �x��y allowed
in each of the following microscopy con�gurations, such that the Nyquist sampling criterion
is obeyed:

1) On-axis Fourier holography with a lens (assuming zc = f).
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2) On-axis lensless Fourier holography (assuming small angles and a distance zd between the
sample and camera).

3) On-axis Fresnel holography (assuming a distance zd between the sample and camera).
Derive a condition for the minimum zd allowed.

4) O¤-axis Fresnel holography (assuming a distance zd between the sample and camera, and
a reference-beam tilt angle � in the x direction only). Derive a condition for the minimum
zd allowed.

Hint: You will �nd Fig. 11.9 to be highly useful in this exercise.

Problem 3

1) On-axis digital holography is performed with circular phase stepping. Consider an arbi-
trary CCD pixel and assume a camera gain of 1 (i.e. the CCD directly reports the number of
detected photoelectrons). The phase stepping algorithm applied to this pixel may be written
as

eN =
1

K

K�1X
k=0

ei�kN (�k) (11.1)

where N (�k) is the pixel value recorded at reference phase �k (for a given intergration time).
Neglect all noise contributions except shot noise. Show that the variances of the real and
imaginary components of eN are given by

Var
h eNRei = Var h eNImi = 1

2K2
hNtotali (11.2)

where hNtotali it the total number of pixel values accumulated over all phase steps.

Hint: Start by writing N (�k) = hNi + �N (�k), where �N (�k) corresponds to shot noise
variations in the number of detected photoelectrons. Use your knowledge of the statistics of
these variations.

2) What happens to the above result if the camera gain is G?
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Chapter 12

Optical Coherence Tomography

Problem 1

Wide�eld phase-sensitive OCT is performed with circular phase stepping (4 steps). Consider
an arbitrary CCD pixel and assume a camera gain of 1 (i.e. the CCD directly reports the
number of detected photoelectrons). The phase stepping algorithm applied to this pixel may
be written as

eN =
1

4

3X
k=0

ei�kN (�k) (12.1)

where N (�k) is the pixel value recorded at reference phase �k = 2�k
4
(for a given integration

time T ). Our goal is to determine the phase of rz recorded by this pixel. To do this, we
must determine the phase of eN , which we denote here by 'N .
1) Derive an expression for 'N in terms of the four measured pixel values N (�k).

2) Consider two noise sources: shot noise and dark noise. The latter is modeled as producing
background photoelectron counts obeying Poisson statistics. Let NS, NR, and ND be the
average pixel values obtained from separate measurements of the sample beam, the reference
beam, and the dark current respectively, using a total integration time required for all four
steps (i.e. 4T ).
Show that the error in the determination of 'N has a standard deviation given by

�'N =

s
1

2NS

�
1 +

NS

NR

+
ND

NR

�
: (12.2)

(Without loss of generality, you may set the actual 'N to be any arbitrary value �in par-
ticular, you may assign it to be equal to zero.)

Hint: Start by writing N = hNi + �N , where �N corresponds to shot noise variations
in the number of detected photoelectrons. Use your knowledge of the statistics of these
variations.
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Observe that when the reference beam power is increased to such a point that NR � NS

and NR � ND, then �'N !
q

1
2NS
, meaning that the phase measurement accuracy becomes

limited by sample-beam shot noise alone (i.e dark noise becomes negligible). This is one of
the main advantages of interferometric detection with a reference beam.

Problem 2

Consider performing FD-OCT without phase stepping. That is, in Eq. 12.22, replacefWfd(zr;�) directly with W1(zr;�) (obtained from Eq. 12.2). For simplicity, assume that
�� is so large that sinc(�� z) may be approximated as a delta function �(�� z).

1) Derive an expression for Wfd(zr; z�). This expression should contain four terms.

2) Show that it is possible to disentangle the contributions from the four terms provided we
have a priori knowledge about rz(z0). In particular, assume that rz(z0) is so small that the
second term arising fromWss can be neglected (see Eq. 12.2). Moreover, adjust zr such that
rz(z0) is known to vanish when z0 < zr (for example, zr can be adjusted to lie just outside
the sample volume). Without loss of generality, de�ne this zr to be 0.
Derive an expression forWfd(zr = 0; z� > 0), making use of the above a priori knowledge.

This new expression should contain only a single term.

Problem 3

In deriving Eq. 12.23, we assumed that fWfd(zr;�) was a continuous function of �. This is an
idealization. In practice, fWfd(zr;�) must be a sampled function of �. Denote the sampling
interval as ��. That is, in Eq. 12.22, make the replacement

fWfd(zr;�)! ��
X
n

fWfd(zr;�)�(�� n��) (12.3)

where n is an integer.

1) Show when we take sampling into consideration, the coherence gating envelope Ĝ(ẑ) =
sinc(2��ẑ) in Eq. 12.23 becomes instead

Ĝ(ẑ) =
��

��

sin (2� (��+ ��) ẑ)

sin(2���ẑ)
(12.4)

with the shorthand notation ẑ = z0 � zr + z�=2.

2) Provide a plot of Ĝ(ẑ) using the arbitrary values �� = 1 and �� = 100. You will observe
that Ĝ(ẑ) is peaked at several values of ẑ (as opposed to a single value in Eq. 12.23). What
are these values?
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3) What is the problem with Ĝ(ẑ) being peaked at multiple values? Can you de�ne a
maximum axial range �z� associated with the reconstruction of rz(z�)? What happens if
the actual rz(z�) extends beyond this range? (Recall zr is �xed).

Note: for part 1, you will �nd the following identity to be useful:

a+b=2X
n=a�b=2

ei2�nc = ei2�ca
sin (�c (b+ 1))

sin(�c)
(12.5)
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Chapter 13

Fluorescence

Problem 1

Consider a solution of two-level �uorescent molecules such as the one depicted in Fig. 13.1(b).
The �uorescence from this solution is decreased by the addition of a quencher Q. The e¤ect
of this quencher is to induce an additional non-radiative decay of the excited state such that

jei+Q
kq�! jgi (13.1)

where kq is the quenching rate constant, in units s�1M�1 (M = molar concentration).

1) Show that

�e

�
(Q)
e

= 1 + �ekq[Q] (13.2)

where � (Q)e and �e are the excited state lifetimes with and without the presence of the
quencher, and [Q] is the molar concentration of the quencher.
Such quenching is said to obey a Stern-Volmer relationship.

2) Show that, based on our simple model,

Wf

W
(Q)
f

� �e

�
(Q)
e

(13.3)

where the equality holds only in a particular limit. What is this limit?

Problem 2

Molecules in solution undergo both translational and rotational di¤usion. A method for
characterizing rotational di¤usion is by measuring �uorescence anisotropy. This can be done
using the standard con�guration shown below.
An illumination beam of intensity Ii is vertically polarized (x direction). The resultant

�uorescence emission power is measured in the y direction within a small solid angle 
. A
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polarizer is used to distinguish the measured vertical and horizontal powers, denoted by Wk
and W? respectively. It can be shown that these powers are given by

Wk(t) = 
�f

Z
Kk(t� t0)Ii(t

0)dt0 (13.4)

W?(t) = 
�f

Z
K?(t� t0)Ii(t

0)dt0 (13.5)

where

Kk(t) =
1

3
(1 + 2R(t))K(t) (13.6)

K?(t) =
1

3
(1�R(t))K(t) (13.7)

where �f is the �uorescence cross section, K(t) is given by Eq. 13.26 (assume a single two-
level �uorescent species), and R(t) comes from rotational di¤usion. In particular, if the
rotational di¤usion is isotropic, then

R(t) = r0e
�6D�t = r0e

�t=�� (13.8)

where D� is a rotational di¤usion constant and, concomitantly, �� is a rotational di¤usion
time.
The measured �uorescence anisotropy is de�ned by

r(t) =
Wk(t)�W?(t)

Wk(t) + 2W?(t)
(13.9)

1) Show that if the illumination intensity is constant, then the steady-state �uorescence
anisotropy is given by

hri = r0
1 + �e=��

: (13.10)

This is known as Perrin�s relationship.
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2) DenoteWf as the total emitted �uorescence power in all solid angles. Derive an expression
for the total measured �uorescence power when �e=�� ! 0 (i.e. the rotation is slow compared
to the excited state lifetime). When is this measured �uorescence power equal to 
Wf?

3) Derive an expression for the total measured �uorescence power when �e=�� !1 (i.e. the
rotation is fast compared to the excited state lifetime). In the case, the molecule orientation
is essentially randomized before �uorescence emission can occur. Explain why the measured
�uorescence power in this case is smaller than 
Wf.

Problem 3

Consider performing FCS with a solution of freely di¤using �uorescent molecules and a 3D
Gaussian probe volume de�ned by 	(~r) = exp (�r2=w20). The average concentration of
molecules is hCi. Their di¤usion constant is D.

1) Derive Gf(�).

2) Verify that Gf(� ! 0) = 1
hNi , where hNi is the average number of molecules in the probe

volume.

cJerome Mertz/Roberts & Co. Publishers, all rights reserved. Please do not re-transmit, print,
or photocopy the materials for re-distribution in any medium without written permission.



CHAPTER 13. FLUORESCENCE 34

cJerome Mertz/Roberts & Co. Publishers, all rights reserved. Please do not re-transmit, print,
or photocopy the materials for re-distribution in any medium without written permission.



Chapter 14

Confocal microscopy

Problem 1

From the result in Eq. 14.23 it is clear that a purely phase-shifting point object produces
no discernable change in detected intensity in a transmission confocal microscope. That is,
if � is real then I1(~�s; zs) is independent of � to �rst order. This result is based on the
assumption that the microscope is well aligned.
Consider now a transmission confocal microscope that is misaligned. In particular, con-

sider displacing the pinhole out of focus by a distance �zp. Show that this misaligned
transmission confocal microscope now becomes sensitive to a phase-shifting point object.
For simplicity, assume that the illumination and detection CSFs are identical and Gaussian
(Eq. 5.31). Follow these steps:

1) Calculate E1B:

2) Calculate E1S(~�s; zs): For simplicity, neglect scanning and set ~�s and zs to zero.

3) From the resulting E1(0; 0) = E1B + E1S(0; 0), derive the detected intensity I1(0; 0) and
show that this depends on � to �rst order (neglect any higher order dependence on �).

Problem 2

Consider a �uorescence confocal microscope with di¤erent illumination and detection PSFs,
and a pinhole of arbitrary radius a.

1) Derive a general expression for the e¤ective confocal point spread function, PSFconf(~�s; zs).
Do not concern yourself with prefactors or normalization.

2) What happens to PSFconf(~�s; zs) when a! 0?

3) What happens to PSFconf(~�s; zs) when a ! 1? How does this compare to the PSF of a
standard wide�eld microscope?
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4) Derive a general expression for the e¤ective optical transfer function OTFconf(~�?s; zs) in
terms of OTFi and OTF0. Again, do not concern yourself with prefactors or normalization.

Problem 3

Consider a �uorescence confocal microscope equipped with a re�ecting pinhole, that is a
pinhole of radius a surrounded by a re�ecting annulus of outer radius b and inner radius
a (asume that the beam is blocked beyond the annulus). A transmission detector records
the power WT transmitted through the pinhole. A re�ection detector records the power
WR re�ected from the annulus. The confocal signal is then given by the di¤erence of these
recorded powers, namely �W = WT �WR.

1) Calculate �W (zs) if the sample is a thin uniform �uorescent plane located at a defocus
position zs. For simplicity, assume that PSF0 = PSFi � PSF (and hence OTF0 = OTFi �
OTF). Express your result in terms OTF and omit extraneous prefactors.

2) Show that for a particular ratio b=a, the optical sectioning strength of this microscope is
greater than that of a standard confocla microscope. In particular, show that �W (zs) _
jzsj�3 when jzsj is large, for a particular ratio b=a. What is this ratio?
Note: to solve this problem recall that OTF(~�?; zs) scales as jzsj�3=2 when �? 6= 0 and

jzsj is large.
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Chapter 15

Two-photon microscopy

Problem 1

The �uorescence power emitted by a molecule under continuous illumination is given by
Eq. 13.9. This equation is no longer valid in the case of pulsed illumination. In particular,
consider pulsed illumination with a pulse period �l and a pulse width �p. Assume �p � �e
such that, at most, only one excitation can occur per pulse. De�ne gp to be the probability
of �nding the molecule in the ground state at the onset of every pulse (in steady state).
Moreover, de�ne � to be the probability of excitation per pulse provided the molecule is in
the ground state.

1) Derive an expression for the average �uorescence power emitted by a molecule under
pulsed illumination, in terms of gp. (For simplicity, assume that the molecule is a simple
two-level system with a radiative quantum yield equal to 1).

2) Derive an expression for gp in steady state and show that

hWfi
h�f

=
�

�l

�
1� e��l=�e

1� e��l=�e + �e��l=�e

�
(15.1)

where �e is the excited state lifetime. Hint: to solve this problem, start by deriving the
probability ep of �nding the molecule in the excited state at the onset of a pulse. To achieve
steady state, this probability must be in balance with the residual probability from the
previous pulse

3) Let � be the excitation rate (two-photon or otherwise) during each pulse, and assume that
the pulse width is so short that ��p � 1. Derive an expression for ep when the repetition rate
of the illumination becomes so high that the illumination becomes e¤ectively a continuous
wave (i.e. when �l ! �p). How does this expression compare with Eq. 13.8?
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Problem 2

One- and two-photon excited �uorescence are speci�c cases of a more general n-photon
excited �uorescence, where the power emitted by a molecule is written as

Wf = �nfI
n
i (15.2)

where �nf is a generalized n-photon excited �uorescence cross section (for example, compare
with Eqs. 15.1 or 13.2).
When using pulsed illumination with pulse period �l and pulse width �p, derive an ex-

pression for hWfi in terms of hIii.

Problem 3

A Gaussian-Lorentzian focus is used to produce two-photon excited �uorescence.

1) Show that if the sample is a thin uniform plane at a defocus postion zs, with concentration
de�ned by C(~r) = C��(z � zs), then the total generated �uorescence power is inversely
proportional to the beam cross-sectional area A(zs). Hint: de�ne cross-sectional area in a
similar manner as Eq. 6.2.

2) Show that if the sample is a volume of uniform concentration C, then the total generated
�uorescence is independent of the beam waist w0.
Note: it may be helpful to rewrite Eqs. 15.16 and 15.17 in a more general form

	(~r) =
PSF2i (~r)
PSF2i (0)

(15.3)

�f = 
0�2fW
2
i PSF

2
i (0): (15.4)
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Chapter 16

Coherent nonlinear microscopy

Problem 1

The second harmonic tensorial product ~S = ~�(2) : ~E ~E (see Eq. 16.17) can be expanded as

Si =
3X
j=1

3X
k=1

�
(2)
ijkEjEk: (16.1)

This product depends on the coordinate system in which it is evaluated. The two relevant
coordinate systems for this problem are the �xed laboratory system (denoted by L) and the
molecule system (denoted byM), which may be arbitrarily oriented relative to the laboratory
system.
Consider a uni-axial molecule oriented along r̂, illuminated by a �eld given by ~E(L) in

the laboratory system.

1) De�ning R(�; ') to be the rotation matrix linking the molecule system to the laboratory
system (see Eq. 16.5), show that

S
(L)
l =

3X
m=1

3X
n=1

�
(L)
lmnE

(L)
m E(L)n (16.2)

where

�
(2)(L)
lmn =

3X
i=1

3X
j=1

3X
k=1

Ri;l(�; ')Rj;m(�; ')Rk;n(�; ')�
(2)(M)
ijk : (16.3)

Hint: recall that R(�; ') is orthogonal.

2) For simplicity, assume that all components of the molecule second-order susceptibility
�
(2)(M)
ijk are zero, except for �(2)(M)

111 � �
(2)
rrr. Show that, in this case,

~S(L) = �(2)rrr

�
r̂ � ~E(L)

�2
r̂: (16.4)
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Problem 2

Consider generating SHG with a focused beam as in Fig. 16.4, but with two labeled mem-
branes separated by a distance�x0. Each membrane exhibits identical, uniform second-order
susceptibility �(2)� , but their markers are oriented in opposite directions.

1) Use the 3D Gaussian approximation (Eq. 16.19) to derive the �eld E(2)2� (~r) produced by
the two membranes. Express your answer in terms of E(1)2� (~r), the �eld produced by a single
membrane (i.e. Eq. 16.29).

2) As in Fig. 16.4, the SHG is emitted in two o¤-axis lobes at cos � � 1� ���
�v
and ' � [0; �].

Plot the intensity ratio I
(2)
2� (~r)

I
(1)
2� (~r)

in the lobe directions, as a function of �x0
w0
(hint: use Eq. 16.15.

Please note that there is an error in this equation �on the left hand side ��m should be
2���m).
At approximately what value of �x0

w0
is this intensity ratio peaked?

Problem 3

1) Calculate the third-harmonic intensity pattern produced from a localized 3D-Gaussian
susceptibility distribution given by

�(3)(~r0) = �(3)e�r
2
0=w

2
� : (16.5)

Assume a focused illumination beam and use the 3D-Gaussian illumination pro�le given
by Eq. 16.19. Express your result in terms of r; � and '.

2) Derive an expression for the backward/forward ratio of THG intensities emitted along the
ẑ-axis. That is, derive an expression for

Ibackward
Iforward

=
I
(�=�)
3� (~r)

I
(�=0)
3� (~r)

: (16.6)

What does this ratio tend toward as w� ! 0 ?
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Chapter 17

Pupil synthesis

Problem 1

Consider performing coherent structured illumination microscopy with a modulated �eld
source (as opposed to a modulated intensity source). That is, start with

EL(xl; yl) = EL (1 + cos(2�qxxl + �)) : (17.1)

Such a �eld can be obtained, for example, by sending a plane wave through a sinusoidal
amplitude grating. This �eld is imaged into the sample using an unobstructed circular
aperture of su¢ ciently large bandwidth to transmit qx.

1) Derive an expression for the resulting intensity distribution Ii(x0; y0; z0) in the sample You
will note that this distribution exhibits di¤erent modulation frequencies at di¤erent defocus
values z0.

2) At what values of z0 does Ii(x0; y0; z0) correspond to an exact image of the source intensity
IL(xl; yl)? These images are called Talbot images.

3) At what values of z0 does Ii(x0; y0; z0) correspond to the source intensity image, but with
an inverted contrast? These images are called contrast-inverted Talbot images.

4) At defocus planes situated halfway between the Talbot and the contrast-inverted Tal-
bot images, Ii(x0; y0; z0) exhibits a new modulation frequency. What is this modulation
frequency? What is the associated modulation contrast?

5) Your solution for Ii(x0; y0; z0) should also exhibit a modulation in the z0 direction. What
is the spatial frequency of this modulation? Note: there is no control of the phase of the
z0-direction modulation (i.e. there is no equivalent of � in the z0 direction). Devise an
experimental strategy to gain phase control in the z0 direction.
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Problem 2

Show that the absolute value of the complex intensity eI = 1
K

PK�1
k=0 e

i�kIk obtained from
phase stepping can be rewritten as���eI��� = 1

3
p
2

q
(I0 � I1)

2 + (I1 � I2)
2 + (I2 � I0)

2 (17.2)

when K = 3.

Problem 3

Consider performing SIM with a coherent fringe pattern of arbitrary spatial frequency ~q.
Calculate the resulting sectioning strength when the detection aperture is square (as opposed
to circular). That is, calculate how the signal from a uniform �uorescent plane decays as
a function of defocus zs (assumed to be large). Speci�cally, consider the fringe frequencies
~q = fqx; 0g and fqx; qyg. Are the sectioning strengths for these two frequencies the same?
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Chapter 18

Superresolution

Problem 1

The pupil and point spread functions of a microscope are denoted by P (~�) and PSF(~�)
repectively. Consider introducing phase variations (or aberrations) in the pupil function,
such that P�(~�) = ei�(~�), leading to PSF�(~�). A standard method for evaluating PSF�(~�) is
with the Strehl ratio, de�ned by

S� =
PSF�(~0)

PSF0(~0)
(18.1)

where PSF0(~�) is the theoretical di¤raction-limited PSF obtained when the pupil is unob-
structed (i.e. P0(~�) = 0 or 1). The larger the Strehl ratio, the better the quality of PSF�.
Show that the introduction of aberrations can only lead to a degradation in the point spread
function (i.e. S� � 1). Proceed by �rst verifying Eq. 18.3.

Hint: You will �nd the Schwarz inequality to be useful here, which states:����Z X(~�?)Y (~�?)d
2~�?

����2 � �Z jX(~�?)j2 d2~�?
��Z

jY (~�?)j2 d2~�?
�

(18.2)

where X and Y are arbitrary complex functions.

Problem 2

Consider a confocal microscope whose illumination and detection PSFs are identical. The
detected power from a simple two-level molecule can be written in a simpli�ed form as

w(~�) = ��2(~�) (18.3)

where � is the molecule excitation rate exactly at the the focal center, and �(~�) = PSF(~�)
PSF(0) .

The above expression is valid in the weak excitation limit, namely � � kr (equivalent to
hei � �

kr
�see Section 13.1.1). In the strong excitation limit, then this expression must be
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CHAPTER 18. SUPERRESOLUTION 44

modi�ed to take into account saturation. In particular, we must write hei = �
�+kr

(neglecting
non-radiative decay chanels �see Eq. 13.8).

1) Derive an expression for wsat(~�) taking saturation into account (for simplicity, only keep
terms to �rst order in �

kr
). Note that wsat(~�) corresponds to an e¤ective confocal PSF, which

is now saturated.

2) Now consider modulating the excitation rate such that �(t) = � (1 + cos(2�
t)). Corre-
spondingly, wmod(~�; t) also becomes modulated, and exhibits harmonics. Derive an expression
for wmod(~�; t).

3) By using appropriate demodulation, assume that the components of wmod(~�; t) oscillating
at the �rst (
) and second (2
) harmonics can be isolated. Use the technique employed
in Section 18.2.2 to compare the curvatures of w
(~�) and w2
(~�) to the curvature of w(~�)
(unsaturated and unmodulated). That is, derive approximate expressions for��
 and��2
.
In particular, show that the e¤ective �rst harmonic PSF exhibits sub-resolution while the
e¤ective second harmonic PSF exhibits superresolution.
Note: remember to normalize all w(~�)�s to the same peak height before comparing their

curvatures.

Problem 3

Assume a molecule is imaged onto a unity-gain CCD camera with unity magni�cation. Use
maximum likelihood to estimate the error in localizing a molecule. That is, begin by de�ning
a chi-squared error function given by

�2(x) =
X
i

�
N(xi)� �N(xi;x)

�2
�2N(xi;x)

(18.4)

where i is a pixel index, N(xi) is the actual number of photocounts registered at pixel i, and
�N(xi;x) and �2N(xi;x) are the expected mean and variance, respectively, of the photocounts
at pixel i for a molecule located at position x. Assume the photocounts obey shot-noise
statistics alone. For simplicity, consider only a single dimension (the x axis).
The estimated position of the molecule x̂ is obtained by minimizing �2(x). That is, x̂ is

a solution to the equation d�2(x)
dx

= 0.

1) Show that the error in the estimated molecule position, de�ned by �x = x̂� x0, where x0
is the actual molecule position, has a variance given by

�2x �

0@X
i

1
�N(xi;x0)

 
�N(xi;x)

dx

����
x0

!21A�1

(18.5)

Hint: to obtain this result, it is useful to �rst solve for �x by writing

cJerome Mertz/Roberts & Co. Publishers, all rights reserved. Please do not re-transmit, print,
or photocopy the materials for re-distribution in any medium without written permission.



CHAPTER 18. SUPERRESOLUTION 45

N(xi) = �N(xi;x0) + �N(xi;x0) (18.6)

�N(xi;x) � �N(xi;x0) + �x
d �N(xi;x)

dx

����
x0

(18.7)

and keeping terms only to �rst order in �N(xi;x0) and �x. Note that �2x = h�x2i.

2) Derive �2x for the speci�c example where the PSF at the camera plane has a normalized
Gaussian pro�le given by

�N(xi;x) =
Np
2�w0

jxi�xj+a=2Z
jxi�xj�a=2

e�x
02=2w20dx0 � Nap

2�w0
e�(xi�x)

2=2w20 (18.8)

where w0 is the Gaussian waist and a is the camera pixel size (assume a� w0).
How does your solution compare with Eq. 18.35?

Hint: approximate the summation with an integral. That is, for an arbitrary function
f(xi), write

P
i

f(xi) � 1
a

R
f(xi)dxi.
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